
Appears in the proceedings ofComputer-Aided Verification ‘97, O. Grumberg, ed.,
LNCS 1254, Springer-Verlag, June 1997, pp. 388-399.

1

Efficient Modeling of MemoryArrays in Symbolic
Simulation1

Abstract. This paper enables symbolic simulation of systems with large embedded memories.
Each memory array is replaced with a behavioral model, where the number of symbolic vari-
ables used to characterize the initial state of the memory is proportional to the number of mem-
ory accesses. The memory state is represented by a list containing entries of the form〈c, a, d〉,
wherec is a Boolean expression denoting the set of conditions for which the entry is defined,a is
an address expression denoting a memory location, andd is a data expression denoting the con-
tents of this location. Address and data expressions are represented as vectors of Boolean
expressions. The list interacts with the rest of the circuit by means of a software interface devel-
oped as part of the symbolic simulation engine. The interface monitors the control lines of the
memory array and translates read and write conditions into accesses to the list. This memory
model was also incorporated into the Symbolic Trajectory Evaluation technique for formal veri-
fication. Experimental results show that the new model significantly outperforms the transistor
level memory model when verifying a simple pipelined data path.

1. Intr oduction

Simulation is widely used to validate systems at various levels of design abstraction
such as the transistor, gate, and behavioral levels. The normal simulation models for
memory arrays at all these levels explicitly represent each memory bit. This is not a
problem for conventional simulation which uses a single logic value to denote the state
of a memory bit. However, symbolic simulation would require a symbolic variable for
every bit of the memory. In addition, bit-level symbolic model checking would need
the next-state function for each memory bit. Therefore, the number of variables in
symbolic computation is proportional to the size of the memory, and is prohibitive for
large memory arrays.

This paper shows a way to overcome this limitation by replacing each memory
array with an Efficient Memory Model (EMM). The EMM is a behavioral model,
which allows the number of symbolic variables used to be proportional to the number
of memory accesses rather than to the size of the memory. It is based on the observa-
tion that a single execution sequence typically contains a limited number of memory
accesses.

Symbolic Trajectory Evaluation (STE) is an extension of symbolic simulation
that has been used to formally verify circuits [8]. STE has been applied on the verifica-
tion of a simple pipelined data path [2]. Incorporation of the EMM in STE enabled us

1. This research was supported in part by the SRC under contract 96-DC-068.

Mir oslav N. Velev
Department of Electrical and

Computer Engineering
Carnegie Mellon University

Pittsburgh, PA 15213
mvelev@ece.cmu.edu

Randal E. Bryant
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
randy.bryant@cs.cmu.edu

Alok Jain
Department of Electrical and

Computer Engineering
Carnegie Mellon University

Pittsburgh, PA 15213
alok.jain@ece.cmu.edu

2

to verify the pipelined data path with a significantly larger register file than previously
possible.

Symbolic model checking has also been used to verify a pipelined data path [3].
However, the limitation of the method is that it requires the next-state relation for the
entire circuit, which leads to introducing two symbolic variables for every state bit in
the circuit. Burch, Clarke, and Long [4] represent the transition relation as an implicit
conjunction of transition relations for parts of the circuit. In this way, they avoid build-
ing a monolithic BDD for the transition relation of the entire circuit, but still need two
symbolic variables for each memory bit. Clarke, Grumberg, and Long [6] propose a
method for using abstraction in order to reduce the complexity of symbolic model
checking. They show how abstraction functions can be applied to produce an abstract
model whose state space is a subset of that of the original model, such that if certain
properties hold on the abstract model, they will also be true for the original one. How-
ever, this requires a careful choice of abstraction functions by the user.

