Exploiting symmetry when verifying
transistor-level circuits by symbolic trajectory
evaluation

Manish Pandey and Randal E. Bryant

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA-15213, USA.

Abstract. In this paper we describe the use of symmetry for verifi-
cation of transistor-level circuits by symbolic trajectory evaluation. We
show that exploiting symmetry can allow one to verify systems several
orders of magnitude larger than otherwise possible. We classify sym-
metries in circuits as structural symmetries, arising from similarities in
circuit structure, data symmetries, arising from similarities in the han-
dling of data values, and mized structural-data symmetries. We use graph
isomorphism testing and symbolic simulation to verify the symmetries
in the original circuit. Using conservative approzimations, we partition
a circuit to expose the symmetries in its components, and construct re-
duced system models which can be verified efficiently. We have verified
Static Random Access Memory circuits with up to 1.5 Million transistors.

1 Introduction

In this paper we have focussed on exploiting symmetry in the verification of
transistor-level circuits by symbolic trajectory evaluation (STE). Many high
performance hardware designs are custom designed at the transistor-level to
optimize their area and performance, and this makes it necessary to verify them
directly at the transistor-level. Common examples of such hardware units include
static random access memory (SRAM) arrays which are found in instruction and
data caches of microprocessors, cache tags, and TLBs, to name a few. These cir-
cuits exhibit considerable symmetry. Past work on verification of such arrays
using STE [9, 3] has verified large systems which contain over 105 transistors,
and over 10* memory bits. However, these approaches do not scale up well for
much larger systems. By exploiting symmetry with the use of STE, we show that
it is possible to verify systems that are orders of magnitude larger than previ-
ously possible. We present empirical results for the verification of SRAM circuits
of varying sizes, including one with over 1.5 million transistors. Furthermore, our
results show that our techniques scale up linearly or sub-linearly with SRAM
size, and one can verify circuits that are much larger than our benchmarks.
Our verification approach builds on the following three ideas — circuit par-
titioning, structural analysis, and conservative modeling. Many systems, viewed
as a whole, do not possess symmetries that can easily be exploited, but they are
made up of smaller components which can. One can exploit the symmetry in the

components by partitioning the larger system, verifying the smaller components,
and composing the verification results.

We describe two forms of symmetries. Structural symmetries arise from sim-
ilarities in the structure of a system, e.g., by replication of system components.
Data symmetries arise from similarities in handling of data values in the system.
Most previous work exploiting symmetry in formal verification to date [5, 8, 6]
focussed on aspects of structural rather than data or mixed structural-data sym-
metry. We have found these other forms of symmetry useful in verifying many
common digital building blocks. For instance, a change in the value of each de-
coder input results in a symmetric exchange in the values at the different decoder
outputs. Such instances of mixed symmetry cannot be expressed by the other
approaches. Structural symmetries in a transistor-level circuit can be detected
and verified through a purely structural analysis of the system by doing circuit
graph isomorphism checks. Other forms of symmetries can be verified through
symbolic simulation.

Symmetry in a system imposes a partitioning of the system state space,
where permutations of the same state appear in the same partition class. Once
symmetry has been checked, one need verify the system for only one repre-
sentative from each partition class. We exploit this property by constructing a
conservative model of the system which provides full functionality only for the
representative case. This approximation results in large savings in the system
excitation function representation size.

Our work is related in many ways to recent symmetry work by others, in-
cluding that by Clarke [5], Ip [8], and Emerson [6]. In [5], Clarke et al. describe
the symmetry of a system as a transition relation preserving state permutation.
The paper describes the construction of the symmetry reduced transition rela-
tion, and symbolically model checking with it. In [8], Ip and Dill discuss the
verification of systems, where the symmetry in the system is identified by a spe-
cial scalar-set datatype in the system description language. They describe an
on-the-fly construction of the reduced state transition graph, and the checking
of safety properties with it. Our work contrasts with these in many ways. For
example, we do not constrain the user to explicitly give symmetry in the system
description because we can directly work with transistor netlists. We can con-
struct conservative models directly by switch-level analysis of the transistor-level
system description, which is more efficient than on-the-fly construction of the
reduced state transition relation.

2 Background

Symbolic trajectory evaluation (STE) was originally formulated as a formal ver-
ification method using a symbolic ternary simulator as the verification “engine”
[4]. With ternary simulation, each state variable may have value 0, 1, or X, where
X indicates an unknown or indeterminate state. With symbolic simulation, the
state values are encoded using BDDs, allowing one simulation run to effectively
evaluate circuit operation under many possible operating conditions.

