Formal Verification of Digital Circuits
Using Symbolic Ternary System Models*

Randal E. Bryant
Carl-Johan Seger
Carnegie Mellon University

Abstract

Ternary system modeling involves extending the traditional set of binary values {0, 1} with
a third value X indicating an unknown or indeterminate condition. By making this extension,
we can model a wider range of circuit phenomena. We can also efficiently verify sequential
circuits in which the effect of a given operation depends on only a subset of the total system
state.

This paper presents a formal methodology for verifying synchronous digital circuits using
a ternary system model. The desired behavior of the circuit is expressed as assertions in
a notation using a combination of Boolean expressions and temporal logic operators. An
assertion is verified by translating it into a sequence of patterns and checks for a ternary
symbolic simulator. This methodology has been used to verify a number of full scale circuit
designs.

1. Introduction

1.1. Ternary Modeling

Most formal models for hardware verification assume that every signal always has a well-defined,
discrete value. For example, a binary model assumes that each signal must be either 0 or 1. In this

paper we present a methodology for formal verification in which a third value X is added to the
set of possible signal values, indicating an unknown or indeterminate logic value. By shifting to a

ternary system model, we gain several advantages.

As a first advantage, this extension makes it possible to model an increased range of circuit
phenomena. For example, we can deal with circuits in which nondigital voltages are generated

*This research was supported by the Defense Advanced Research Projects Agency, ARPA Order Number 4976,
and by the National Science Foundation, under grant number MIP-8913667.

in the course of normal circuit operation. This occurs frequently when modeling circuits at the
switch-level [6], due to (generally transient) short circuits or charge sharing. We can also deal with
circuits in which indeterminate behavior occurs due either to timing hazards or to circuit oscillation.
In all of these cases, the modeling algorithm expresses this uncertainty by assigning value X to the
offending circuit nodes, indicating that the actual digital value cannot be determined [8, 15].

As a second advantage, we can efficiently verify many aspects of digital circuit behavior by
representing the circuit with a ternary system model. We do this by ternary symbolic simulation,
in which a simulation algorithm designed to operate on scalar values 0, 1, and X, is extended
to operate on a set of symbolic values. Each symbolic value indicates the value of a signal for
many different operating conditions, parameterized in terms of a set of symbolic Boolean variables.
Since the value X indicates that a signal could be either 0 or 1 (or a non-digital voltage), we can
often represent many different operating conditions by the constant value X, rather than with a
more complex symbolic value. For example, we can verify that a particular sequence of actions
will yield a 1 (or 0) on some node regardless of the initial state by verifying that this value results
when starting from an initial state where all nodes are set to X. This requires far less effort than
analyzing the effect of the action on all possible initial binary states.

Simulators that support ternary modeling intentionally err on the side of pessimism for the
sake of efficiency. That is, they will sometimes produce a value X even where exhaustive case
analysis would indicate that the value should be binary (i.e., 0 or 1). For example, most ternary
simulators evaluate logic functions in a ternary algebra created by extending the standard Boolean
operators. This algebra does not obey the law of excluded middle, because X +; X' = X, where +,
and ~7 are ternary extensions of Boolean sum and complement, respectively. On the other hand,
symbolic simulation avoids this pessimism, because it can resolve the interdependencies among
signal values, and compute « + @ = 1 (the Boolean function that always yields 1). By combining
the expressive power of symbolic values with the computational efficiency of ternary values, we
can trade off precision for ease of computation.

When creating a ternary system model, we impose the following monotonicity requirement: In
the presence of X signals as stimuli, no action of the circuit should yield a binary value, unless
the same value would occur if any subset of these stimuli had binary values instead. That is,
when given incomplete information about the exact circuit state, we should never produce a signal
inconsistent with one that would result if more information were available. This monotonicity
condition makes it possible to verify properties of circuit operation in the presence of potential
sources of indeterminate behavior by representing this indeterminacy with the value X. It also
makes it possible to verify properties under a ternary system model as a means of proving properties
under a binary system model.

1.2. Contribution of Paper

In earlier work, we demonstrated the utility of ternary modeling for verifying a variety of circuits
[1, 7]. Our methodology is based on ternary simulation, either scalar or symbolic. With a simulator
we can verify assertions specifying a postcondition on the circuit state that would result given some
precondition on the previous state and some condition imposed on the input values. By restricting

the form of the precondition, postcondition, and input condition to specifying that some of the nodes
have particular binary values, we can verify such an assertion by a single simulation sequence.
That is, we perform a simulation in which any node that is constrained by the precondition or action
is set to its specified value, while all other nodes are set to X. If the resulting node states satisfy
those specified by the postcondition, then the assertion is proved. For some classes of circuits,
e.g., random access memories, we can verify correct circuit operation for all possible inputs and
initial states by simulating only a polynomial number of scalar patterns. For other circuits, we
can overcome the combinatorial complexity of considering many different initial states and input
actions via symbolic simulation.

This earlier work demonstrated the viability of circuit verification by symbolic simulation, but
it fell short in terms of generality, ease of use, and degree of automation. We did not have a formal
notation for specifying the desired circuit properties, nor a method to generate simulation patterns
directly from the specification. Instead, we derived symbolic simulation patterns by hand and
argued informally that these patterns served to verify the desired properties. Furthermore, it was
particularly cumbersome to verify operations requiring multiple state transitions, such as occurs in
pipelined systems.

In this paper, we correct this shortcoming by presenting a formal state transition model for a
ternary system, a formal syntax for expressing desired properties of the system, and an algorithm
to decide whether or not the system obeys the specified property. Our state transition system is
quite general, and is compatible with a number of circuit modeling techniques.

Our specifications take the form of symbolic trajectory formulas mixing Boolean expressions
and the temporal next-time operator. The Boolean expressions provide a convenient means of
describing many different operating conditions in a compact form. For example, we can express
the desired behavior of an ALU on all possible inputs. By allowing only the most elementary of
temporal operators, the class of properties we can express is relatively restricted, as compared to
other temporal logics [10, 17]. In particular, we can only reason about circuit operations involving
a bounded number of state transitions. Nonetheless, we have found that we can readily express
many aspects of synchronous digital systems. It is quite adequate for expressing many of the
subtleties of system operation, including clocking conventions and pipelining.

Our decision algorithm is based on ternary symbolic simulation. It tests the validity of an
assertion of the form [A = ('], where both A and C are trajectory formulas. That is, it
determines whether or not every state sequence satisfying A (the “antecedent”) must also satisfy
C' (the “consequent™). It does this by generating a symbolic simulation sequence corresponding to
the antecedent, and testing whether the resulting symbolic state sequence satisfies the consequent.

