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Abstract. In using the logic of equality with unininterpreted functions to ver-
ify hardware systems, specific characteristics of the formula describing the cor-
rectness condition can be exploited when deciding its validity. We distinguish
a class of terms we call “p-terms” for which equality comparisons can appear
only in monotonically positive formulas. By applying suitable abstractions to the
hardware model, we can express the functionality of data values and instruction
addresses flowing through an instruction pipeline with p-terms.
A decision procedure can exploit the restricted uses of p-terms by consider-
ing only “maximally diverse” interpretations of the associated function symbols,
where every function application yields a different value except when constrained
by functional consistency. We present a procedure that translates the original for-
mula into one in propositional logic by interpreting the formula over a domain
of fixed-length bit vectors and using vectors of propositional variables to encode
domain variables. By exploiting maximal diversity, this procedure can greatly
reduce the number of propositional variables that must be introduced.
We present experimental results demonstrating the efficiency of this approach
when verifying pipelined processors using the method proposed by Burch and
Dill. Exploiting positive equality allows us to overcome the exponential blow-up
experienced previously [VB98] when verifying microprocessors with load, store,
and branch instructions.

1 Introduction

For automatically reasoning about pipelined processors, Burch and Dill demonstrated
the value of using propositional logic, extended with uninterpreted functions, uninter-
preted predicates, and the testing of equality [BD94]. Their approach involves abstract-
ing the data path as a collection of registers and memories storing data, units such as
ALUs operating on the data, and various connections and multiplexors providing meth-
ods for data to be transferred and selected. The operation of units that transform data is
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abstracted as blocks computing functions with no specified properties other than func-
tional consistency, i.e., that applications of a function to equal arguments yield equal
results: ����� implies �����
	������
��	 . The state of a register at any point in the computa-
tion can be represented by a symbolic term, an expression consisting of a combination
of domain variables, function and predicate applications, and Boolean operations.

The correctness of a pipelined processor can be expressed as a formula in this logic
that compares for equality the terms describing the results produced by the processor to
those produced by an instruction set reference model. In their paper, Burch and Dill also
describe a decision procedure for their logic based on theorem proving search methods.
It uses combinatorial search coupled with algorithms for maintaining a partitioning of
the terms into equivalence classes based on the equalities that hold at a given step of the
search [NO80].

Burch and Dill’s work has generated considerable interest in the use of uninterpreted
functions to abstract data operations in processor verification. A common theme has
been to adopt Boolean methods, either to allow integration of uninterpreted functions
into symbolic model checkers [DPR98,BBCZ98], or to allow the use of Binary Decision
Diagrams in the decision procedure [HKGB97,GSZAS98,VB98]. Boolean methods al-
low a more direct modeling of the control logic of hardware designs and thus can be
applied to actual processor designs rather than highly abstracted models. In addition
to BDD-based decision procedures, Boolean methods could use some of the recently
developed satisfiability procedures for propositional logic. In principle, Boolean meth-
ods could outperform decision procedures based on theorem proving search methods,
especially when verifying processors with more complex control logic.

Boolean methods can be used to decide the validity of a formula containing terms and
uninterpreted functions by exploiting the property that a given formula contains a lim-
ited number of function applications and therefore can be proved to be universally valid
by considering its interpretation over a sufficiently large, but finite domain [Ack54].
The formula to be verified can be translated into one in propositional logic, using vec-
tors of propositional variables to encode the possible values generated by function ap-
plications [HKGB97]. Our implementation of such an approach [VB98] as part of a
BDD-based symbolic simulation system was successful at verifying simple pipelined
data paths. We found, however, that the computational resources grew exponentially as
we increased the pipeline depth. Modeling the interactions between successive instruc-
tions flowing through the pipeline, as well as the functional consistency of the ALU
results, precludes having an ordering of the variables encoding term values that yields
compact BDDs. Similarly, we found that extending the data path to a complete pro-
cessor by adding either load and store instructions or instruction fetch logic supporting
jumps and conditional branches led to impossible BDD variable ordering requirements.
Goel et al [GSZAS98] presented an alternate approach to using BDDs to decide the
validity of formulas in the logic of equality with uninterpreted functions. They use
Boolean variables to encode the equality relations between terms, rather than to encode
term values. Their experimental results were also somewhat disappointing. To date, the
possibility that Boolean methods could outperform theorem proving methods has not
been realized.
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In this paper, we show that the characteristics of the formulas generated when model-
ing processor pipelines can be exploited to greatly reduce the number of propositional
variables that are introduced when translating the formula into propositional logic. We
distinguish a class of terms we call p-terms for which equations, i.e., equality compar-
isons between terms, can appear only in monotonically positive formulas. Such formu-
las are suitable for describing the top-level correctness condition, but not for modeling
any control decisions in the hardware. By applying suitable abstractions to the hardware
model, we can express the functionality of data values and instruction addresses with
p-terms.