With STE, the three state values are partially ordered by their “information
content” with X < 0 and X < 1. The simulator is used to verify assertions of
the form [A = (], where A and C are formulas containing (possibly symbolic)
values for state variables, conjunctions, and the temporal logic “next time” op-
erator. Intuitively, antecedent A defines a stimulus for the circuit inputs and
initial state, while consequent C defines the expected response for the circuit
outputs and new state. The simulator then proves that for any initial state and
input sequence satisfying stimulus A, the circuit will generate outputs and new
state satisfying C'.

In a later formulation of STE [11], the states and their ordering was gen-
eralized to any complete lattice, and a slightly more general class of assertions
was allowed. In this presentation, we will take a middle ground, using a lattice-
structured state set, but with these states closely matching the ternary values of
the original formulation. This particular formulation is chosen to allow a clear
expression of symmetry properties.

2.1 State Domain

Fig. 1. Structure of State Lattice for Two Node Circuit

Let N denote the nodes (i.e., signal points) of a circuit. For each node n we
define two atoms, written nt and n~, indicating that node n has value 1 or 0,
respectively. Let .4 denote the set of all atoms. We define a circuit state S to be
any subset of A, and S to be the set of all possible states, i.e., S = 24.

State set S, together with the subset ordering C forms a complete lattice,
where states are ordered according to their “information content,” i.e., how much
they restrict the values of the circuit nodes. For example, the structure of the
state domain for a circuit having nodes a and b is illustrated in Figure 1. In
this diagram we indicate the set of atoms in each state, where a* indicates
that both at and a~ are present, and similarly for b*. As the shaded regions
indicate, states can be classified as being “partial”, “complete” | or “conflicting”.
In a partial state, some nodes have no corresponding atoms while others have

at most one. In a complete state, there is exactly one atom for each node. In
a conflicting state, there is some node n for which both atoms n~ an nt are
present. Such a state is physically unrealizable—it requires a signal to be both 0
and 1 simultaneously. Conflicting states are added to the state domain only for
mathematical convenience. They extend the semilattice derived from a ternary
system model into a complete lattice. Qur state lattice has the empty set (} as
its least element and the set of all atoms .4 as its greatest element.

We view the operation of a circuit as an infinite sequence of states. A partial
ordering C is defined over such sequences as the pointwise extension of the state
ordering C. That is, for state sequences Sp = s3s} ..., and S; = s%st ... So C S
iff Vi > 0.s8 C si.

2.2 Model Structure

The behavior of a circuit is defined by its ezcitation function Y:8—8. This
function serves a role similar to the transition relation or next-state functions of
temporal logic model checkers. We require this function to be monotonic over the
information ordering, i.e., if two states are ordered s; C ss, then their excitations
must also be ordered: Y (s1) C Y (s2). Intuitively, we can view a state as defining
a set of constraints on the signal values. We require the excitation function to
remain consistent as more constraints are applied.

We will define a circuit model M to be the combination of a lattice-structured
state set and a monotonic excitation function, i.e., M = (S,Y). The behavior of
a circuit can be represented as an infinite sequence of states. We define a circuit
trajectory to be any state sequence o = %! ... such that Y(O'i) C o't for all
¢ > 0. That is, the state sequence obeys the constraints imposed by the circuit
excitation function.

2.3 Representation of the Excitation Function
Our verifier computes the excitation function by evaluating logic expressions
derived from the transistor circuit structure. These expressions are generated by
the Anamos symbolic switch-level analyzer [2]. The analysis and the resulting
excitation expressions capture a variety of low-level MOS circuit effects such
as dynamic charge storage, different signal strengths, and bidirectional signal
transmission.

As an example, consider the CMOS circuit shown in Figure 2, consisting of
a NAND gate, (transistors T1, T2, T3 and T4), followed by pass transistor T5,
and the pull-down transistor T6. This is followed by an inverter consisting of
transistors T7 and T8. The first step in the symbolic switch-level analysis of
the circuit is to partition it into channel connected subnetworks (CCSNs), each
consisting of a set of storage nodes connected by the source-drain terminals of
the transistors. In our circuit, this yields two subnetworks: CCSN1 containing
nodes s and t, and CCSN2 containing node p. The analyzer derives the excitation
expressions for each CCSN separately.