A symbolic representation of memory arrays has been used by Burch and Dill [5].
Their technique is also based on symbolic simulation. However, it verifies only the
control, assuming that the combinational logic in the data path is correct. On the other
hand, our method verifies the entire circuit. While Burch and Dill use uninterpreted
functions with equality, which abstract away the details of the data path, we use BDDs
and model fully the entire circuit, but that leads to greater memory and CPU time con-
sumption. The logic of uninterpreted functions with equality allows them to introduce
only a single symbolic variable for denoting the initial state of a memory array. The
need to have data at the bit level in order to verify the data path, requires the user of our
method to introduce symbolic variables proportional to the number of memory array
accesses. Given a real circuit, their method would require the user to provide the dis-
tinction between the control and the data path. Ours would need only an identification
of the memory arrays. Finally, we perform the verification at the circuit level of the
implementation, while they operate on an abstracted high level model of the control
and require the availability of an appropriate compiler to automatically extract the con-
trol from the real circuit.

This paper advocates a two step approach for the verification of circuits with large
embedded memories. The first step is to use STE to verify the transistor level memory
arrays independently from the rest of the circuit. Pandey and Bryant have combined
symmetry reductions and STE to enable the verification of very large memory arrays at
the transistor level [7]. The second step is to use STE to verify the circuit after the
memory arrays are replaced by EMMs.

Section 2 describes the symbolic domain used in our algorithms. Section 3 gives a
brief overview of STE. Sections 4 presents the EMM and section 5 introduces its
underlying algorithms. Section 6 explains the way to incorporate the EMM into STE.
Experimental results are presented in Section 7, and plans for future work are outlined
in Section 8.

3

2. Symbolic Domain

We will consider three different domains - Boolean, address, and data - corresponding
respectively to the control, address, and data information that can be applied at the
inputs of a memory array. Symbolic variables will be introduced in each of the
domains and will be used in expression generation. Address and data expressions will
be represented by vectors of Boolean expressions having width n andw, respectively,
for a memory withN = 2n locations, each holding a word consisting ofw bits. The
typesBExpr, AExpr, andDExpr will denote respectively Boolean, address, and data
expressions in the algorithms to be presented.

We will use the termcontext to refer to an assignment of values to the symbolic
variables. A Boolean expression can be viewed as defining a set of contexts, namely
those for which the expression evaluates totrue.

The selection operatorITE (for “If-Then-Else”), when applied on three Boolean
expressions, is defined as

ITE(b, t, e) =̇ (b ∧ t) ∨ (¬b ∧ e) (1)

Address comparison is then implemented as:

A1 = A2 =̇ ¬ A1i ⊕ A2i (2)

while address selectionA1 ← ITE(b, A2, A3) is implemented by selecting the corre-
sponding bits:

A1i ← ITEi(b, A2, A3) =̇ A1i ← (b ∧ A2i) ∨ (¬b ∧ A3i), i = 1, ... , n (3)

The definition of data operations is similar, but over vectors of widthw.

Although we have used BDDs to represent the Boolean expressions in our imple-
mentation, there is nothing about this work that intrinsically requires it to be BDD
based. Any canonical representation of Boolean expressions can be substituted.

3. STE Background

STE is a formal verification technique based on symbolic simulation. For the purpose
of this paper, it would suffice to say that STE is capable of verifying circuit properties,
described asassertions, of the form A C. The antecedentA specifies con-
straints on the inputs and the internal state of the circuit, and theconsequentC speci-
fies the set of expected outputs and state transitions. BothA andC are formulas that
can be defined recursively as:

1) a simple predicate: the three possibilities being (node n = boolean_expression),
or (node_vector N = address_expression), or (node_vector N =
data_expression), where in the last two cases each node of the node vectorN
gets associated with its corresponding bit-level Boolean expression of the given
address or data expression;

2)a conjunction of two formulas: F1 ∧ F2 is a formula ifF1 andF2 are formulas;

n

i = 1

⇒LEADSTO

4

3) a domain restriction: (boolean_expression → F) is a formula if F is a formula,
meaning that F should hold for the contexts in which boolean_expression is
true;

4) a next time operator: NF is a formula if F is a formula, meaning that F should
hold in the next time period.

A shorthand notation for k nested next time operators is Nk. A formula is said to be
instantaneous if it does not contain any next time operators. Any formula F can be
rewritten into the form F0 ∧ NF1 ∧ N2F2 ∧ . . . ∧ NkFk, where each formula Fi is
instantaneous. For simplicity in the current presentation, we will assume that the ante-
cedent is free of self inconsistencies, i.e. it cannot have a node asserted to two comple-
mentary logic values simultaneously.