A decision procedure can exploit the restricted uses of p-terms by considering only
“maximally diverse” interpretations of the associated “p-function” symbols, where ev-
ery function application yields a different value except when constrained by functional
consistency. In translating the formula into propositional logic, we can then use vec-
tors with fixed bit patterns rather than propositional variables to encode the possible
results of function applications. This reduction in variables greatly simplifies the BDDs
generated, avoiding the exponential blow-up experienced by other procedures.

Others have recognized the value of restricting the testing of equality when modeling
the flow of data in pipelines. Berezin et al [BBCZ98] generate a model of an execution
unit suitable for symbolic model checking in which the data values and operations are
kept abstract. In our terminology, their functional terms are all p-terms. They use fixed
bit patterns to represent the initial states of registers, much as we replace p-term domain
variables by fixed bit patterns. To model the outcome of each program operation, they
generate an entry in a “reference file” and refer to the result by a pointer to this file.
These pointers are similar to the bit patterns we generate to denote the p-function appli-
cation outcomes. Damm et al consider an even more restricted logic that allows them to
determine the universal validity of a formula by considering only interpretations over
the domain ��������� . Verifying an execution unit in which the data path width is reduced
to a single bit then suffices to prove its correctness for all possible widths. In compari-
son to these other efforts, we maintain the full generality of the unrestricted functional
terms of Burch and Dill while exploiting the efficiency gains possible with p-terms. In
our processor model, we can abstract register identifiers as unrestricted terms, while
modeling program data and instruction data as p-terms. In contrast, both [BBCZ98]
and [DPR98] used bit encodings of register identifiers and were unable to scale their
verifications to a realistic number of registers.

In a different paper in this proceedings, Pnueli, et al [PRSS99] also propose a method
to exploit the polarity of the equations in a formula containing uninterpreted functions
with equality. They describe an algorithm to generate small domains for each domain
variable such that the universal validity of the formula can be determined by consid-
ering only interpretations in which the variables range over their restricted domains.
A key difference of their work is that they examine the equation structure after re-
placing all function application terms with domain variables and introducing functional
consistency constraints as described by Ackermann [Ack54]. These consistency con-
straints typically contain large numbers of equations—far more than occur in the origi-
nal formula—that mask the original p-term structure. In addition, we use a new method
of replacing function application terms with domain variables. Our scheme allows us to
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exploit maximal diversity by assigning fixed values to the domain variables generated
while expanding p-function application terms.

In the remainder of the paper, we first define the syntax and semantics of our logic by
extending that of Burch and Dill’s. We prove our central result concerning the need
to consider only maximally diverse interpretations when deciding the validity of for-
mulas in our logic. We describe a method of translating formulas into propositional
logic. We discuss the abstractions required to model processor pipelines in our logic.
Finally, we present experimental results showing our ability to verify a simple, but com-
plete pipelined processor. A more detailed presentation with complete proofs is given
in [BGV99].