Figure 2 also shows the expressions describing the excitation for CCSN1
in the example circuit. These expressions are represented as a directed acyclic

Fig. 2. Switch-level analysis of a circuit with pass logic and stored charge.

graph where the leaves indicate possible atoms in the set s and the roots indicate
possible atoms in the set Y(s). That is, for state s, a leaf labeled by atom
a evaluates to true if @ € s and to false otherwise. The Boolean operations
indicated by the intermediate vertices are then evaluated. If a root labeled by
atom a evaluates to true, then a is included in Y(s). As this example shows, the
excitation expressions use only the Boolean operations A and V, implying that
the denoted excitation function obeys our monotonicity constraints.

To see how these excitation expressions capture the behavior of a transistor
circuit, consider the expression with root labeled ¢T indicating when node t will
be set to 1. This requires the conjunction of three conditions:

1. Either node s must be set to 1 (i.e., sT is included in the excitation state),
or the transistor connecting nodes s and t must be disabled;

2. Node k must be set to 0, disabling the pulldown transistor;

3. and either t must be charged to state 1, or it is not storing charge dynami-
cally.

As this example illustrates, the expressions are not particularly intuitive, e.g.,
one would not expect the atom kT to appear in the third term listed above.
Nonetheless, they accurately capture the behavior of the circuit and obey our
required monotonicity constraint.

For a large class of circuits, including the memory circuits we have verified, it
can be shown that the DAGs describing the excitation functions have complexity
linear in the number of circuit transistors. The constant factors can be significant,
however. For example, a static RAM (SRAM) requires about 6 transistors for
each memory bit. The DAGs generated by Anamos require around 73 vertices
per memory bit. Moreover, the entire memory array consists of just two CCSNs.
Hence the time and memory required to generate these DAGs limits the size
of the memory circuit that can be analyzed. We will show how our symmetry
reduction techniques can be used to verify the circuit using a reduced circuit
model.

2.4 Trajectory Evaluation

In STE the system specification consists of a set of trajectory assertions, each
having the form [A = (], where A and C' are trajectory formulas. Antecedent
A describes the stimulus to the circuit over time, while consequent C' describes
its expected response. Trajectory formulas (TFs) have the following recursive
definition:

1. Atoms: For any node n, atoms nt and n~ are TFs.

2. Conjunction: (Fy A F,) is a TF if Fy and Fy are TFs.

3. Domain restriction: (£ — F) is a TF if F' is a TF and F is a Boolean
expression.

4. Next time: (XF) is a TF if F'is a TF.

The Boolean expressions occurring in domain restriction operators, having the
form E — F, give these formulas a symbolic character. They can be thought
of as “guards,” i.e., FF must hold for the cases where E evaluates to true. For
the theoretical development, however, it is convenient to first consider the form
where E is restricted to be either 0 (false) or 1 (true). A scalar trajectory formula
obeys this restriction throughout its recursive structure. The extension to the
symbolic case then simply involves considering the valuation of the expressions
for each variable assignment.

X is the next time temporal operator which causes advancement of time by
one unit.

The truth of a scalar trajectory formula I is defined relative to a state se-
quence. Due to the restricted form of our temporal formulas, it can be shown
that for every scalar formula F, there is unique defining sequence dp. Any se-
quence S satisfying /' must satisfy the relation dp C S. Informally, the states in
dp contain those atoms of F' for which the guard expressions evaluate to true,
positioned according to the nesting depth of the next-time operators.

We can combine a (scalar) trajectory formula and the circuit excitation func-
tion to generate a defining trajectory T consisting of a sequence of states 7974 . ..

given by:
i 5%, ifi=20
TF = (5% U Y(T}_l) otherwise

It can be shown that 7p is the unique minimum trajectory satisfying F'. That
is, T satisfies F', and for any o satisfying F', must obey the ordering 7 C o.
For an assertion [A = C] where both A and C are scalar formulas =
[A = (] if every trajectory of M satisfying A also satisfies C'. Such an assertion
can be verified by showing that d¢ T 74. Essentially, this involves simulating
the circuit applying the constraints given in antecedent A and checking the
constraints given in the consequent C' at the appropriate time points.

3 Symmetry

We express both circuit operation and the specifications in terms of sets of
atoms. We can therefore express symmetries in a circuit and the corresponding

transformations of the specification in terms of bijective mappings over atoms. A
state transformation, o, is a bijection over the set of atoms: ¢ : A — A. We can
extend o to be a bijection over states by defining o(s) for state s as Ugeso(a).