STE maintain two global Boolean expressions OKA and OKC, which are initial-
ized to be true. The STE algorithm updates the circuit node values and the global
Boolean expressions at every simulation time step. The antecedent defines the stimuli
and the consequent defines the set of acceptable responses for the circuit. The expres-
sion OKA maintains the condition under which the circuit node values are compatible
with the values specified by the antecedent. The expression OKC maintains the condi-
tion under which the circuit node values belong to the set of acceptable values speci-
fied by the consequent. The Boolean expression ¬OKA ∨ OKC defines the condition
under which the assertion holds for the circuit.

4. Efficient Modeling of Memory Arrays
The main assumption of our approach is that every memory array can be represented,
possibly after the introduction of some extra logic, as a memory with only write and
read ports, all of which have the same numbers of address and data bits, as shown in
Figure 1.

Figure 1. View of a memory array, according to our model.

The interaction of the memory array with the rest of the circuit is assumed to take
place on the rising edge of a port Enable signal. In case of multiple port Enables
having rising edges simultaneously, the resulting accesses to the memory array will be
ordered according to the priority of the ports.

During symbolic simulation, the memory state is represented by a list containing
entries of the form 〈c, a, d〉, where c is a Boolean expression denoting the set of con-

WRITE
PORT 0

READ
PORT 0

Address
Data

Enable

Address
Data
Enable MEMORY ARRAY

(N = 2n addresses
of w bits each)READ

PORT Q

Address
Data
Enable

WRITE
PORT P

Address
Data

Enable

n
w

n
w

n
w

n
w

5

texts for which the entry is defined, a is an address expression denoting a memory
location, and d is a data expression denoting the contents of this location. The context
information is included for modeling memory systems where the Write and Read oper-
ations may be performed conditionally depending on the value of a control signal. Ini-
tially the list is empty.

The list interacts with the rest of the circuit by means of a software interface
developed as part of the symbolic simulation engine. The interface monitors the port
Enable lines. Should a rising edge occur at a port Enable, a Write or a Read opera-
tion will result, as determined by the type of the port. The Boolean expression c for the
contexts of the memory operation will be formed as the condition for a rising edge on
the port Enable. The operation will be performed if c is a non-zero Boolean expres-
sion. The Address and Data lines of the port will be scanned in order to obtain the
address expression a and the data expression d, respectively. A Write operation com-
pletes with the insertion of the entry 〈c, a, d〉 in the list. A Read operation retrieves
from the list a data expression rd that represents the data contents read from the mem-
ory at address a given the contexts c. The software interface completes the Read oper-
ation by asserting the Data lines of the port to the data expression ITE(c, rd, d), i.e. to
the retrieved data expression rd under the contexts c of the operation and to the old
data expression d otherwise. The routines needed by the software interface for access-
ing the list are presented next.

5. Implementation of Memory Operations

5.1 Support Operations

The list entries are kept in order from head (low priority) to tail (high priority). Entries
may be inserted at either end, using procedures InsertHead and InsertTail, and may be
deleted using procedure Delete. The function Valid, when applied to a Boolean expres-
sion, returns true if the expression is valid, i.e., true for all contexts, and false other-
wise. Note that in all of the algorithms, a Boolean expression cannot be used as a
control decision in the code, since it will have a symbolic representation. On the other
hand, we can make control decisions based on whether or not an expression is valid.

The function GenDataExpr generates a new data expression, whose variables are
used to denote the initial state of memory locations that are read before ever being
written.