2 Logic of Equality with Uninterpreted Functions (EUF)

The logic of Equality with Uninterpreted Functions (EUF) presented by Burch and Dill
[BD94] can be expressed by the following syntax:

term ��� � ITE � formula � term � term 	�
function-symbol � term ������� � term 	

formula ��� �����
	�� ��
������ � � � term � term 	� � formula � formula 	 � � formula � formula	 ���
formula�

predicate-symbol � term ������� � term 	
In this logic, formulas have truth values while terms have values from some arbitrary
domain. Terms are formed by applications of uninterpreted function symbols and by
applications of the ITE (for “if-then-else”) operator. The ITE operator chooses between
two terms based on a Boolean control value, i.e., ITE �����
	�� � � � � � � 	 yields � � while
ITE � 
������ � � � � � � � 	 yields � � . Formulas are formed by comparing two terms for equality,
by applying an uninterpreted predicate symbol to a list of terms, and by combining
formulas using Boolean connectives. A formula expressing equality between two terms
is called an equation. We use expression to refer to either a term or a formula.

Every function symbol � has an associated order, denoted ����� �
� 	 , indicating the num-
ber of terms it takes as arguments. Function symbols of order zero are referred to as
domain variables. We use the shortened form � rather than � �
	 to denote an instance of
a domain variable. Similarly, every predicate � has an associated order ����� � � 	 . Predi-
cates of order zero are referred to as propositional variables.

The truth of a formula is defined relative to a nonempty domain ! of values and an
interpretation " of the function and predicate symbols. Interpretation " assigns to each
function symbol of order # a function from !%$ to ! , and to each predicate symbol of
order # a function from !&$ to �����
	�� � 
������ � � . Given an interpretation " of the function
and predicate symbols and an expression ' , we can define the valuation of ' under
" , denoted "�()'+* , according to its syntactic structure. "�()'+* will be an element of the
domain when ' is a term, and a truth value when ' is a formula.

A formula , is said to be true under interpretation " when "-( ,.* equals ���
	�� . It is said
to be valid over domain ! when it is true for all interpretations over domain ! . , is
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said to be universally valid when it is valid over all domains. It can be shown that if a
formula is valid over some suitably large domain, then it is universally valid [Ack54].
In particular, it suffices to have a domain as large as the number of syntactically distinct
function application terms occurring in , .

3 Logic of Positive Equality with Uninterpreted Functions (PEUF)

3.1 Syntax

PEUF is an extended logic based on EUF given by the following syntax:

g-term ��� � ITE � formula � g-term � g-term 	�
g-function-symbol � p-term ������� � p-term 	

p-term ��� � g-term
�
ITE � formula � p-term � p-term 	�

p-function-symbol � p-term ������� � p-term 	
formula ��� �����
	 � � 
��-��� � � � term � term 	� � formula � formula	 � � formula � formula	 � �

formula�
predicate-symbol � p-term ������� � p-term 	

p-formula ��� � formula
� � p-term � p-term 	� � p-formula � p-formula	 � � p-formula � p-formula	

This logic has two disjoint classes of function symbols giving two classes of terms.
General terms, or g-terms, correspond to terms in EUF. Syntactically, a g-term is a g-
function application or an ITE term in which the two result terms are hereditarily built
from g-function applications and ITEs.

The new class of terms is called positive terms, or p-terms. P-terms may not appear in
negative equations, i.e., equations within the scope of a logical negation. The syntax is
restricted in a way that prevents p-terms from appearing in negative equations. When
two p-terms are compared for equality, the result is a special, restricted kind of for-
mula called a p-formula. P-formulas are built up using only the monotonically positive
Boolean operations � and � . P-formulas may not be placed under a negation sign, and
cannot be used as the control for an ITE operation.

Note that our syntax allows any g-term to be “promoted” to a p-term. Throughout the
syntax definition, we require function and predicate symbols to take p-terms as argu-
ments. However, since g-terms can be promoted, the requirement to use p-terms as argu-
ments does not restrict the use of g-function symbols or g-terms. In essence, g-function
symbols may be used as freely in our logic as in EUF, but the p-function symbols are
restricted.

Observe that PEUF does not extend the expressive power of EUF—we could translate
any PEUF expression into EUF by considering the g-terms and p-terms to be terms and
the p-formulas to be formulas. Instead, the benefit of PEUF is that by distinguishing
some portion of a formula as satisfying a restricted set of properties, we can radically
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reduce the number of different interpretations we must consider when proving that a
p-formula is universally valid.