Two types of state transformations are particularly interesting. A data trans-
formation involves swapping the two atoms for a single node. For node n, we write
n* to denote the transformation consisting of the swapping of nt with n=. A
structural transformation involves swapping the atoms for two different nodes.
For nodes n; and ny, we write n; <+ ns to denote the transformation consisting
of the swappings: nf with n; and ny with n; . By composing transformations
of these two forms, we can express a variety of circuit transformations. We will
denote more complex transformations as a list of elementary transformations.

A state transformation o is a symmetry property of a circuit with excitation
function Y when o(Y (s)) = Y (o(s)) for every state s. That is, the excitation
of the circuit on the transformed state o(s) matches the transformation of the
excitation of s. One can readily show that ¢ is a symmetry property if and only if
its inverse ¢! is a symmetry property. Furthermore, if &1 and o5 are symmetry
properties, then so is their composition oy05.

LATCHO
ino__| outL.0
outH.0
LATCH 1
in1 outL.1
outH.1
:
LATCH k-1
ink-1 | outL.k-1
outH.k-1

Fig. 3. lllustration of the symmetries of a circuit

If a symmetry property consists entirely of structural transformations, it is
termed structural symmetry, and if it consists entirely of data transformations,
it is termed data symmetry. A symmetry involving a combination of the two
transformation types is called a mized symmetry.

Consider, for example, the circuit shown in Figure 3. This circuit consists of
k identical latches. In each latch outl is a complement of the input, and outH
has the same value as the input. Since the latches are identical, this circuit has a
structural symmetry corresponding to the swapping of any pair of latches 7 and
Jj, such that 0 < 1,5 < k:

[in.i > in.j,outl.i > outl.j, outH.i <> outH j]. (1)

Each individual latch also stores data values 0 and 1 in a symmetric way, ex-
pressed for Latch 0 by the data symmetry:

[in.Oi,outL.Oi,outH.Oi] . (2)

Finally, each latch can also be viewed as a one-bit decoder—it sets one of its
outputs high based on its input data. Such behavior for Latch 0 is expressed by
a mixed symmetry:

[in.Oi,outL.O < outH.0] . (3)

We can extend state transformation o to be a bijection over temporal for-
mulas by defining o(F) to be the result of replacing every atom a in F' by o(a).
Similarly, we can extend o to be a bijection over state sequences by applying
o to each state in the sequence. One can readily show that if temporal formula
F has defining sequence dp, then its transformation o(F) will have defining
sequence d,(py = o(dr). In addition, if o is a symmetry property of a circuit
model M, then its defining trajectories for any temporal formula F' will obey
the symmetry: 7,(py = o(7r). From this, one can conclude that for any assertion
[A = C] and any symmetry property o of model M, Eaq [A — C] if and
only if EFm [0(4) = o (C)].

Thus, proving that ¢ is a symmetry property of a circuit allows us to infer
the validity of a transformed assertion once we verify the original. For example,
suppose we verify that Latch 0 in Figure 3 operates correctly for input value
1, and also prove that the transformations defined by Equations 1 and 2 are
indeed symmetry transformations. Then we can infer from Equation 1 that for
all 7, Latch j operates correctly for input value 1, and from Equation 2 that
Latch 0 operates correctly for input value 0. Furthermore, by composing these
two transformations, we can infer that for all j, Latch j will operate correctly
for input value 0.

The fact that symmetry properties may be composed makes it possible to
prove the correctness of an entire set of assertions by simply verifying that each
member of a set of “generators” for a group of transformations is a symmetry
property. For example, Equation 1 represents a total of k(k — 1)/2 symmetry
transformations, corresponding to the pairwise exchange of any two latches.
In general, one could argue that this circuit would remain invariant for any
permutation 7 of the latches. Consider the transformation o, mapping the 6
atoms for each Latch i (two each for nodes in.i, outl.i and outH.i) to their
counterparts in Latch 7(z). We could prove that each such transformation is a
symmetry property, but this would require k! tests. Instead, we can exploit the
fact that any permutation 7 can be generated by composing a series of just two
different permutation types. The “exchange” permutation swaps values 0 and 1,
while the “rotate” permutation maps each value ¢ to i 4+ 1 mod k. Thus, proving
that the state transformations given by these two permutations are symmetry
properties allows us to infer that o, is a symmetry property for an arbitrary
permutation 7.