An important property of our algorithm is that it requires a comparatively small amount of
simulation and symbolic manipulation to verify an assertion. The restrictions we impose on
the formula syntax guarantee that there is a unique weakest symbolic sequence satisfying the
antecedent. Furthermore, the symbolic manipulations involve only variables explicitly mentioned
in the assertion. Unlike other symbolic circuit verifiers [3], we do not need to introduce extra
variables denoting the initial circuit state or possible primary inputs. Finally, the length of the
simulation sequence depends only on the depth of nesting of temporal next-time operators in the
assertion.

Some insight into the expressive power of our specification language can be gained by reviewing
the different classes of properties examined by Pnueli in his original paper on temporal logic [17].
In particular, our notation is adequate for expressing many invariant properties of the system. That
is, we formulate an assertion where the antecedent expresses a set of guaranteed constraints on the
circuit inputs and state over multiple time intervals, while the consequent expresses some additional
desired constraints on the state. These desired constraints generally include the state guarantees
of the antecedent shifted to a later time. By verifying such an assertion, we prove that the desired
properties of the consequent hold over the entire operation of the circuit as long as the inputs are
supplied correctly. On the other hand, properties that require reasoning about eventuality cannot
be expressed with our notation, unless the desired property is guaranteed to hold within a bounded
time.

1.3. Overview of Implementation

By modifying the cosmos symbolic simulator[5], we have been able to implement the algorithm
described in this paper and to verify several full scale circuit designs. Cosmos represents a MOS
circuit at the switch level as a network of transistor switches connecting charge storage nodes.
The simulator preprocesses the circuit to transform it into a Boolean representation [6]. Using
this Boolean representation, the switch-level behavior of the circuit can be computed by simply
evaluating a series of Boolean operations, much as one would in a gate-level circuit model. The
preprocessor is quite general and accurate. The resulting representation is guaranteed to produce
the exact same results as more traditional switch-level simulators.

Simulating a circuit symbolically involves evaluating these Boolean operations over the algebra
generated by a set of Boolean variables. That is, each element of the algebra corresponds to a
Boolean function over the variables. By representing these functions as Ordered Binary Decision
Diagrams [4], complex functions can be represented and manipulated efficiently. Of course, all of
the verification properties we wish to decide require solving NP-hard problems. Our approach has
a worst case time and space requirement that grows exponentially with the size of the formulas
expressing the circuit property to be decided. Nonetheless, we have been successful at avoiding
exponential blow-up for many useful cases. Our system model and checking algorithm is not
strongly tied to the use of BDDs. In this work, we view our BDD code as simply a package for
representing and manipulating Boolean functions symbolically.

Cosmos supports a ternary model of switch-level circuit operation, where X indicates either an
unknown or potentially non-digital node voltage. It does this by encoding each node state as a pair
of binary values, according to a “dual rail” coding of the circuit state. The excitation function for a
node is given by a pair of Boolean expressions specifying how the encoded new state of the node
should be computed from the encoded old states [6]. This implementation decision greatly helped
the development of our symbolic simulator. When simulating the circuit symbolically, we simply
represent the state of each node by pointers to the roots of two BDDs, and compute the new states
of a node by evaluating the excitation expressions symbolically.

The following table indicates the performance of our verifier on several different circuits. All
CPU times were measured on a DEC 3100 (a 10-20 MIPS machine). We also list the maximum

4

memory requirement of the process, as this is more often the limiting factor in BDD-based symbolic
manipulation than is CPU time.

Circuit Transistors | CPU Time | Memory

64 x 32 bit moving data stack 16,470 1.25 min. | 3.1 MByte
64 x 32 bit stationary data stack | 15,873 7.5 min. | 5.7 MByte
1K static RAM 6,875 3.7 min. | 9.5 MByte

The two stack examples demonstrate the abstraction capability of our approach. Both started
with the same high level specification—defining the behavior of PUSH, POP, and HOLD operations in
an abstract stack. We then define how the circuit represents the abstract machine state by trajectory
formulas, examples of which will be shown later. The two different circuits represent the abstract
state in totally different fashions. In the moving data stack, bit z (counting from the top of stack)
of the abstract machine is stored in cell of the circuit. In the stationary data stack, bit : is stored
in location d — 2 of a static RAM, where d is the current depth of the stack. As a consequence, the
symbolic values manipulated in verifying the stationary data stack are more complex than those
for the moving data stack. In both cases, however, the performance was acceptable.

The static RAM example indicates just how efficient symbolic verification can be. We have
already demonstrated that this class of circuit can be verified by simulating just O(N log V) scalar
patterns [7]. By exploiting the bit-level parallelism of the logical instructions in a conventional
machine, we were able to simulate 32 of these patterns at a time. Even so, the symbolic verification
outperforms the scalar verification by a factor of 4. Furthermore, creating the assertions for the
symbolic verification was far more straightforward than was generating the patterns for the scalar
verification. For the scalar verification, we had to consider details of the memory’s row and column
addressing structure to avoid errors caused by the pessimistic modeling of X. No such tuning was
required for the symbolic verification.

We are now applying our verifier to more complex circuits such as pipelined data paths and
simple microprocessors. We have found the expressive power of our notation and the performance
of the verifier acceptable in most of the cases we have considered.

1.4. Related Work

Our approach to verification relates most closely to the symbolic model checking algorithms
devised by Bose and Fisher (BF) [2, 3], and by Burch, Clarke, McMillan, and Dill (BCMD)
[9]. In fact, all of these approaches are implemented using the same Boolean manipulation code!
Furthermore, Bose and Fisher implemented their checker by extending cosmos. Despite these
internal similarities, however, there are significant differences in the capabilities and complexities
of the algorithms. In particular, our method is the most restricted in terms of the class of properties
that can be verified. Both the BF and BCMD algorithms can decide a class of formulas consisting
of a complete branching time, propositional temporal logic under a binary system model. Our
method can only be used to verify properties of bounded state sequences. What we loose in
expressive power, however, we make up for in computational efficiency. The computational effort

required by our model checker is considerably less than theirs. One can view the combined effect of
these research projects as providing a spectrum of checking-based verifiers that trade off between
expressiveness and performance.

In the BF algorithm, the underlying circuit is assumed to be synchronous and deterministic.
Nondeterministic sequential behavior arises due only to the different signals that may be applied
to the inputs (expressed as existentially quantified Boolean variables). Their algorithm requires
creating an explicit representation of the next state function for every state variable in the system.
They create this representation by symbolic simulation. That is, the user identifies each place state
is stored in the system, either as charge on a node, or as a pair of complementary values within
a static memory element. They then symbolically simulate a single system cycle, where each
state variable and each input signal is represented by a distinct Boolean variable. Once they have
obtained this Boolean representation of the next state behavior, the validity of a temporal formula
can be derived by (rather extensive) symbolic Boolean manipulation. This process of extracting
the explicit next state function can be quite costly. In contrast, our method represents the next
state function implicitly as a combination of circuit structure and simulation algorithm. We only
compute the next state behavior for the particular patterns required to verify a given assertion. These
patterns involve far fewer variables than is required by Bose and Fisher’s functional extraction.

