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Abstract. Predicate abstraction has been proved effective for verifying several
infinite-state systems. In predicate abstraction, an abstract system is automati-
cally constructed given a set of predicates. Predicate abstraction coupled with
automatic predicate discovery provides for a completely automatic verification
scheme. For systems with unbounded integer state variables (e.g. software), coun-
terexample guided predicate discovery has been successful in identifying the nec-
essary predicates.

For verifying systems with function state variables, which include systems with
unbounded memories (microprocessors), arrays in programs, and parameterized
systems, an extension to predicate abstraction has been suggested which uses
predicates with free (index) variables. Unfortunately, counterexample guided pred-
icate discovery is not applicable to this method. In this paper, we propose a sim-
ple heuristic for discovering indexed predicates. We illustrate the effectiveness
of the approach for verifying safety properties of two systems: (i) a version of
the Bakery mutual exclusion protocol, and (ii) a directory-based cache coherence
protocol with unbounded FIFO channels per client.

1 Introduction

Predicate abstraction [15] has emerged as a successful technique for analyzing infinite-
state systems. The infinite-state systems consist of both hardware and software sys-
tems, where the state variables can assume arbitrarily large sets of values. Predicate
abstraction, which is a special instance of the more general theory of abstract inter-
pretation [9], automatically constructs a finite-state abstract system from a potentially
infinite state concrete system, given a set of predicates (where a predicate describes
some property of the concrete system). The abstract system can be used to synthesize
inductive invariants or perform model checking to verify properties of the concrete sys-
tem.

For synthesizing inductive invariants, predicate abstraction can be viewed as a sys-
tematic way to compose a set of predicates P using the Boolean connectives (A, v, =) to
construct the strongest inductive invariant that can be expressed with these predicates.
This process can be made efficient by using symbolic and Boolean techniques based
on incremental SAT and BDD-based algorithms [21, 7]. Thus, predicate abstraction can
construct complex invariants given a set of predicates.
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For systems which do not require quantified invariants, it suffices to use simple
atomic predicates (predicates do not contain v, A or —). The simplicity of the pred-
icates make them amenable to automatic predicate discovery schemes [2,6,17]. All
these methods use the framework of counterexample-guided abstraction refinement [19,
8] to add new predicates which eliminate spurious counterexample traces over the ab-
stract system. Automatic predicate discovery coupled with the automatic abstraction
provided by predicate abstraction makes the verification process fully automatic. This
has been the cornerstone of many successful verification systems based on predicate
abstraction [2, 6, 17].

To verify systems containing unbounded resources, such as buffers and memories of
arbitrary size and systems with arbitrary number of identical, concurrent processes, the
system model must support state variables that are mutable functions or predicates [25,
10, 5]. For example, a memory can be represented as a function mapping an address to
the data stored at an address, while a buffer can be represented as a function mapping
an integer index to the value stored at the specified buffer position. The state elements
of a set of identical processes can be modeled as functions mapping an integer process
identifier to the state element for the specified process.

To verify systems with function state variables, we require quantified predicates
to describe global properties of state variables, such as “At most one process is in its
critical section,” as expressed by the formula Vi, j : crit(i) A crit(j) = ¢ = j. Con-
ventional predicate abstraction restricts the scope of a quantifier to within an individual
predicate. System invariants often involve complex formulas with widely scoped quan-
tifiers. The scoping restriction (the fact that quantifiers do not distribute over Boolean
connectives) implies that these invariants cannot be divided into small, simple predi-
cates. This puts a heavy burden on the user to supply predicates that encode intricate
sets of properties about the system. Recent work attempts to discover quantified predi-
cates automatically [10], but it has not been successful for many of the systems that we
consider.

Our earlier work [21,20] and the work by Flanagan and Qadeer (in the context of
unbounded arrays in software) [13] overcome this problem by allowing the predicates
to include free variables from a set of index variables X’. We call these predicates as
indexed predicates. The predicate abstraction engine constructs a formula ¢)* consisting
of a Boolean combination of these predicates, such that the formula Vx'¢* (s) holds for
every reachable system state s. With this method, the predicates can be very simple,
with the predicate abstraction tool constructing complex, quantified invariant formulas.
For example, the property that at most one process can be in its critical section could be
derived by supplying predicates crit(i), crit(j), and i = j, where i and j are the
index variables.

One of the consequences of adding indexed predicates is that the state space defined
over the predicates does not have a transition relation [20]. This is a consequence of the
fact that the abstraction function o maps each concrete state to a set of abstract states,
instead of a single abstract state as happens in predicate abstraction [15]. The lack of an
abstract transition relation prevents us from generating an abstract trace and thus rules
out the counterexample-guided refinement framework.



In this work, we look at a technique to generate the set of predicates iteratively.
Our idea is based on generating predicates by computing the weakest liberal precondi-
tion [11], similar to Namjoshi and Kurshan [27] and Lakhnech et al. [23]. Our method
differs from [27] in that we simply use the technique as a heuristic for discovering
useful indexed predicates. We rely on predicate abstraction to construct invariants us-
ing these predicates. The method in [27] proposed computing the abstract transition
relation on-the-fly using the weakest precondition. The methods in [23, 6] can be seen
as generating new (quantifier-free) predicates using the counterexample-guided refine-
ment framework with some acceleration techniques in [23].