5.2 Implementation of Memory Read and Write Operations

The Write operation, shown as a procedure in Figure 2, takes as arguments a memory
list, a Boolean expression denoting the contexts for which the write should be per-
formed, and address and data expressions denoting the memory location and its
desired contents, respectively. As the code shows, it is implemented by simply insert-
ing an element into the tail (high priority) end of the list, indicating that this entry
should overwrite any other entries for this address. As an optimization, it removes any
list elements that for all contexts are overwritten by this operation. Note that this opti-
mization need not be performed, as will become apparent after the definition of the

6

Read operation. We could safely leave any overwritten element in the list.

procedure Write(List mem, BExpr c, AExpr a, DExpr d)

{ Write datad to locationa under contexts c }

{ Optional optimization }

for each 〈ec, ea, ed〉 in mem do
if Valid(ec ⇒ [c ∧ a=ea]) then

Delete(mem, 〈ec, ea, ed〉)
{ Perform Write }

InsertTail(mem, 〈c, a, d〉)

Figure 2. Implementation of the Write operation.

TheRead operation is shown in Figure 3 as a function which, given a memory list,
a Boolean expression denoting the contexts for which the read should be performed,
and an address expression, returns a data expression indicating the contents of this
location.

function Read(List mem, BExpr c, AExpr a): DExpr
{ Read from locationa under contexts c }

g ← GenDataExpr()

return ReadWithDefault(mem, c, a, g)

function ReadWithDefault(List mem, BExpr c, AExpr a, DExpr d): DExpr
{ Attempt to read from locationa, usingd for contexts where no value found }

rd ← d

found ← false
for each 〈ec, ea, ed〉 in mem from head to taildo

match ← ec ∧ a=ea

rd ← ITE(match, ed, rd)

found ← found ∨ match

if ¬Valid(found) then
InsertHead(mem, 〈c, a, d〉)

return rd

Figure 3. Implementation of the Read operation.

The main part of theRead operation is implemented with the functionReadWith-
Default, which will also be used in the implementation of two STE procedures, to be
presented in Section 6. The purpose ofReadWithDefault is to construct a data expres-
sion giving the contents of the memory location denoted by its argument address
expression. It does this by scanning through the list from lowest to highest priority,
adding a selection operator to the expression that chooses between the list element’s

7

data expression and the previously formed data expression, based on the match condi-
tion. It also generates a Boolean expressionfound indicating the contexts for which a
matching list element has been encountered.ReadWithDefault has as its fourth argu-
ment a “default” data expression to be used when no matching list element is found.
When this case arises, a new list element is inserted into thehead (low priority) end of
the list.

The Read operation is implemented by callingReadWithDefault with a newly
generated symbolic data expressiong as the default. The contexts for whichReadWith-
Default does not find a matching address in the list are those for which the addressed
memory location has never been accessed by either a read or a write. The data expres-
sion g is then returned to indicate that the location may contain arbitrary data. By
inserting the entry〈c, a, d〉 into the list, we ensure that subsequent reads of this loca-
tion will return the same expression. Note that computing and testing the validity of
found is optional. We could safely insert the list element unconditionally, although at
an increased memory usage.

6. Incorporation into STE

Efficient modeling of memory arrays in STE requires that formulas of the form
(c → (mem[a] = d)), wherec is a Boolean expression,a is an Address expression,d is
a Data expression, andmem is a memory array, be incorporated into the STE algorithm
described in Section 3. When such formulas occur in the antecedent, they should result
in asserting the memory state at locationa to datad given contextsc, and are processed
by procedureAssertMem, presented in Figure 6. Similarly, when such formulas occur
in the consequent, they should result in checking the memory state at locationa for
having datad given contexts c, and are processed by procedureCheckMem, presented
in Figure 7. The latter is a modified version of functionReadWithDefault, with the dif-
ference being that it does not insert a new entry into the list when the expressionfound
is not valid.

procedure AssertMem(List mem, BExpr c, AExpr a, DExpr d)

{ Determine conditions under which locationa was asserted to datad given

contexts c, and reflect them onOKA, the Boolean expression indicating

the absence of an antecedent failure }

rd ← ReadWithDefault(mem, c, a, d)

OKA ← OKA ∧ (c ⇒ [rd = d])

Figure 6. Implementation of the STE procedure AssertMem.