In the BCMD algorithm, the underlying system can be nondeterministic, and the user can even
impose fairness constraints on the model. To support this great expressive power, they require an
explicit representation of the next state relation for the entire system. That is, for each state variable
in the system they have one Boolean variable representing its “old” value and one representing its
“new” value. The next state relation is represented as a Boolean function of all of these variables,
where the function yields 1 when the old and new state are related, and O otherwise. Generating
this characteristic function is even more difficult than generating representations of the individual
next state functions for each state variable.

Most other automated approaches to sequential circuit verification are based on testing state
machine equivalence [11, 13]. Such methods are useful for comparing two different (but hopefully
equivalent) representations of the system, such as one at a register-transfer level and one at a gate
level. However, they do not work well for verifying the correctness of incompletely specified
systems, nor for reasoning about systems that employ methods, such as pipelining, that shift the
sequencing of activities in time. Furthermore, most of these methods assume that the system starts
in some known initial state. In actual circuits, the initial state usually cannot be predicted.

Other researchers have suggested symbolic simulation as a means of circuit verification [12, 18].
None of this work has presented a clear methodology for sequential circuit verification, however.

2. Ternary System

Let B = {0, 1} be the set of the binary values and let 7 = {0, 1, X}. The value X is introduced to
denote an “unknown”, or “don’t care” value.

Define the partial order © on 7 as follows: a Ca foralla € 7, XC0, and XC 1. The

]
-

X = o
X o

Table 1: Ternary Extensions of -, +, and .

partial ordering orders values by their “information content.” That is, X indicates an absence of
information while 0 and 1 represent specific, fully-defined values.

We say that ternary values « and b are compatible, denoted « ~ b, when there is some value
¢ € T such thata C cand b C ¢. In other words, two scalar values are compatible unless one is 0
and the other is 1.

The meet, denoted 1, of two ternary values « and b is defined as the largest element ¢ € 7 in
the partial order such that ¢ C « and ¢ C b. For scalar values, if a = b, then « 116 = «, while if
a # bthen a M b = X. Furthermore, given two compatible ternary values « and b, the join between
them, denoted « LI b, is defined to be the smallest element ¢ € 7 in the partial order such that « C ¢
and b C c.

It is convenient to define an algebra over 7 with operators LI, M, as well as the operators -,
+:, and —*, where the latter are defined in Table 1. These operations are simply extensions of the
corresponding Boolean operations - (product), + (sum), and — (complement).

Let 7", n > 1, denote the set of all possible vectors of ternary values of length », ie.,
{{a1,...,an)|a; € T,1 <1 < n}. The partial order C is extended to 7" pointwise: @ C b iff
a; CTb; for 1 < i < n. Similarly, if @ € 7 and b € T, we say @ ~ b iff there exists a vector
¢ € T such that @ C@and b C & In other words, two vectors of scalar ternary values are not
compatible when one vector has a 1 in some position and the other vector has a 0 in the same
position. anally, the operations LI and I are extended pointwise. Note that a L b is defined only
when @ ~ b.

A ternary function, f: 7" — T, is said to be monotone when forany @ € 7" and b € 7™ we
have . .
aCb = f(a@)C f(b)

This definition is extended pointwise to vector functions,f: T =T,

The above monotonicity definition is consistent with our use of information content. If a
function is monotone, we cannot “gain” any information by reducing the information content of
the arguments to the function. In other words, changing some signals from binary values to X will
either have no effect on the output values, or it will change some binary values to X.

To express the behavior of a circuit operating over time, we must reason about sequences of

7

states. Conceptually, we will consider the state sequences to be infinite, although the properties we
will express can always be determined from some bounded length prefix of the sequence. Define a
the set S™ to consist of all sequences [do, d1, . . .| where each a; € 7. The relations C and ~ are
extended from vectors to sequences pointwise. That is, two sequences [@o, @1, . ..] and [bo, by, . . .
are ordered (compatible) if and only if each pair a; and b; is ordered (compatible), for all > 0.

For vector @ and sequence S, the expression @S denotes the sequence consisting the vector @
followed by the vectors in S.

3. Circuit Model

The underlying model of a circuit we use is quite simple, as well as general. A circuit C is a triple
(N,Y,V), where

N: isasetof nodes. Let s = |V].

—

Y': is a vector of excitation functions.

V: isaset of symbolic Boolean variables with which parameterized properties of the circuit are to
be expressed.

In the mathematical presentation we will refer to the nodes as nq, no, ..., n,, whereas in our
examples we often will use more descriptive names. In logic gate circuits the nodes correspond to
the primary inputs and the outputs of the gates. In switch-level circuits the nodes correspond to
electrical nodes in the circuit.

The excitation functions are defined in a non-traditional way. We view them as expressing
“constraints” on the values the nodes can take on one time unit later given the current values on
the nodes. By constraint we mean specific binary values, whereas the value X indicates that no
constraint is imposed. Since the value of an input is controlled by the external environment, the
circuit itself does not impose any constraint on the value; hence the excitation of an “input node”
is X. More formally, if node »; corresponds to an input to the circuit then Y,,,(a) = X for every
d € T°. Nodes that do not correspond to inputs are called function nodes. For a function node
n; the excitation function is a monotone ternary function Y,,,: 7° — 7T determined by the circuit
topology and functionality. For example, if the current input to a unit delay inverter is 0, then the
output of the inverter one time unit later is constrained to be 1.

It should be pointed out that the “time unit” referred to above is the smallest period of time
that is distinguishable in the circuit model. The minimum delay in any individual component of
the circuit can be significantly larger. Thus we are not limited to unit delay circuit models. For
example, by using the transformation technique described in [19], both nominal delay and bounded
delay circuit models can be used.

The excitation function for a function node is often a ternary extension of a binary excitation
function. Note that such an extension can be done in many ways. However, we require that the

8

extended function agrees with the binary on binary inputs, and that the ternary function obtained
is monotone. These requirements simply ensure that we do not “loose” information by extending
a binary excitation function to the ternary domain. In other cases, like in switch-level models, the
excitation functions derived are already ternary, since even binary signals can generate nondigital
voltages on some nodes.

3.1. Circuit Trajectories

State sequences are useful when reasoning about circuit behaviors. However, not all state sequences
represent possible behaviors of a circuit. The excitation functions generally restrict the possible
state sequences significantly. We formalize this property by introducing the concept of a circuit
trajectory. Given a circuit C and an arbitrary sequence [do, d1,...] € S° we say that the sequence
IS a circuit trajectory if and only if

—

Y(C_L)Z) C C_ii-l—l for 2 > 0.

The set of all trajectories of circuit C is denoted S(C). The above rule for trajectories is consistent
with our definition of an excitation function, i.e., a function computing a constraint on the possible
value of a node one time unit later. Thus if the current excitation of a node is binary, say «, then
the node must take on the value « in the next state in a valid trajectory. On the other hand, if the
excitation is X, then the node value is not constrained.