3.2 Diverse Interpretations

Let
�

be a set of terms, where a term may be either a g-term or a p-term. We classify
terms as either p-function applications, g-function applications, or ITE terms, accord-
ing to their top-level operation. The first two categories are collectively referred to as
function application terms. For any formula or p-formula , , define

� � , 	 as the set of
all function application terms occurring in , .

An interpretation " partitions a term set
�

into a set of equivalence classes, where
terms � � and � � are equivalent under " , written � ����� � � when "�( � � * equals "�( � � * .
Interpretation "�� is said to be a refinement of " for term set

�
when � �����
	 � � implies

� ����� � � for every pair of terms � � and � � in
�

. "�� is a proper refinement of " for�
when it is a refinement and there is at least one pair of terms � � �
� ��� �

such that
� � � � � � , but � ���� �
	 � � .

Let � denote a subset of the function symbols in formula , . An interpretation " is said
to be diverse for , with respect to � when it provides a maximal partitioning of the
function application terms in

� � , 	 having a top-level function symbol from � relative
to each other and to the other function application terms, but subject to the constraints
of functional consistency. That is, for � � of the form ����� � ������� ��� $ 	 , where � � � , an
interpretation " is diverse with respect to � if " has � � � � � � only in the case where
� � is also a term of the form ����� � ������� ��� $ 	 , and ��� � � ��� for all � such that ����� � # .
If we let �"! � , 	 denote the set of all p-function symbols in , , then interpretation " is
said to be maximally diverse when it is diverse with respect to �#! � , 	 . Note that this
property requires the p-function application terms to be in separate equivalence classes
from the g-function application terms.

Theorem 1. P-formula , is universally valid if and only if it is true in all maximally
diverse interpretations.

First, it is clear that if , is universally valid, then , is true in all maximally diverse
interpretations. We prove via the following lemma that if , is true in all maximally
diverse interpretations it is universally valid.

Lemma 1. If interpretation " is not maximally diverse for p-formula , , then there is
an interpretation "�� that is a proper refinement of " such that "$� (),+*&% "�(),+* .
Proof Sketch: Let � � be a term occurring in , of the form � � ��� � ������� ��� $�' 	 , where � �

is a p-function symbol. Let � � be a term occurring in , of the form � � �(� � ������� ��� $*) 	 ,
where � � may be either a p-function or a g-function symbol. Assume furthermore that
"�( � � * � "�( � � * �,+ , but that either symbols � � and � � differ or "-(-�.� * �� "�(/����* for some
value of � .
Let +�� be a value not in ! , and define a new domain ! � �� !10 ��+�� � . Our strategy is
to construct an interpretation "$� over !2� that partitions the terms in

� � , 	 in the same
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way as " , except that it splits the class containing terms � � and � � into two parts—one
containing � � and evaluating to + � , and the other containing � � and evaluating to + .
Define function

� � ! ��� ! to map elements of !�� back to their counterparts in ! , i.e.,� � +�� 	�� + , while all other values of � give
� �
� 	 � � .

For p-function symbol � � , define " � �
� � 	 �
� � ������� � � $ 	 as + � when
� ��� � 	 � "�(-�.� * for

all � � � � # � , and as " ��� � 	 � � ��� � 	 ������� � � �
� $ 	 	 otherwise. For other function and
predicate symbols, "�� is defined to preserve the functionality of interpretation " , while
also treating argument values of +�� the same as + . That is, " � �
� 	 for function symbol �
having � � � �
� 	 � # is defined such that " � �
� 	 ��� � ������� � � $ 	 � " �
� 	 � � �
� � 	 ������� � � ��� $ 	 	 .
One can show that interpretation "$� maintains the values of all formulas and g-terms as
occur under interpretation " . Some of the p-terms that evaluate to + under " , including
� � , evaluate to + � . Others, including � � , continue to evaluate to + . With respect to p-
formulas, consider first an equation of the form ��� � ��� where ��� and ��� are p-terms.
The equation will yield the same value under both interpretations except under the con-
dition that �	� and �
� are split into different parts of the class that originally evaluated
to + , in which case the comparison will yield ���
	�� under " , but