ProcedureAssertMem uses the functionReadWithDefault in order to assert loca-
tion a of mem to datad under the contextsc. OKA maintains the condition under which
the asserted value is consistent with the current state of the memory. In the case of pro-
cedureCheckMem, OKC uses the Boolean expressionfound in order to maintain the
condition under whichmem has datad in locationa given contexts c.

8

procedure CheckMem(List mem, BExpr c, AExpr a, DExpr d)

{ Determine conditions under which locationa was checked to have datad

given contexts c, and reflect them onOKC, the Boolean expression

indicating the absence of a consequent failure}

rd ← d

found ← false
for each〈ec, ea, ed〉 in mem from head to taildo

match ← ec ∧ a=ea

rd ← ITE(match, ed, rd)

found ← found ∨ match

OKC ← OKC ∧ (c ⇒ [found ∧ rd=d])

Figure 7. Implementation of the STE procedure CheckMem.

7. Experimental Results

Experiments were performed on the pipelined addressable accumulator shown in Fig-
ure 8. One mode of operation of the circuit is that of initialization of the register file
with data from the inputIn, through the adder, and then through theHold register.
For this purpose theClear signal is set to 1, so as to clear the value at the second
input of the adder, while the destination location in the register file is specified by the
address input Addr. A second mode of operation of the circuit is that of accumula-
tion. Then, the address inputAddr specifies a location in the register file, whose con-
tents is to be added to the value supplied at the inputIn. In this case theClear signal
is set to 0, so as to ensure that the data value from the output of the register file will be
passed unchanged to the adder.

Figure 8. (a) The pipelined addressable accumulator; (b) the connections of
its register file when replaced by an EMM. The thick lines indicate buses,
while the thin ones are of a single bit.

Reg

Addr

Clear

In

Hold

Out

Control

File

(a)

MEMORY

ARRAY

READ
PORT

WRITE
PORT

Address

Data

Enable

Address

Data

Enable

(b)

phi2phi1

to the
multiplexor

from the
Hold register

Addr previous Addr
(from Control)

MUX

9

In order to speed up the accumulation mode by avoiding the latency of the register
file, the addressable accumulator is pipelined by the introduction of a Hold register, a
multiplexor (with the ability to choose between the outputs of the register file and the
Hold register), and some extra circuitry in the control logic. This extra circuitry con-
sists of a register to store the previous address and a comparator to determine whether
that address is identical with the current address at the Addr input. Should the two
addresses match, the control signal of the multiplexor is set so as to select the output of
the Hold register. Hence, a bypassing of the register file takes effect.

For the experiments with the EMM, the dual-ported register file is removed from
the circuit. The software interface ensures that a Read operation takes place on phi1
and a Write operation takes place on phi2, according to the register file connections
shown in Figure 8.(b).

The specifications necessary for verifying the pipelined addressable accumulator,
are presented in (4), (5), and (6). Note that Reg[i] and Reg[j] in (5) and (6), respec-
tively, are instances of symbolic indexing [1], which results in the total number of sym-
bolic variables being logarithmic in the number of address locations. We construct the
antecedents by first defining the operation of the clocks. Shorthand notation for the
possible signals applied to the clocks is presented next:

Clk01 =̇ (phi1 = 0) ∧ (phi2 = 1)
Clk00 =̇ (phi1 = 0) ∧ (phi2 = 0)
Clk10 =̇ (phi1 = 1) ∧ (phi2 = 0)

The clocking behavior of the entire circuit over 4, 8, and 12 time periods, respec-
tively, is described by:

Clocks_4 =̇ Clk01 ∧ N(Clk00) ∧ N2(Clk10) ∧ N3(Clk00)

Clocks_8 =̇ Clocks_4 ∧ N4(Clocks_4)

Clocks_12 =̇ Clocks_4 ∧ N4(Clocks_4) ∧ N8(Clocks_4)

The first assertion (4) verifies that the Hold register can be initialized with data
from the input In of the pipelined addressable accumulator. Namely, if the Clear
signal is high, the Addr input has an address expression i, and the input In has a data
expression a, then the output Out of the adder will get the data expression a, and so
will the Hold register, according to the timing details of the implementation (see the
timing diagram on Figure 9).