On first reading, it may seem strange to define a circuit model where a node with excitation X
may spontaneously change to either 0 or 1. This is our way of capturing the property that a circuit
may exhibit a variety of different behaviors due to variations in the initial state, the primary input
values, and the outcome of marginal operating conditions. An input node may change to O or 1 on
every step, reflecting the fact that its value is determined solely by the operating environment. An
uninitialized internal node may change to 0 or 1 to reflect the fact that it could have had either of
these as initial values. An internal node that was set to X due to marginal operating conditions can
change to 0 or 1 to reflect that the actual node state could resolve in either direction.

To illustrate trajectories, consider a unit delay inverter. Assume the circuit contains two nodes:
the inverter input 2, and the inverter output n,. The excitation functions are Y (&) = (X, az?). Itis
easy to accept that, for example, (0,1), (0, 1),(0,1),...and (0, 1), (1,1),(1,0),(1,0),...arevalid
circuit trajectories. Less intuitive is that a sequence like (X, 0), (X, 1), (X,0), (X, 1),...is also a
valid circuit trajectory. Our methodology verifies properties for all circuit trajectories that satisfies
some conditions, including degenerate trajectories as this one. Consequently it will perform a
stronger verification than absolutely necessary. Again, this pessimism stems from our use of X as
a completely unknown value.

4. Specification Language

Our specification language describes a property of the circuitasan assertion oftheform[A — (],
where both A and C are symbolic trajectory formulas expressing constraints on the circuit trajectory.

9

4.1. Symbolic Expressions

Before we can define our language, we need to introduce some notation and definitions. 1f) is a set
of symbolic Boolean variables then an interpretation, ¢, is a function ¢: YV — B assigning a binary

value to each variable. Let @ be the set of all possible interpretations, i.e., ® = {¢:V — B}. A

domain constraint, D C @, defines a restriction on the values assigned to the variables. We will
denote such domain constraints by Boolean expressions. That is, let £ be a Boolean expression

over elements of V.1 This expression defines a Boolean function e: ® — B and thus denotes the
domain constraint D = {¢|e(¢) = 1}. The set of all interpretations @ is denoted by the Boolean

function 1, defined as yielding 1 for all interpretations. Expressing domain constraints by Boolean
expressions allows us to compactly specify many differentcircuit operating conditions with a single

formula.

4.2. Symbolic Trajectory Formulas

Atrajectory formulaexpresses a set of constraints on a circuit trajectory. When the formula contains
Boolean expressions, each interpretation of the variables yields a different set of constraints.

A step-level symbolic trajectory formula is defined recursively as:

1. Constants: TRUE is a trajectory formula.

2. Atomic propositions: for n; € A the following are trajectory formulas:

@) (ni =1)
(b) (n; =0).

3. Conjunction: (F1 A F5) is a trajectory formula if £ and F5 are trajectory formulas.

4. Domain restriction: (£ — F') is a trajectory formula if £ is a Boolean expression over V
and F'is a trajectory formula.

5. Next time: (X, F') is a trajectory formula if F' is a trajectory formula.
We say that a formula is instantaneous when it does not contain any next time operator X ,. For
convenience, we often drop parentheses when the intended precedence is clear.

The truth of a formula F' is defined relative to a circuit, an interpretation ¢ of the variables in
V, and a circuit trajectory. The truth of F', written C, ¢, S [F, is defined recursively. In the
following, assume that both .S and @S are trajectories of C.

1. C,¢,S = TRUE holds trivially.

LFor the sake of brevity, we omit a formal syntax of Boolean expressions. Any standard expression syntax suffices.

10

2. (a) C,¢, as |: (nl = 1) iff a; = 1.
(b) C,¢,aS = (n; =0)iffa;, =0.

3. C,qb,S |: (F]_/\Fz) Iﬁc,¢,5 |: FlandC,qb,S |: s

4. C,¢,S = (F — F)iffe(¢) =00rC,¢,S = F,where e is the Boolean function denoted
by the Boolean expression F.

5. C,6,aS = X FiffC,¢,8 = F.

For an instantaneous formula, its truth can be defined relative to a single state. For instantaneous
formula £, the notation C, ¢,d | F indicates that /' holds under interpretation ¢ for state @. A
formal definition of this notation can be derived by a straightforward adaptation of rules 1-4 above.

4.3. Assertions

Our verification methodology entails proving assertions about the model structure. These assertions
are of the form [A = (], where the antecedent A and the consequent C' are trajectory formulas.
The truth of an assertion is defined relative to a circuit C and an interpretation ¢. Unlike a formula,
however, an assertion is considered true only if it holds for all trajectories. That is, C,¢
[A = (], when for every S € S(C) we have that C,¢,S = A implies that C,¢,5S E C.
Given a circuit and an assertion, the task of our checking algorithm is to compute the Boolean
function expressing the set of interpretations under which the assertion is true. For most verification
problems, this should simply be the constant function 1, i.e., the assertion should hold under all
variable interpretations.

4.4. Properties

We have intentionally chosen to introduce only a heavily restricted trajectory formula syntax for
our base logic. As discussed previously, we do not support more sophisticated temporal operators
such as “Until,” “Globally,” or “Eventually.” Furthermore, we do not even permit such elementary
logic operators such as disjunction, negation, or quantification.

By imposing these restrictions, we can guarantee the following key property:

Proposition 1 For any trajectory formula £, and any interpretation ¢, one of the following cases
must hold:

1. There is no trajectory S € S(C) for whichC, ¢, S = F,or

2. There exists a unique trajectory Sz4 € S(C) such that for every S € S(C) we have
C,9,5 | Fifandonlyif SpsC S,

11

In the first case above, we say that the formula £ is not satisfiable under interpretation ¢. In the
second case, we refer to the sequence Sr, as the weakest trajectory satisfying formula /" under
interpretation ¢.

This theorem can be proved by induction on the formula structure. Rather than prove it here,
however, we will show in a later section how the checking algorithm can compute a Boolean
function describing the set of interpretations for which the formula is satisfiable, as well as a
symbolic sequence representing the weakest trajectory for every satisfiable interpretation.

Note that this theorem expresses a very strong property of our logic. It demonstrates the reason
why we can verify an assertion by simulating a single symbolic sequence, namely the one encoding
the weakest trajectories allowed by the antecedent for every interpretation. It is stronger than the
simple monotonicity condition that if C, ¢, S = Fand SC S, thenC,¢,5" = F.

Observe that this property would not hold if our formula syntax permitted disjunction. For
example, given a circuit with two nodes n; and n,, the two formulas n; = 1 and ny, = 0
have weakest trajectories where the first elements are the vectors (1, X) and (X, 0), respectively.
Furthermore, the formulan; = 1 A n, = 0 has a weakest trajectory where the first element is the
vector (1,0). On the other hand, there is no weakest trajectory satisfying n1 = 1V ny, = 0. Only
the vector (X, X) is less than both (1, X) and (X, 0), and a trajectory having this as its initial vector
satisfies neither ;, = 1 nor n, = 0.