���� � � under " � . In any
case, we maintain the property that "�� (-� � ��� � *�% "�(-� � � � � * . This implication relation
is preserved by conjunctions and disjunctions of p-formulas, due to the monotonicity
of these operations. By this argument we can see that " � is a proper refinement of " for� � , 	 and that " ��(),+*&% "-(),+* . �

Theorem 1 is proved by repeatedly applying Lemma 1. One can show that any inter-
pretation " of a p-formula , can be refined to a maximally diverse interpretation "
� for
, such that " � (),+* implies "�(),+* . It follows that the truth of , for all maximally diverse
interpretations implies its truth for all possible interpretations.

4 Exploiting Positive Equality in a Decision Procedure

A decision procedure for PEUF must determine whether a given p-formula is univer-
sally valid. Theorem 1 shows that we can consider only interpretations in which the
values produced by the application of any p-function symbol differ from those produced
by the applications of any other p-function or g-function symbol. We can therefore con-
sider the different p-function symbols to yield values over domains disjoint from one
another and from the domain of g-function values. In addition, we can consider each
application of a p-function symbol to yield a distinct value, except when its arguments
match those of some other application.

We describe a decision procedure that first transforms an arbitrary EUF formula into one
containing only domain and propositional variables. This restricted class of formulas
can readily be translated into propositional formulas by using bit vectors as the domain
of interpretation. The transformation can exploit positive equality by using fixed bit
patterns rather than vectors of propositional variables to encode the domain variables
representing p-function application results.
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4.1 Eliminating Function and Predicate Applications in EUF

We illustrate our method by considering the formula

� � � % � �������
	 	���� ��������	 	 (1)

Eliminating the implication gives
� �
� � � 	 ��� �
���
� 	 	 ��� ��������	 	 , and hence both �

and � are a p-function symbols, while � and � are g-function symbols. We introduce
domain variables ��� � ����� � and replace term ���
� 	 with ��� � and term ���
� 	 with the term
ITE ��� � � ����� � �	��� � 	 . Observe that as we consider interpretations with different values
for variables ��� � and ��� � , we implicitly cover all values that an interpretation of func-
tion symbol � may yield for arguments � and � . The ITE structure enforces functional
consistency—when " �
� 	�� " �
� 	 , we will have both terms evaluate to " �
��� � 	 .
These replacements give a formula:

� ��� � ��	 ��� �
��� � 	
��� � ITE �
� � � ����� � ����� � 	 	 . We
then introduce domain variables �
� � and ��� � and replace the first application of � with
��� � , and the second with ITE � ITE �
� � � �	��� � ����� � 	
����� � ����� � �	�
� � 	 . Our final form is
then: � �
� � � 	 ���
� � � ITE � ITE �
��� � �	��� � �	��� � 	������ � �	�
� � ����� � 	 (2)

The complete procedure generalizes that shown for the simple example. Suppose for-
mula , contains � syntactically distinct terms � � �
� � ������� �
��� having the application of
function symbol � as the top-level operation. We refer to these as � -application terms.
We introduce domain variables ��� � ������� �	��� � and replace each term � � with a nested
ITE structure � � of the form

��� �� ITE ��� ��� � ����� � � ITE ���"��� � �	��� � ���	��� ITE ���"��� ��� � ����� ��� � ����� � 	������ 	 	

where the formula � ��� � is true iff the arguments to the top-level application of � in the
terms �.� and ��� have the same values. The result of replacing every � -application term
� � in , by the new term � � is a formula that we call ,����! .
We remove all function symbols of nonzero order from , by repeating this process. A
similar process is used to eliminate applications of predicate symbols having nonzero
order, except that we introduce propositional variables "#� � �$"#� � ������� � when replacing
applications of predicate symbol � . We call the final result of this process the formula
, � . Complete details are presented in [BGV99].

Theorem 2. For EUF formula , , the transformation process yields a formula , � con-
taining only domain and propositional variables and such that , is universally valid if
and only if , � is universally valid.