Clocks_8 ∧ N2((Clear = 1) ∧ (Addr = i) ∧ (In = a))

N4(Out = a) ∧ N5(Hold = a) (4)

The second assertion (5) verifies the adder in the pipelined addressable accumula-
tor. It checks that if the Addr input has an address expression k and later, according to
the timing details of the implementation, an address expression i, such that then the
Clear signal is low, and the input In has a data expression a, the result will be that
the output Out of the adder will get the data expression a + b, and so will the Hold
register. Note that the Hold register is asserted to data expression b conditionally on

⇒LEADSTO

10

the address equality i == k, and that location i of the register file is also asserted to data
expression b, however conditionally on the address inequality i != k. If the control
logic works properly, it should set the control signal of the multiplexor so as to select
the data from the Hold register in the event that i == k in order to bypass the register
file. Otherwise, the data from location i of the register file will be selected. Altogether,
the output of the multiplexor will be equal to ITE(i == k, b, b) = b, which will be the
data expression at the second adder input. The timing diagram for this assertion can be
seen on Figure 9.

Clocks_12 ∧ N2(Addr = k) ∧ N5(i = =k → Hold = b) ∧

N6((Clear = 0) ∧ (Addr = i) ∧ (In = a) ∧ (i != k → Reg[i] = b))

 N8(Out = a + b) ∧ N9(Hold = a + b) (5)

Figure 9. Timing diagrams for assertions (4) and (5). The solid areas denote
asserted signals, while the shaded ones represent the expected results.

The last assertion (6) verifies that the register file can maintain its state in the pipe-
lined addressable accumulator. If the Addr input has an address expression k and later,
an address expression i, such that then a different location j of the register file has data
expression b, then the data expression at that location will remain unchanged. The
value b in the Hold register, asserted conditionally on j == k, allows testing the bus
from the Hold register to the register file by using the same check of the memory
state.

Clocks_12 ∧ N2(i != j → Addr= k) ∧ N5((i != j ∧ j == k) → Hold = b) ∧

N6((i != j → Addr = i) ∧ ((i != j ∧ j != k) → Reg[j]= b))

 N10(i != j → Reg[j]= b) (6)

The experiments were performed on an IBM RS/6000 58H running AIX 4.1.3
with 512 MB of physical memory. As can be seen from Table 1, the EMM outper-

⇒LEADSTO

Clear

kAddr

In

Hold

Out

phi2

phi1

i

 a

a

a

1

Time 0 1 2 3 4 5 6 7

Clear

k

bb

Addr

In

Reg[i]

Hold

Out

phi2

Time 0 1 2 3 4 5 6 7 8 9 10 11

phi1

a+b

b

a

i

0

i != k ?

k

bi == k ?

Assertion (4) Assertion (5)

a+b

⇒LEADSTO

11

forms the transistor level model (TLM) of the memory array in the pipelined address-
able accumulator. A 7-15x speedup and a 2-8x reduction in memory were obtained,
with the EMM advantage increasing with the memory size.

Table 1. Experimental results.

The asymptotic growth of STE, when used together with the TLM and the EMM,
is summarized in Table 2, which also does a comparison with symbolic model check-
ing, combined with either a partitioned transition relation [4] or with abstraction func-
tions [6].

Table 2. Asymptotic growth comparison of symbolic model checking and
STE when verifying simple pipelined data paths.

#
Addresses

#
Data
Bits

CPU Time (s) Memory (MB)