If our syntax permitted negation, then we would lose even the monotonicity property of our
logic. For example, in the circuit described above, the formula —(n1 = 1) would be satisfied by a
trajectory having first element (X, X), but not by one having first element (0, X).

Disjunction is a useful extension to our language and can be implemented using quantified
Boolean variables. Negation, on the other hand, seems to run contrary to the principles of ternary
modeling.

5. Extensions

The logic, as described above, is convenient for deriving the underlying theory. Unfortunately,
expressing “interesting” assertions about real circuits using only the constructs above is very
tedious. Two shortcomings make using the logic cumbersome: the fine granularity of the timing,
and the lack of more powerful logical constructs. It is convenient to add extensions that do not add
any expressive power, but make it easier to write assertions.

This basic structure of starting with a minimal basic logic and then adding more elaborate
structures as extensions also mirrors our current implementation. The implementation consists
of two parts. The underlying logic, with some few extensions, is taken care of by our modified
version of the cosmos symbolic switch-level simulator. The syntactic extensions are supported by
a front-end written in SCHEME. The user writes SCHEME code that, when evaluated, generates a file
of low-level simulation commands which are then evaluated by the simulator.

12

5.1. Timing Extensions

Our main interest is in verifying synchronous circuits. Hence, we would like to reason about time
on a more abstract level than basic time units. For many VLSI circuits it is natural to describe the
desired behavior in terms of phase level behavior. Let a phase be a period of time during which
no inputs (including clocks) change. For simplicity, we will assume that all phases have the same
duration. For example, if phases are & basic time units long and we want the instantaneous formula
F' to hold for the entire phase, then this can be translated into

k-1

A (XIF)

=0

where, for ;7 > 0, X! denotes j repetitions of the next time operator, and XSF is defined as F.
A “next phase” operator X, can then be defined simply as Xf. Thus a formula in a logic based
on the next-phase operator can be translated directly into a formula in the logic based on the
next-step operator. In our current implementation, the logic we support only allows the next-phase
operator. The transformation into the next-step logic is taken care of by the cosmos simulator so
that event-scheduling can be used to achieve good performance.

If we are using a nominal or bounded delay circuit model, the basic time step corresponds
directly with some exact amount of time. Hence, in these cases it is easy to define the length of
a phase. At other times we are not interested in the exact timing of the circuit. For example, if
we do not have delay values available (pre-layout) or if we use a very inexact delay model (say
unit-delay) it is somewhat meaningless to say that a phase is & time units long. In these situations
we often want to express the behavior in terms of “stable” phases. In other words, a phase may
defined to be as long as needed for the circuit to stabilize. Of course, we must also take care of the
case where the circuit never stabilizes, but oscillates. The solution to this is to “force” the circuit
simulator to stabilize after some reasonably large number of steps. This can be accomplished by
running a normal simulation for that many steps and then forcing oscillating nodes to X. We leave
the details on how to do this symbolically to the interested reader.

5.2. Logic Extensions

As already alluded to above, it is very tedious to write assertions using only the basic logic. Thus
in our SCHEME translator we provide a number of syntactic extensions. In the following we will
outline some of these.

An obvious extension to the logic is to allow the user to write n; = £, where n; € N and E is
some Boolean expression over V. The meaning of thisis simply [E — (n; = 1)]A[E — (n; = 0)],
where E denotes the Boolean complement of £.

Our next addition is to allow the user to specify a domain restriction for a complete assertion,
i.e., we allow the user to write £ — [A = (], meaning that the assertion only needs to hold for
interpretations ¢ € @ such that e(¢) = 1, where e is the Boolean function denoted by £. This is
simply a short-hand for the assertion [(£ — A) = (£ — C)].

13

The following extension to the logic, dealing with finite integer domains, is perhaps the most
useful of them all. Let E be a vector of Boolean expressions over V. Given an interpretation ¢ € ®
one can view as the binary encoding of a number. Denote this number as | E(¢)|. Let ¢ denote
a vector of Boolean expressions over V. What we would like to do is to use E to select one of the
Boolean expressions in ¢. Assume the vector contains m expressions. The value of v is defined
as: B B

vg = (|[E]|=0)-vo+ ... + (|[E|=m—1)-v,

where if £ = (E,_1,E, 5,...,Eo), and (i,_1,i,_o,...,i0) is the binary encoding of i, the
expression (|E| = i) is the Boolean expression [loc;c,((E; - ;) + (E; - 7;)). It is easy to
see that given an interpretation ¢ € @ this definition captures our intuition of what it means to
select one of the expressions.

Finally, we would also like to do a similar selection among circuit nodes. Let N denote a vector
of m circuit nodes. The expression N= = (&, where is some Boolean expression over V, is
simply a shorthand for the trajectory formula

[((E]=0) = (No=G) A(E[=1) = (Nu=G)] Ao A[(JE| =m = 1) = (Npoa = G)]
where (|E| = 1) is defined as above.

Given that the front-end is embedded in SCHEME, and the user actually writes SCHEME code, it
is easy to define new extensions. In fact, by writing SCHEME procedures it becomes very natural to
express the circuit assertions in a hierarchical way, improving the readability of—and consequently
the confidence in—the assertions.

6. Examples

The extensions described in the previous section provide a phase level timing model and an assertion
language with more powerful abstraction capabilities. Given these extensions we claim the logic
is both sufficiently powerful and easy to use to express a wide variety of verification tasks. We
support this claim with some illustrative examples.

6.1. Moving Data Stack

First we will demonstrate the utility of the temporal notation in expressing phase level circuit
timing and pipelining. The example is the nMOS stack circuit described by Mead and Conway
[16]. Figure 1 shows the block diagram for the circuit. The circuit operates with a two-phase
nonoverlapping clock. The stack command is specified by a pair of signals, OP1 and OP2, which
are multiplexed onto a single circuit input Op. The control signal is pipelined half a clock cycle
ahead of the data signals. That is, the command for clock cycle ¢ is specified by supplying OP1 on
the Phi 2 phase of cycle ¢ — 1, and OP2 on the Phi 1 phase of cycle ¢, as illustrated in Figure 2.
The input data must be supplied during the Phi 1 phase, and the output is valid during the Phi 2
phase. For each stack cell, we will consider the “state” of the cell to be the value held there during
the Phi 1 phase of the cycle.

14

Omitted Figure: stack-block

Figure 1: Block Diagram of Mead and Conway Stack. Bit : of the stack is stored as charge on
node C1; (negative logic).

Omitted Figure: stack-timing

Figure 2: Timing Diagram Stack. The two control signals for a given clock cycle are multiplexed
on the single line Op.