Proof Sketch: To prove this theorem, we first show that our procedure for replacing all
instances of function symbol � in an arbitrary formula % by nested ITE terms to yield
a formula %&���' preserves universal validity. (1) %����' universally valid %(% univer-
sally valid. For any interpretation " of the function and predicate symbols in % , we can
construct an interpretation )" of the symbols in %����! such that )" (*%+�,�! * � "�(*%+* . Inter-
pretation )" is defined by extending " to include interpretations of the domain variables
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��� � ������� ����� � . Each such variable ��� � is given the interpretation )"
�
��� � 	 �� "-( �.��* , i.e., the
value of � -application term � under " .

(2) Conversely, % universally valid % %����' universally valid. For any interpretation )"
of the function and predicate symbols in %����! , we can define an interpretation " of the
symbols in % such that "�(*%+* � )"�(*%+�,�! �* . This interpretation is defined by introducing
an interpretation of function symbol � such that the values yielded when evaluating
each � -application term � � under " matches that yielded for the nested ITE structure � �
under )" .

By a similar process we show that our procedure for replacing predicate applications
preserves universal validity. The theorem is then proved by inducting on the number of
function and predicate symbols. �

4.2 Using Fixed Values for P-Function Applications

We can exploit the maximal diversity property by using fixed domain values rather than
domain variables when replacing p-function applications by nested ITE terms. First,
consider the effect of replacing all instances of a function symbol � by nested ITE terms,
as described earlier, yielding a formula ,��,�! with new domain variables ��� � ������� ����� � .

Lemma 2. If � � � , then for any interpretation " that is diverse for , with respect
to � , there is an interpretation )" that is diverse for ,����! with respect to � � � � � 0
� ��� � ������� ����� � � such that "�(),+*
� )" (),+���' * .
Proof Sketch: The proof of this lemma requires a more refined argument than that of
Theorem 2. If we were to define )" � ��� � 	 to be "�( �.� * for each domain variable ��� � , we may
not have a diverse interpretation with respect to the newly-generated variables. Instead,
we define )" �
��� � 	 to be "�( � � * only if there is no value

��� � such that the arguments of
� -application terms � � and � � have equal valuations under " . Otherwise we let +$� be a
value not in ! , define a new domain !�� ���! 0 ��+�� � , and let )" � ��� � 	�� + � . It can readily
be seen that the value assigned to this variable will not affect the valuation of nested
ITE structure � � under interpretation )" , and hence it can be arbitrary. �

Suppose we apply the transformation process of Theorem 2 to a p-formula , to generate
a formula , � , and that in this process, we introduce a set of new domain variables � to
replace the applications of the p-function symbols. Let � �! � , 	 be the union of the set of
domain variables in � ! � , 	 and � . That is, � �! � , 	 consists of those domain variables
in the original formula , that were p-function symbols as well as the domain variables
generated when replacing applications of p-function symbols. Let � �� � , 	 be the domain
variables in , � that are not in � �! � , 	 . These variables were either g-function symbols
in , or were generated when replacing g-function applications.

We first observe that we can generate all maximally diverse interpretations of , by
considering only interpretations of the variables in , � that assign distinct values to the
variables in � �! � , 	 :
Theorem 3. PEUF formula , is universally valid if and only if its translation , � is
true for every interpretation " � such that if � ! is a variable in � �! � , 	 and � is any other
domain variable in , � , then " � � ��! 	 �� " � � � 	 .
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Proof Sketch: This theorem follows by inducting on the number of p-function symbols
in , , using Lemma 2 to prove the induction step. �

Observe that the nested ITE structures we generate when replacing function applications
involve many equations in the formulas controlling ITE operations. These can cause
function symbols that appeared as p-function symbols in the original formula to be g-
function symbols in , � . In addition, many of the newly-generated variables will not be
p-function symbols in , � . For example, variables ��� � and ��� � are g-function symbols
in Equation 2. Nonetheless, this theorem shows that we can still restrict our attention to
interpretations that are diverse with respect to these variables.

Furthermore, we can choose particular domains of sufficient size and assign fixed in-
terpretations to the variables in � �! � , 	 . Select disjoint domains ! ! and ! � for the
variables in � �! � , 	 and � �� � , 	 , respectively, such that

� ! ! ��� �
� �! � , 	 � and

� ! � ����
� �� � , 	 � . Let � be any 1–1 mapping � ��� �! � , 	 � ! ! .