We can verify structural symmetries in our circuit models by checking for iso-
morphisms in the switch-level network. Since Anamos derives its representation
of the excitation function from the network, any isomorphisms in the network
graph imply structural symmetries in the excitation function.

a

a

(e
1 1
I

4 Conservative Approximations

Let M’ and M be circuit models over the same state set, having excitation
functions Y’ and Y, respectively. We say that M’ is a conservative approzimation
of M if for every state s, Y'(s) C Y(s). In such a case, one can readily show
that for any temporal formula F', the defining trajectories for the two models, 7
and 7p, must be ordered 7} C 7p. From this, we can infer that for any assertion
[A= C], if Fam [A = (], then Em [A = (. Thus, proving an assertion
for a conservative approximation to a circuit model allows us to infer that the
assertion holds for the original circuit.

Conservative approximations provide a systematic way to reason about par-
titioned circuits, allowing us to verify the complete circuit by proving properties
about each partition. This is particularly useful when the partitioning can ex-
pose highly symmetric regions of the circuit. In addition, if we can prove that
a circuit has some structural symmetry, then we can create a “weakened” ver-
sion of the circuit containing just enough circuitry to verify the behavior for one
representative of the symmetry group.

Let N’ be a subset of the set of circuit nodes N, and A’ be the corresponding
set of atoms. Then we can view the removal of those nodes not in N’ as yielding
a conservative approximation to the circuit with an excitation function Y’ such
that:

Y/(s) = Y(snA)NA. (4)

A T5

T

T2 X-driver

T3 T4}°‘b ¢ T8
g
L

—
=

Fig. 4. Conservative approximation of CCSN1.

As an example, suppose we wish to create a reduced model for the circuit in
Figure 2 by eliminating nodes a, b, and s. Then we could describe the remaining
portions of CCSN1 by the excitation expressions shown in Figure 4. One can see
that these expressions were obtained from those of Figure 2 by simplifying the
result of setting the leaves for all eliminated atoms to false. This conservative
approximation could be used to verify circuit operation for the cases where node
c is set to 0. We have modified Anamos to generate these simplified expressions
directly, avoiding the need to ever generate a complete model. In particular, we
would replace node s in the example circuit by a “X-driver,” consisting of an
input node set to constant value X.

—_——

N \/ Y/

Fig. 5. lllustration of Circuit Partitioning.

We can view the partitioning of a circuit into different components as a
process of creating multiple conservative approximations. For example, suppose
we partition a circuit with nodes N into components having nodes N; and Ns,
respectively, as illustrated in Figure 5. The set of nodes forming the interface
between the components comprise the set NN Ns. In this example, we assume the
communication is purely unidirectional—N; generates signals for Ny. Suppose
we wish to prove a property described by an assertion [A = C], where the
atoms of C' are contained only in Ns. We could then create conservative models
M and M using the subset construction given by Equation 4.

Taken individually, each of the two models is too weak to prove the assertion.
Using a technique we term waveform capture, we can record the output values
generated by model M; and use them in verifying the assertion with model
M. In particular, let 7} be the defining trajectory generated by model M; for
antecedent A. Construct a temporal formula W describing the occurrence of the
atoms corresponding to the nodes in N; N Ny at the appropriate time points.*
We have therefore proved that M;, and therefore M, satisfies the assertion
[A = W]. Using model My, we then verify the assertion [A AW — (.
Effectively, we “play back” the waveforms on the interface nodes. One can readily
show that for any model M and any temporal formula F', if Eap [A = F] and
Em [AANF = (], then = [A = (1, and therefore this pair of verifications
is sufficient to prove the desired property.

For partitions in which the communication between partitions is bidirec-
tional, this approach can be generalized to an iterative process, creating a series
of waveforms Wy, W1y, ..., Wi representing successively stronger approximations
to the communication patterns between the two partitions.

5 Verification of a SRAM

Consider the 16-bit (1 bit/word) SRAM circuit shown in Figure 6. This circuit
consists of the the following major components — row decoder, column address
latches, column multiplexer (Mux) and the memory cell array core. To simplify
the discussion here, many essential SRAM components like precharge column,

! Although the sequence 7) is infinite, we only need record the values up to the
maximum depth of the next-time operators in C'.