15

To illustrate a possible assertion for this circuit, consider checking that a PUSH operation can be
carried out correctly. The PUsH operation is performed when OP1 = 1 and OP1 = 0. Informally, a
PUSH operation should put the pushed value into cell 0 and move the contents of cell s to cell 7 + 1
for every i less than k& — 1, where & is the number of cells in the circuit. For convenience, let C1
be a vector of the C1, nodes. Let « and v be two Boolean variables, and I = (I,_s, ..., Io) be a
vector of Boolean variables, where & < 27.

First, we must include in our assertions a specification of how the clocks should be operated.
We use the shorthand Clock1l to denote the trajectory formula

(Phi1 = 1) A X,(Phi1 = 0) A XZ(Phi1 = 0) A X3(Phit = 0),
Clock2 to denote
(Phi2 = 0) A X,(Phi2 = 0) A XZ(Phi2 = 1) A X3(Phi2 = 0),
and Cycles to denote
Clockl A Clock2 A X (Clockl A Clock2) A X°[(Phil = 1) A Phi2 = 0].

The formula Cycles defines the operation of the clocks over the time period illustrated in Figure 2.

Since negative logic is used internally, let Stored(f, u) be a shorthand for C1 = u. Let Push
denote X?(0p = 1) A X?(0P = 0).

We can now express our assertion as:

(I<k—1)—
[Cycles A Push A X[(In = v) A Stored ([, u)] = X [Stored(0,v) A Stored(I + 1,u)]] .

Note that (f < k — 1) denotes a Boolean function over V that, for a given interpretation ¢, is 1
iff [[(¢)] < k& — 1. Similarly, I + 1 denotes a vector of Boolean functions such that, for a given
interpretation ¢, |(1 4 1)(¢)| = [1(¢)| + 1.

In this example, verifying the correct operation of a single stack operation requires reasoning
about the behavior of the circuit over parts of 3 clock cycles. Such is often the case in pipelined
systems.

6.2. Static RAM

Our second example is a static RAM, as illustrated in Fig. 3. The data for each memory location
2 are stored on node B;. Within the RAM cell there is a node holding the complementary value.
Unlike in the verification described in [7] based on scalar simulation, we do not need to explicitly set
or check this complementary value. The phase level timing abstraction handles this automatically.
That is, asserting a value on node B; for 2 unit steps forces the complementary value onto the other
node in the RAM cell.

16

Omitted Figure: ram-block

Figure 3: Block diagram of Static RAM. State is stored in location 7 as a pair of complementary
values on nodes Ch; and C1;.

The only information we need to know about the design of the RAM is the names of the
input/output signals, and the names of the storage nodes of each memory cell, as well as the
interface timing. For ease of exposition, we express the specification at the clock cycle level in
terms of a cycle-level next-time operator X.. Given a specification of the clocking patterns and
interface timing for the circuit, we could translate these assertions into phase-level assertions in a
similar fashion as we did for the moving data stack.

It is easy to convince oneself that a correct memory must satisfy three properties: 1) that we
can write successfully into each cell ¢, 2) that we can nondestructively read the content of each
cell z, and 3) that, unless we are writing into some cell ¢, the value stored in cell 7 should not
change. Let B be a vector of the B; nodes. Furthermore, let u, v, and w be Boolean variables, and
[=(I,_q,...,Io)and J = (J,_1,...,Jo) be vectors of Boolean variables, where p is the width

of the address input. We use the shorthand Operate(f , u, w) to denote the formula
(write = w) A (Din =u) A (Ap1 = Lp—1) A -+ A (Ao = 1o).

Similarly, let Stored(.J, v) denote the formula (B = v). With this notation, we can express all
three conditions mentioned above with a single assertion.

Stored(./, v) A Operate([, u, w)
= X. ([w— Stored(Z,u)] A
[@- ([= J) — (DouT = v)] A
@+ (I # J) — Stored(.J, v)])

where I + .J denotes the Boolean expression (I,_1 & J,_1) + - - - + (Io & Jo), and I = J denotes
the complement of this expression.

17

6.3. Discussion

As these examples illustrate, our notation works well for expressing the state transition properties of
acircuit. For circuits, such as memories and data paths, this is a fairly natural form of specification.
That is, one thinks of each operation of the system as updating some portion of the stored system
state.

In these examples, we constructed the specification assertion in a hierarchical way, starting with
low level timing information and working up to more abstract system operations. This seems to
be a fairly convenient way to view the system at different abstraction levels. Because we actually
write our specifications as SCHEME programs, we can use the procedural abstraction capabilities of
SCHEME to express the specification hierarchically.

7. Symbolic Simulation

As we have shown, symbolic formulas provide a concise means to specify desired properties of
the circuit under many different operating conditions. We are now ready to introduce a method of
verifying the assertions via symbolic simulation. The key idea is to preserve the symbolic structure
of the formulas in the verification algorithm. By doing so, we can replace the need for large
amounts of case analysis with algebraic manipulation.

7.1. Symbolic Algebras

In creating a symbolic model, we extend the scalar model defined in terms of the binary and ternary
domains B and 7, to one defined in terms of binary- and ternary-valued functions over the variables
V. Define the symbolic domain B (V) (respectively, 7 (V)) as denoting the set of functions mapping
an interpretations in ® to B (resp., 7). More formally

B(V) = {f:® — B}

and
TV)={f:® =T}

We then extend the operations defined over scalar values to create a symbolic algebra.

We can also extend the vector and sequence algebra defined over scalar values to their counter-
parts defined over symbolic values. That is, define the vector domain 7 (V7 as

TO)" = {(a1,...,an)|a; € T(V)}.

In implementing a symbolic simulator, we in effect extend the excitation function Y tothe symbolic
domainas Y: 7 (V)* — T(V)*. Ford € T(V)", letd(¢) € 7™ denote the vector with each element
i equal to a;(¢). In this way, we can view the symbolic vector @ € 7 (V)" either as a vector of
symbolic elements, or as a symbolic value which for a given interpretation yields a scalar vector.

18

We extend most operations from scalar to symbolic domains in a uniform way. Consider an
operation op: D1 x D, — D3, defined over vectors, single elements, or a combination of the two.
Its symbolic counterpart op: D1(V) x Da(V) — D3(V) is defined such that for all « € i (V) and
b € Dy(V), we have (a op b)(¢) = a(¢) op b(¢). We use this method to extend the ternary
algebraic operations -, +;, and ~*, as well as the operation .

When extending a relation £ symbolically, we define the result to be a function specifying the
interpretations under which its arguments are related. That is, given abinary relation R C D; x D,
define R: A (V) x Do(V) — B(V)as (a R b)(¢) = Llifandonly a(¢) R b(¢). We use this method
to define operations ~ and C over both single elements and vectors.

7.2. Special Operations

We require one operation that is extended to vectors in a nonstandard way. Define the infix operator
?22BxT — T asa?bequalsbifaisl, and equals X otherwise. When extending this operation
to vectors, only the second argument is vector-valued. That is the operation 2: B x 7" — T™ is

—

defined as (a ?b); = a ? b;. This operation is then extended symbolically in the manner described
above.