Corollary 1. PEUF formula , is universally valid if and only if its translation , �
is true for every interpretation " � such that " � � ��! 	 ��� � ��! 	 for every variable � ! in
� �! � , 	 , and " � � � � 	 is in ! � for every variable � � in � �� � , 	 .

Proof Sketch: Any interpretation that is diverse with respect to � �! � , 	 defines a 1–1
mapping from the variables in � �! � , 	 to the domain. We can therefore find an isomor-
phic interpretation satisfying the requirements for " � listed above. �

As an illustration, consider formula , � given by Equation 2 resulting from the transfor-
mation of formula , given by Equation 1. We have � �! � , 	 � ����� � ����� � �	�
� � ����� � � and
� �� � , 	 � � � � � � . Suppose we use bit vectors of length 3 as the domain of interpreta-
tion. Then we could let ! � be ��� � � � � ��� ��� � � � � �	� � . We assign � the fixed interpretation
� ��� ��� �
� , and � the interpretation � ��� �����
� where � is a propositional variable. View-
ing truth values ���
	 � and


���� � � as representing bit values 1 and 0, respectively, the
different interpretations of � will then cover both the case where � and � have equal in-
terpretations as well as where they are distinct. For variables ��� � , ��� � , ��� � , and �
� � , we
can assign fixed interpretations � � � ��� �
� , � � � � � ��� , � � � � � ��� , and � � � � � ��� , respectively.
Thus, we can translate our formula , into a propositional formula having just a single
propositional variable.

Ackermann also describes a scheme for replacing function application terms by domain
variables [Ack54]. Using his scheme, we simply replace each instance of a function ap-
plication by a newly-generated domain variable and then introduce constraints express-
ing functional consistency. For the example formula given by Equation 1 we would get
a modified formula:

� �
� � ��% ��� � � ��� � 	 � � ��� � ����� � % �
� � ���
� � 	 	
% �
� � ��% �
� � ���
� � 	

Observe, however, that there is no clear way to exploit the maximal diversity property
with this translated form. If we replace ��� � and ��� � by distinct values in the above case,
we fail to consider any interpretations in which arguments � and � have equal values.
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5 Modeling Microprocessors in PEUF

Our interest is in verifying pipelined microprocessors, proving their equivalence to an
unpipelined instruction set architecture model. We use the approach pioneered by Burch
and Dill [BD94] in which the abstraction function from pipeline state to architectural
state is computed by symbolically simulating a flushing of the pipeline state and then
projecting away the state of all but the architectural state elements, such as the register
file, program counter, and data memory. Operationally, we construct two sets of p-terms
describing the final values of the state elements resulting from two different symbolic
simulation sequences—one from the pipeline model and one from the instruction set
model. The correctness condition is represented by a p-formula expressing the equality
of these two sets of p-terms.

Our approach starts with an RTL or gate-level model of the microprocessor and per-
forms a series of abstractions to create a model of the data path using terms that satisfy
the restrictions of PEUF. Examining the structure of a pipelined processor, we find that
the signals we wish to abstract as terms can be classified as either program data, instruc-
tion addresses, or register identifiers. By proper construction of the data path model,
both program data and instruction addresses can be represented as p-terms. Register
identifiers, on the other hand, must be modeled as g-terms, because their comparisons
control the stall and bypass logic. The remaining control logic is kept at the bit level.

In order to generate such a model, we must abstract the operation of some of the proces-
sor units. For example, the data path ALU is abstracted as an uninterpreted p-function,
generating a data value given its data and control inputs. We model the PC incrementer
and the branch target logic as uninterpreted functions generating instruction addresses.
We model the branch decision logic as an uninterpreted predicate indicating whether or
not to take the branch based on data and control inputs. This allows us to abstract away
the data equality test used by the branch-on-equal instruction. The instruction memory
can be abstracted as an uninterpreted function, since it is considered to be read-only.