Memory Cell Array

Row Address w1

a.3
a.2

Row
Decoder

Column Address

I
Ay ” A
a.0 aH.0 o A
aL.1
a.l = PG
aH.1l NI

Column Address Latches

7
[T Column Multiplexer
Fig. 6. SRAM circuit

write-drivers etc. have not been shown in the figure. This is a standard orga-
nization followed in many larger industrial SRAM arrays [7]. In order to verify
this circuit we must show that the read and write operations work correctly. For
example, if a memory location is addressed and read from, then the correct value
must appear at the output. Similarly, if a write operation is done, the addressed
memory location should be updated correctly. Such properties can be expressed
with STE assertions.

The machinery we have built in the previous sections allows us to verify the
read or write operation for only one location and, from the symmetry in the
SRAM circuit, conclude that the operation works for every location. We expand
on this below, starting with a discussion of SRAM symmetries.

5.1 Symmetries of a SRAM

Consider the decoder in Figure 7. For any memory operation, the value of the
row address assigned to nodes a.2 and a.3, causes one of the word lines wl.0,
wl.1, wl.2 and wl.3 to be active. The figure shows that wl.0 is active for row
address 00. The same waveform occurs on the active word line regardless of
the address. This mixed symmetry of the decoder is expressed by the group of
transformations generated by transformations g and o;:

oo = [a.2F, wl.0 & wl.1, wl.2 &> wl.3]

oy = [a.Bi,wl.O < wl2 wll < wl3]
Transformation o; indicates that complementing bit i of the row address causes
an exchange of signal waveforms for each pair of word lines j and k such that

the binary representations of j and k differ at bit position . The column address
latches obey the “decoder” symmetry expressed by Equation 3.

Row Decoder

wlo (active)
wl.1

a.3—

a.2 wl.2

Time
Fig. 7. Row decoder and signal waveforms on word lines

Row Symmetry

Row swap

il I | i
Column-Mux C;‘?'- swap ¢0I. swap
‘M\ MH
0 Coll Col2 Col3
[

Symmetry

[oR
o-

| [[
Add
line l;)easi? Z aL.0 N N
swap gt'-g %

aH 1 \(
I

Fig. 8. Structural symmetries of the SRAM core.

2

The mixed symmetries of the decoder and the column address latches can
be verified by symbolic simulation, where a single run of the simulator with n
symbolic Boolean values at the circuit inputs is equivalent to 2" runs of a con-
ventional simulator with 0-1 values. For example, to verify that oy is a symmetry
of the decoder, we symbolically simulate the decoder with symbolic values sg and
s1 at the decoder inputs a.2, and a.3 in Figure 7. As the simulation proceeds, we
check that a substitution of 5y for sq in the symbolic waveform for wl.0 (resp.,
wl.2) matches the symbolic waveform on wl.1 (resp., wl.3).

Figure § illustrates the two structural symmetries of the SRAM core and col-
umn Mux combination. The row symmetry arises from the invariance of the core-
mux circuit structure under permutations of the rows of the core. The column-
muz symmetry arises from the invariance of the circuit structure under a swap
of column address latch output pairs accompanied by a corresponding exchange
of columns. For example, in Figure §, a swap of aH.0 and alL.0 accompanied by
a swap of column 0 with 1, and a swap of column 2 with 3 is a symmetry of the
circuit.

We verify the core-Mux symmetries in two parts. First we verify that ar-
bitrary row and column permutations are symmetries of the core. Verification

that the exchange and rotate permutation generators for rows and columns are
symmetries suffices for this. This gives a total of 4 symmetry checks for the core.
Next we verify the column-mux symmetry for the Mux. In the figure, the gen-
erators of the four different column address line pair permutations are the two
permutations associated with each column address latch output pair. Therefore,
two symmetry checks verify the column-mux symmetry. In general n symmetry
checks must be done for the Mux in a SRAM with n column address line pairs.

5.2 Verification steps

Location O Disabled memory cells
Row Decoder \ H‘ H‘/H‘
— X— X — X
R [
Row Address X e X X X
: B
Reduced Circui Reduced
Circuit H H H H
XX X P X
Column Address H H H H
N2\
a0 I S « ’
Column Address Latches
Conservative approximation 1 Conservative approximation 2

Fig. 9. Conservative approximations of the SRAM.

In order to verify the SRAM circuit we go through the following sequence of
steps.

1. Circuit partitioning — We partition the SRAM circuit into two parts.
The first part consists of the decoder with the column address latches. The
second part consists of the memory core and the column Mux.