As a final operation, we define a variant of the join operation that is defined even when for some
¢ € ®, we have d@(¢) o b(¢). When using this operation, we will separately keep track of the
conditions under which the arguments are compatible. Define the operation(: TYV) xTV) =
T(V)"as

X, otherwise

where X denotes a vector with all elements equal to X.

7.3. Translating Instantaneous Formulas to Symbolic Vectors

Given the above definitions, we first give a procedure that for an instantaneous formula F' derives a
Boolean function OK and a vector ax. The function OKy can be viewed as a “domain” function
of F' in the sense that OKx(¢) = 1 iff under this interpretation £ can hold true in some state.
Furthermore, we will also show that ar is “weakest” in the sense that if OKx(¢) = 1, then

ar(¢) C b for every state vector b € T* for which F holds under this interpretation. The function
OKp and the vector @ are defined recursively as:

1. If FisTRUEthen OKp = 1, and ap = (X, ..., X).

2. (@ If Fis(n, =1)then OKr = 1, and ar = (X,..., X, 1, X,...,X), where the 1 is in
position 2.

(b) If Fis (n; = 0) then OKy = 1, and ar = (X,...,X,0,X,...,X), where the 0 is in
position 2.

19

3. IfFis (F]_ N Fz) then OKp = OKF1 : OKF2 : (C_L)Fl ~ C_l’Fz), and C_l)F = EiFl |i| 6F2.

4. If Fis (F — F1)then OKp = €+ OKp,, and @r = e ? dp,, Where e is the Boolean function
denoted by the expression F.

Proposition 2 GivenacircuitC, let /' be an instantaneous formula and OK - and @ be derived as
above. Then OKx(¢) = 1 iff there exists some state b € 7° such thatC,¢,b |= F. Furthermore,
if OKp(¢) =1,thenC,¢,b = Fiffdp(¢) Cb.

This proposition can be proved by induction on the formula structure.

7.4. Checking Assertions

Our first step in verifying an assertion is to rewrite the antecedent and consequent into a normal
form where all next-time operators are collected together. It is easy to show that a trajectory
formula F* can be rewritten into Fo A X, Fy A X2Fy A ... A XY Ry, for some k& > 1, where
each F; is instantaneous. Note that some of the £3’s might be the trivial formula TRUE. Note also
that such a sequence can be extended by appending X TRUE for i > k. Hence, without any loss
of generality, we will henceforth assume that the antecedent and the consequent in an assertion are
trajectory formulas in normal form containing the same number of terms.

Given an assertion [A = (] of the form
|:A0 A XSA]_ VANPIAN Xf_lAk_l — (oA XSC]_ VANPIAN Xf_l(]k_l

define a sequence of symbolic ternary vectors a, . . ., ¥x_1 as follows:

. Ay, 1 =0
$Z: =, * o, .
Y(SCZ'_]_) Uaga, t> 0.

Define the Boolean function OKy4 = []o<;<x OK4,, where [T denotes Boolean product. This func-
tion yields O for those interpretations for which the antecedent contains some internal inconsistency.
For example, the formula A = (n; = a) A (n; = b) would have OK 4 = a & b, because this formula
cannot be satisfied when ¢(a) # ¢(b). Define the Boolean function Traj =[;<; ., [Y (Zi_1) ~ @.4,].
This function yields 0 for those interpretations where an incompatibility arises in the trajectory.

We can show that A is satisfiable under some interpretation ¢ ifand only if OK4 (¢)- Traj(¢) = 1.
Furthermore, we can extend the sequence o, . . ., ¥x_1 to be an infinite sequence by defining 7 =
17(52-_1) forall : > £. It can then be shown that for interpretation ¢ the sequence Zo(¢), Z1(¢), . ..
is the weakest trajectory satisfying A under interpretation ¢. This construction then provides a
proof of Proposition 1. This demonstrates how our symbolic simulator can set up the weakest

allowable conditions allowed by the antecedent under all possible interpretations.

To check the consequent, define the Boolean function OKz = []o<,;<x OK¢,. This function
yields O for those interpretations for which the consequent contains some internal inconsistency.

20

Finally, define the Boolean function Check = [Jo<;<x[dc; T Z;]. This function yields O for those
interpretations where some trajectory satisfying the antecedent may violate the consequent.

Now define OK4 —, ¢ as:
OKy4 + Traj + (OK¢ - Check)

Informally, this equation states that the assertion is true under those interpretations for which the
antecedent is unsatisfiable (due either to internal inconsistencies or to an incompatibility in the
trajectory), as well as those for which the consequent holds (i.e, it is both internally consistent and
is satisfied.)

The main result of this paper is captured in the following theorem:

Theorem 1 Given a circuit C and an assertion [A = (7] let OK[4 — ¢; € B(V) be derived as
above. Then
C.¢ E[A = C] ifandonlyif OKps— ¢1(¢) =1.

Hence, determining whether a circuit satisfies [A = (] is reduced to determining whether
OK[A = C] = 1.

7.5. Summary of Checking Algorithm

In practice, we encode the ternary values as pairs of Boolean values. Thus we express the ternary
functions over V as pairs of Boolean functions over V. It is straightforward to implement all of
the operations defined above using such an encoding. Thus, to verify an assertion [A = ('] we
would proceed as follows: First convert A and C' into normal forms containing the same number of
terms. Now compute the sequence of states &; as defined above. Although the above presentation
used k& — 1 distinct vectors, the implementation need only retain the most recent vector. In fact,
the vector can be viewed as the current circuit state. Hence, step ¢ in this verification would
entail: 1) run the simulator one “step” to derive 17(1?2-_1), 2) compute OK 4, and @ 4,, 3) compute
(Y(Zi_1) ~ @4,), 4) compute ;, 5) compute @, and 6) compute (¢, C Z;). As we go along,
we also maintain Boolean functions representing the 4 constituent components of the expression
for OK[4 — ¢ shown above. In the end we simply combine these together and check that the
derived function is the constant function 1. If the test fails, the derived function provides diagnostic
information indicating which cases encounter difficulties.

7.6. Example

Consider a 4-bit memory of the structure illustrated in Figure 3. In verifying the correctness of
a READ operation, one aspect of the desired behavior is that after reading with the address inputs
set to ¢, the valued stored in memory location z should appear on the output. This can be expressed
by the assertion (in our extended syntax):

—

[Stored(Z,u) A (write=0)A(A=1) = X.(Dout =u)]

21

Omitted Figure: sram-pattern

Figure 4: Verification of 4-bit RAM Read Operation.

Omitted Figure: pseudo-xor

Figure 5: Pseudo XOR Circuit. This circuit satisfies the assertion for an XOR circuit, because
the antecedent trajectory fails whenever the output should be nonzero.