To model the register file, we use the memory model described by Burch and Dill
[BD94], creating a nested ITE structure to record the history of writes to the memory.
This approach requires equations between memory addresses controlling the ITE oper-
ations. For the register file, such equations are allowed since g-term register identifiers
serve as addresses. For the data memory, however, the memory addresses are p-term
program data, and hence such equations cannot be used. Instead, we model the data
memory as a generic state machine, changing state in some arbitrary way for each write
operation, and returning some arbitrary value dependent on the state and the address for
each read operation. Such an abstraction technique is sound, but it does not capture all
of the properties of a memory. It is satisfactory for modeling processors in which there
is no reordering of writes relative to each other or relative to reads.

6 Experimental Results

In [VB98], we described the implementation of a symbolic simulator for verifying
pipelined systems using vectors of Boolean variables to encode domain variables, effec-
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tively treating all terms as g-terms. This simulation is performed directly on a modified
gate-level representation of the processor. In this modified version, we replace all state
holding elements with behavioral models we call Efficient Memory Models (EMMs).
In addition all data-transformation elements (e.g., ALUs, shifters, PC incrementers) are
replaced by read-only EMMs, which effectively implement the transformation of func-
tion applications into nested ITE expressions. Modifying this program to exploit max-
imal diversity simply involves having the EMMs generate expressions containing fixed
bit patterns rather than vectors of Boolean variables. All performance results presented
here were measured on a 125 MHz Sun Microsystems SPARC-20.

We constructed several simple pipeline processor designs based on the MIPS instruction
set. We abstract register identifiers as g-terms, and hence our verification covers all
possible numbers of program registers including the 32 of the MIPS instruction set.
The simplest version of the pipeline implements ten different Register-Register and
Register-Immediate instructions. Our program could verify this design in 48 seconds
of CPU time and just 7 MB of memory using vectors of Boolean variables to encode
domain variables. Using fixed bit patterns reduces the complexity of the verification to
6 seconds and 2 MB.

We then added a memory stage to implement load and store instructions. An interlock
stalls the processor one cycle when a load instruction is followed by an instruction
requiring the loaded result. Treating all terms as g-terms and using vectors of Boolean
variables to encode domain variables, we could not verify this data path, despite running
for over 2000 seconds. The fact that both addresses and data for the memory come from
the register file induces a circular constraint on the ordering of BDD variables encoding
the terms. On the other hand, exploiting maximal diversity by using fixed bit patterns
for register values eliminates these variable ordering concerns. As a consequence, we
could verify the 32-bit version of this design in just 12 CPU seconds using 1.8 MB.

Finally, we verified a complete CPU, with a 5-stage pipeline implementing 10 ALU
instructions, load and store, and MIPS instructions j (jump with target computed from
instruction word), jr (jump using register value as target), and beq (branch on equal).
This design is comparable to the DLX design verified by Burch and Dill in [BD94],
although our version is closer to an actual gate-level implementation. We were unable
to verify this processor using the scheme of [VB98]. Having instruction addresses de-
pendent on instruction or data values leads to exponential BDD growth when modeling
the instruction memory. Modeling instruction addresses as p-terms, on the other hand,
makes this verification tractable. We can verify the 32-bit version processor using 169
CPU seconds and 7.5 MB.

7 Conclusions

Eliminating Boolean variables in the encoding of terms representing program data and
instructionaddresses has given us a major breakthrough in our ability to verify pipelined
processors. Our BDD variables now only encode control conditions and register identi-
fiers. For classic RISC pipelines, the resulting state space is small and regular enough
to be handled readily with BDDs.
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We believe that there are many optimizations that will yield further improvements in the
performance of Boolean methods for deciding formulas involving uninterpreted func-
tions. We have found that relaxing functional consistency constraints to allow inde-
pendent functionality of different instructions, as was done in [DPR98], can dramati-
cally improve both memory and time performance. We have devised a variation on the
scheme of [GSZAS98] for generating a propositional formula using Boolean variables
to encode the relations between terms [BGV99]. Our method exploits maximal diversity
to greatly reduce the number of propositional variables in the generated formula. We are
also considering the use of satisfiability checkers rather than BDDs for performing our
tautology checking
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