2. Symmetry verification — Using symbolic simulation we verify the sym-
metries of the decoder and column latches. Using circuit graph isomorphism
checks we verify the symmetries of the other part.

3. Conservative approximations — We create two conservative approxima-
tions of the SRAM (Figure 9). In the first one, the memory core and the
column Mux are disabled. In the second model, the decoder, the column ad-
dress latches are disabled, and all the memory cells except that for location
0 are disabled.

4. Waveform capture — Given the assertion [A = C] specifying an opera-
tion for memory location 0, we use the antecedent A to symbolically simulate
conservative approximation 1. During the process of symbolic simulation we
record the signal waveforms on the outputs of the decoder and the column
address latches. We construct a trajectory formula W, which captures the
signal values on the outputs recorded above. As discussed earlier, it can be
shown that [A = W] is true.

5. Verification of SRAM core — Finally, with conservative approximation 2,
we show that given the waveform W, and the antecedent A, the consequent
C is true, i.e., [AAW = C]. From the earlier discussion in section 4, if
[A = W] and [AAW = C] are both true, then we can conclude that
[A = (] is true, i.e., the memory operation is verified for location 0. Given
the symmetries of the circuit we can then conclude that the operation works
correctly for every memory location.

6 Experiments and Results

All the time and memory figures in this paper have been measured on a Sun
SparcStation-20. We used the Anamos switch-level analyzer to generate switch-
level models [2]. We modified Anamos to make it possible to attach X-drivers
to circuit nodes to generate reduced models (conservative approximations) of
switch-level circuits. Table 1 shows the results of model generation for SRAM
circuits of varying sizes. For circuits larger than 16K, it was not possible to
generate the full circuit model within reasonable time or memory bounds (empty
table entries). Conservative approximations of SRAM circuits, on the other hand,
can be generated for much larger circuits for a miniscule fraction of the cost of
the full model. The reduced model size grows proportional to the square root
of the SRAM size, and its generation time and memory is proportional to the

SRAM size.

SRAM size| No. of Model Size Anamos Time ||Anamos Memory
(bits) |Transistors (Bool. ops) (CPU Secs.) (MB)

Full |Reduced Full |Reduced Full | Reduced

1K 6690 79951 2781 120 4.1 9.6 0.9

4K 25676|| 307555 5462 863 14.1 36.8 2.1

16K 1005661205239 10895|| 7066 43.2|| 144.2 6.0

64K 397642 — 21960 — 170.7 — 22.0

256K 1581494 — 44545 — 732.7 — 80.0

Table 1. Generation of SRAM model: Full vs. Reduced model.

In order to verify a structural symmetry, we take the original circuit, swap
the circuit nodes and swap the circuit nodes specified in the symmetry. Then
we verify if the new circuit is symmetric to the original circuit by verifying that
the circuit graphs for the two circuits are isomorphic. The isomorphism check
routines are based on a graph vertex coloring technique [1]. We have modi-
fied the isomorphism checking code from Anamos for our purpose. Essentially
the coloring-based isomorphism check technique converts a circuit graph into a
“canonical” representation, and two isomorphic circuits have the same canonical

form. Table 2 reports the running time and memory taken for converting one in-
stance of the memory core or column mux permutation into a canonical circuit,
and the total time to do all the isomorphism checks. The total time and memory
requirements scale linearly with the SRAM size. Table 3 reports the resources
required to check the decoder and column address latch symmetries by symbolic
simulation.

SRAM Size Memory Core Column Multiplexer Total Isomorph.

(bits) [[CPU Time|[Memory|No. of|[CPU Time|Memory|No. of|| Check Time
(Secs.) | (MB) |checks (Secs.) | (MB) |checks (Secs.)

1K 2.6 1.6 4 0.3 0.19 5 11.9

4K 11.1 6.5 4 0.5 0.38 6 47.4

16K 51.2 26.0 4 1.3 0.74 7 214.1

64K 232.1 104.0 4 3.0 1.44 8 952.4

256K 1135.6 416.0 4 6.6 3.50 9 4601.8

Table 2. Symmetry checks for memory core and column multiplexer.

We used the Voss verification system [10] to verify the reduced SRAM circuit.
Table 4 shows the running time and the memory required for verifying the write
operation for location 0. In addition, we must verify two other properties —
that the read operation reads the value stored at the specified cell, and that
operations at other addresses do not change the data in a given cell. The time
and memory required to verify these other operations is similar to that of the
write. The time and memory requirements grow roughly proportional to the
square root of the memory size.