The antecedent is converted into the simulation pattern outlined on the left hand side of Figure 4.
That is, the address inputs are set to Boolean variables encoding the possible addresses. The cells
are set to more complex symbolic values. For each possible interpretation of the address variables,
we see that one cell is set to value «, while the other three cells are set to X. Verifying the assertion
involves simulating this single pattern and then checking that the resulting value on Dout equals
Uu.

This example illustrates how our methodology combines symbolic and ternary values when
encoding the different possible circuit states. In a binary model of the circuit, there are 16 (in
general 2%) different initial binary states of the memory. These cases can be covered by 8 (in
general 2k) different initial states in a ternary model—each having one cell set to 0 or 1 and the
rest set to X. These different cases can then be encoded by a single symbolic case in terms of
3 (in general 1 + log k) Boolean variables. As the size of the memory & grows, the reduction in
complexity we realize becomes dramatic.

8. Areas for Future Investigation

The checker described here provides a useful tool for reasoning about digital circuits. However,
some questions remain as to exactly how it can and should be used. In particular, we must still
devise a comprehensive theory on how to prove that a circuit fully realizes its specification.

22

To illustrate one subtlety of this task, consider trying to show that a circuit with inputs A
and B and output Qut implements the exclusive-or function. Intuitively, it seems that it would
be sufficient to prove that circuit obeys the assertion [(A = a) A (B =) = X (0ut = a & b)].
Unfortunately, this is not the case. For example, this assertion is obeyed by the rather useless circuit
of Figure 5, where the two inputs are tied together, and the output is always 0. Any interpretation
of the variables ¢ for which ¢(a) # ¢(b) will cause the antecedent trajectory to fail, because inputs
Aand B are electrically equivalent. The only interpretations for which the trajectory succeeds are
ones for which the output should be 0, in which case the consequent is also satisfied.

Any checking based purely on testing implications is prone to this sort of “false positive” error.
Problems of this sort have been encountered by people using other systems for hardware verification
such as HOL [14] and EMC [10]. We believe that shortcomings of this sort can be corrected by
more careful attention to the cases where an implication succeeds due a failure of its antecedent.
In all of the verification examples we have performed, we make sure that the specification is
formulated in such a way that the antecedent trajectory should never fail. We check this as part of
the verification process.

9. Conclusions

In terms of mathematical sophistication, the problem solved by our algorithm is far less ambitious
than what is attempted by full-fledged temporal logic model checkers. However, we believe that
our language is rich enough to be able to describe many important properties of a circuit and to
provide a direct path by which such properties may be automatically verified. By keeping the goals
of our verifier simple, we obtain an algorithm that is capable of dealing with much larger circuits.

One interesting property of our algorithm, in fact, is that its computational complexity is
relatively insensitive to the circuit size. That is, the complexity is determined largely by the
complexity of the assertion to be verified, measured in terms of the number of symbolic variables,
and the depth of nesting of next time operators. We have found that in many circuits, properties
can be expressed in terms of a surprisingly small number of variables. For example, our formulas
providing a complete specification of of a k-bit static RAM involve only 2 + 2log & variables.
Thus, we can perform the verification in polynomial time irrespective of the heuristic efficiency of
the Boolean manipulator.

References

[1] D. L. Beatty, R. E. Bryant, and C.-J. H. Seger, “Synchronous Circuit Verification by Symbolic
Simulation: An Illustration,” Sixth MIT Conference on Advanced Research in VLSI, 1990.

[2] S.Bose, and A. L. Fisher, “Verifying Pipelined Hardware Using Symbolic Logic Simulation,”
International Conference on Computer Design, IEEE, 1989.

[3] S. Bose, and A. L. Fisher, “Automatic Verification of Synchronous Circuits using Symbolic
Logic Simulation and Temporal Logic,” IMEC-IFIP International Workshop on Applied

23

Formal Methods for Correct VLSI Design, 1989, pp. 759-764.

[4] R. E. Bryant, “Graph-Based Algorithms for Boolean Function Manipulation”, IEEE Trans-
actions on Computers, Vol. C-35, No. 8 (August, 1986), 677-691.

[5] R. E. Bryant, D. Beatty, K. Brace, K. Cho, and T. Sheffler, “COSMOQOS: a Compiled Simulator
for MOS Circuits,” 24th Design Automation Conference, 1987, 9-16.

[6] R. E. Bryant, “Boolean Analysis of MOS Circuits,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Vol. CAD-6, No. 4 (July, 1987), 634—649.

[7] R. E. Bryant, “Formal Verification of Memory Circuits by Switch-Level Simulation,” To
appear in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
1990.

[8] J. A. Brzozowski, and M. Yoeli. “On a Ternary Model of Gate Networks.” IEEE Transactions
on Computers C-28, 3 (March 1979), 178-183.

[9] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill, “Sequential Circuit Verification
Using Symbolic Model Checking,” 27th Design Automation Conference, 1990.

[10] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic Verification of Finite-State Con-
current Systems Using Temporal Logic Specifications,” ACM Transactions on Programming
Languages, Vol. 8, No. 2 (April, 1986), pp. 244-263.

[11] O. Coudert, C. Berthet, and J. C. Madre, “Verification of Sequential Machines using Boolean
Functional Vectors,” IMEC-IFIP International Workshop on Applied Formal Methods for
Correct VLSI Design, 1989, pp. 111-128.

[12] J. A. Darringer, “The Application of Program Verification Techniques to Hardware Verifica-
tion,” 16th Design Automation Conference, 1979, 375-381.

[13] S. Devadas, H.-K. T. Ma, and A. R. Newton, “On the Verification of Sequential Machines at
Differing Levels of Abstraction,” 24th Design Automation Conference, 1987, 271-276.

[14] M. Gordon, “Why higher-order logic is a good formalism for specifying and verifying hard-
ware,” Formal Aspects of VLSI Design, G. Milne and P. A. Subrahmanyam, eds., North-
Holland, 1986, pp. 153-177.

[15] J. S. Jephson, R. P. McQuarrie, and R. E. Vogelsberg, “A Three-Level Design Verification
System,” IBM Systems Journal Vol. 8, No. 3 (1969), 178-188.

[16] C. A. Mead, and L. Conway, Introduction to VLSI Systems, Addison-Wesley, 1980.

[17] A. Pnueli, “The Temporal Logic of Programs,” 18th Symposium on the Foundations of
Computer Science, IEEE, 1977, pp. 46-56.

[18] D.S. Reeves, and M. J. Irwin, “Fast Methods for Switch-Level Verification of MOS Circuits”,
IEEE Transactions on CAD/IC, Vol. CAD-6, No. 5 (Sept., 1987), pp. 766-779.

24

[19] C-J. Seger, and R. E. Bryant, “Modeling of Circuit Delays in Symbolic Simulation”, IMEC-
IFIP International Workshop on Applied Formal Methods for Correct VLSI Design, 1989,
pp. 625-639.

25