TLM EMM TLM / EMM TLM EMM TLM / EMM

16 16 557 81 6.9 4.2 2.2 1.9

32 1 095 161 6.8 7.3 3.2 2.3

64 2 188 315 6.9 13.6 5.2 2.6

128 4 391 628 7.0 26.3 9.2 2.9

32 16 1 030 100 10.3 8.2 3.0 2.7

32 2 048 195 10.5 15.3 4.7 3.3

64 4 102 388 10.6 29.5 8.2 3.6

128 8 278 781 10.6 57.7 15.2 3.8

64 16 1 992 144 13.8 16.0 4.5 3.6

32 3 999 283 14.1 30.7 7.8 3.9

64 7 924 566 14.0 59.8 8.3 7.2

128 15 824 1 154 13.7 118.0 15.3 7.7

128 16 3 907 248 15.8 31.6 4.6 6.9

32 7 923 496 16.0 61.6 7.9 7.8

64 15 547 1 003 15.5 121.1 14.5 8.4

128 31 079 2 031 15.3 241.7 27.6 8.8

Criterion
Symbolic Model Checking STE

Partitioned
Transition Relation

Abstraction
 Functions

TLM EMM

CPU Time w.r.t. # Data Bits quadratic linear linear linear

CPU Time w.r.t. # Addresses cubic linear linear sublinear

Memory w.r.t. # Data Bits linear --- linear sublinear

Memory w.r.t. # Addresses subcubic --- linear sublinear

12

However, it should be pointed out that there is a slight difference in the pipelined
data path used for the experiments in [4] and [6], as compared with the one used in this
paper. Also, the memory requirements of symbolic model checking combined with
abstraction functions were not reported in [6].

Hence, the new method for efficient modeling of memory arrays has proven to be
extremely promising. It would enable the symbolic simulation of memory arrays far
larger than previously possible.

8. Future Work

We plan to improve the EMM software interface by including mechanisms to monitor
the assumptions for correct operation of the model and to guarantee that it would
behave as a conservative approximation of the replaced memory array. Furthermore,
we will examine the integration of the efficient memory model with the symmetry-
based technique for verification of transistor-level memory arrays, proposed by Pandey
and Bryant [7], as a step towards hierarchical verification of systems containing large
embedded memories.

Furthermore, we plan to extend the approach in order to support verification meth-
odologies based on comparing the effect that two execution sequences have on the
state of a memory array, similar to the work by Burch and Dill [5]. In other words,
given two sequences of memory operations, we wish to test whether they yield identi-
cal behaviors. The assumption is that the two sequences start with matching initial
memory states. For each externally visibleRead operation in the first sequence, its
counterpart in the second sequence must return the same value. Also, the final states
resulting from the two sequences must match. To implement this, we require both a
mechanism for guaranteeing that consistent values are used for the initial contents of
the two memories and an algorithm for comparing the contents of two memories.

References

[1] D. L. Beatty, R. E. Bryant, and C.-J. H. Seger, “Synchronous Circuit Verification by Symbolic Simula-
tion: An Illustration,” Sixth MIT Conference on Advanced Research in VLSI, 1990, pp. 98-112.

[2] R. E. Bryant, D. E. Beatty, and C.-J. H. Seger, “Formal Hardware Verification by Symbolic Ternary
Trajectory Evaluation,” 28th Design Automation Conference, June, 1991, pp. 297-402.

[3] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill, “Sequential Circuit Verification Using
Symbolic Model Checking,” 27th Design Automation Conference, June, 1990, pp. 46-51.

[4] J. R. Burch, E. M. Clarke, and D. E. Long, “Representing Circuits More Efficiently in Symbolic
Model Checking,” 28th Design Automation Conference, June, 1991, pp. 403-407.

[5] J. R. Burch, and D. L. Dill, “Automated Verification of Pipelined Microprocessor Control,” CAV ‘94,
D. L. Dill, ed., LNCS 818, Springer-Verlag, June, 1994, pp. 68-80.

[6] E. M. Clarke, O. Grumberg, and D. E. Long, “Model Checking and Abstraction,”19th Annual ACM
Symposium on Principles of Programming Languages, 1992, pp. 343-354.

[7] M. Pandey, and R. E. Bryant, “Exploiting Symmetry When Verifying Transistor-Level Circuits by
Symbolic Trajectory Evaluation,” CAV ‘97, June, 1997.

[8] C.-J. H. Seger, and R. E. Bryant, “Formal Verification by Symbolic Evaluation of Partially-Ordered
Trajectories,” Formal Methods in System Design, Vol. 6, No. 2 (March, 1995), pp. 147-190.