The total verification time for a SRAM circuit is the sum of the timesin tables
1, 2, 3 and 4. For example, to verify a 64K SRAM, 170.7 secs. are required to
generate the reduced circuit model, a total of 952.4 + 3.2 secs. are required
to verify the circuit symmetries, and an additional 6.0 + 6.6 + 6.1 secs. are
required to verify the reduced model for all the operations (time for other ops. not
reported here). This gives a total verification time of 1145.0 secs. It is interesting
to note that symmetry checks dominate much of this time. In the verification
process, the only time we ever work with the complete circuit is the symmetry
check phase. This partially explains the reason for the relatively large time and
memory requirements of this phase. However, the circuit isomorphism code we
have used is a simple modification of that in Anamos. There is considerable scope
for reducing time and memory by developing a specialized circuit isomorphism
checker.

SRAM Size Time |Memory
(bits) (CPU Secs.)| (MB)

1K 1.7 0.69

4K 2.1 0.74

16K 2.5 0.88

64K 3.2 1.10

256K 4.2 1.52

Table 3. Decoder and col. latch symmetry checks.

SRAM Size| Verif. Time|Verif. Memory
(bits) |(CPU Secs.) (MB)

1K 1.5 0.79

4K 2.0 1.05

16K 3.0 1.80

64K 6.0 2.84

256K 18.5 4.26

Table 4. Verification of reduced SRAM writes.

7 Conclusion

We believe that with our work the problem of SRAM verification is solved. With
more computational resources, and some fine-tuning of our programs, the results
of our experiments indicate that we can verify multi-megabit SRAM circuits. The
techniques we have presented can be used in a rather straightforward manner to
exploit symmetries in other hardware units like set associative cache tags, where
every set is identical in structure. One direction for future work in the short
run would be to extend these ideas to verify content addressable memories. In
the longer run, it would be interesting to apply these ideas to verify hardware
units other than memory arrays. Candidates for such an application include a
processor datapath, where one can find the presence of structural symmetries
because of bit-slice repetition, and data symmetries arising from the datapath
operations.

References

1. Derek L. Beatty and Randal E. Bryant. Fast incremental circuit analysis using
extracted hierarchy. In 25th ACM/IEEE Design Automation Conference, pages
495-500, June 1988.

2. Randal E. Bryant. Boolean analysis of MOS circuits. [EEE Transactions on
Computer-Aided Design, CAD-6(4):634-649, July 1987.

3. Randal E. Bryant. Formal verification of memory circuits by switch-level simula-
tion. IEEE Transactions on Computer-Aided Design, CAD-10(1):94-102, January
1991.

4. Randal E. Bryant and Carl-Johan H. Seger. Formal verification of digital circuits
using symbolic ternary system models. In Robert P. Kurshan, editor, Computer
Aided Verification, pages 121-146, 1990.

5. Edmund M. Clarke, Robert Enders, Thomas Filkorn, and Somesh Jha. Exploiting
symmetry in temporal logic model checking. Formal Methods in System Design,
9:77-104, 1996.

6. E. Allen Emerson and A. Prasad Sistla. Symmetry and model checking. Formal
Methods in System Design, 9:105-131, 1996.

7. Stephen T. Flannagan, Perry H. Pelley, Norman Herr, Bruce E. Engles, Taisheng
Feng, Scott G. Nogle, John W. Eagan, Robert J. Dunnigan, Lawrence J. Day, and
Robert 1. Kung. 8ns CMOS 64k x 4 and 256k x 1 SRAMs. [EFE Journal of
Solid-State Circuits, pages 1049-1054, October 1990.

8. C. Norris Ip and David L. Dill. Better verification through symmetry. Formal
Methods in System Design, 9:41-75, 1996.

9. Manish Pandey, Richard Raimi, Derek L. Beatty, and Randal E. Bryant. Formal
verification of PowerPC(TM) arrays using symbolic trajectory evaluation. In 33rd
ACM/IEEE Design Automation Conference, pages 649-654, June 1996.

10. Carl-Johan H. Seger. Voss—a formal hardware verification system: User’s guide.
Technical Report 93-45, Department of Computer Science, University of British
Columbia, 1986.

11. Carl-Johan H. Seger and Randal E. Bryant. Formal verification by symbolic eval-
uation of partially-ordered trajectories. Formal Methods in System Design, 6:147—
189, 1995.

This article was processed using the INTRX macro package with LLNCS style