The techniques have been integrated in UCLID [5] verifier, which supports a variety
of different modeling and verification techniques for infinite-state systems. We describe
the use of the predicate inference scheme for verifying the safety properties of two
protocols: (i) A version of the N-process Bakery algorithm by Lamport [24], where
the reads and writes are atomic and (ii) A extension of the cache-coherence protocol
devised by Steven German of IBM [14], where each client communicates to the central
process using unbounded channels. The protocols were previously verified by manually
constructing predicates in [20]. In contrast, in this work the protocols are verified almost
automatically with minimal intervention from the user.

Related Work The method of invisible invariants [28, 1] uses heuristics for construct-
ing universally quantified invariants for parameterized systems automatically. The method
computes the set of reachable states for finite (and small) instances of the parameters
and then generalizes them to parameterized systems to construct the inductive invariant.
The method has been successfully used to verify German’s protocol with single entry
channels and a version of the Bakery algorithm, where all the tickets have an upper
bound and a loop is abstracted with an atomic test. However, the class of system handled
by the method is restricted; it can’t be applied to the extension of the cache-coherence
protocol we consider in this paper or an out-of-order processor that is considered in our
method [22].

McMuillan uses compositional model checking [25] with various built in abstrac-
tions and symmetry reduction to reduce an infinite-state system to a finite state version,
which can be model checked using Boolean methods. Since the abstraction mechanisms
are built into the system, they can often be very coarse and may not suffice for proving
a system. Besides, the user is often required to provide auxiliary lemmas or to decom-
pose the proof to be discharged by symbolic model checkers. The proof of safety of
the Bakery protocol required non-trivial lemmas in the compositional model checking
framework [26].

Regular model checking [18, 4] uses regular languages to represent parameterized
systems and computes the closure for the regular relations to construct the reachable
state space. In general, the method is not guaranteed to be complete and requires various
acceleration techniques (sometimes guided by the user) to ensure termination. More-
over, several examples can’t be modeled in this framework; the out-of-order processor
or the Peterson’s mutual exclusion (which can be modeled in our framework) are few
such examples. Even though the Bakery algorithm can be verified in this framework, it
requires user ingenuity to encode the protocol in a regular language.



Emerson and Kahlon [12] have verified the version of German’s cache coherence
protocol with single entry channels by reducing it to a snoopy protocol, which can in
turn be verified automatically by considering finite instances of the parameterized prob-
lem. However, the reduction is manually performed and exploits details of operation of
the protocol, and thus requires user ingenuity. It can’t be easily extended to verify other
unbounded systems including the Bakery algorithm or the out-of-order processors.

Predicate abstraction with locally quantified predicates [10, 3] require complex quan-
tified predicates to construct the inductive assertions, as mentioned in the introduction.
These predicates are often as complex as invariants themselves. The method in [3] ver-
ified (both safety and liveness) a version of the cache coherence protocol with single
entry channels, with complex manually provided predicates. In comparison, our method
constructs an inductive invariant automatically to prove cache coherence. Till date, auto-
matic predicate discovery methods for quantified predicates [10] have not been demon-
strated on the examples we consider in this paper.

2 Prdiminaries

The concrete system is defined in terms of a decidable subset of first-order logic. Our
implementation is based on the CLU logic [5], supporting expressions containing unin-
terpreted functions and predicates, equality and ordering tests, and addition by integer
constants. The logic supports Booleans, integers, functions mapping integers to inte-
gers, and predicates mapping integers to Booleans.

2.1 Notation
Rather than using the common indexed vector notation to represent collections of values
(e.g., v = (v1,ve,...,v,)), we use a named set notation. That is, for a set of symbols

A, we let v indicate a set consisting of a value v, for each x € A.

For a set of symbols A, let o4 denote an interpretation of these symbols, assigning
to each symbol x € A avalue o4 (x) of the appropriate type (Boolean, integer, function,
or predicate). Let X’ 4 denote the set of all interpretations 0.4 over the symbol set A. Let
a4 - og be the result of combining interpretations o4 and o over disjoint set of symbols
Aand 5.

For symbol set A4, let E(A) denote the set of all expressions in the logic over A. For
any expression e € E(A) and interpretation o4 € X 4, let (e),, be the value obtained
by evaluating e when each symbol x € A is replaced by its interpretation 0.4 (x). For a
set of expressions v, such that v, € E(B), we extend (v),,_ to denote the (named) set
of values obtained by applying oz to each element v, of the set.

A substitution 7 for a set of symbols A is a named set of expressions, such that for
each x € A, there is an expression 7y in 7. For an expression e we let e [/ A] denote
the expression resulting when we (simultaneously) replace each occurrence of every
symbol x € A with the expression .

2.2 System Description and Concrete System

We model the system as having a number of state elements, where each state element
may be a Boolean or integer value, or a function or predicate. We use symbolic names



to represent the different state elements giving the set of state symbols V. We introduce
a set of initial state symbols (7 and a set of input symbols Z representing, respectively,
initial values and inputs that can be set to arbitrary values on each step of operation.
Among the state variables, there can be immutable values expressing the behavior of
functional units, such as ALUs, and system parameters such as the total number of
processes or the maximum size of a buffer.

The overall system operation is described by an initial-state expression set q° and
a next-state expression set §. That is, for each state element x € V), the expressions
¢ € E(J)and §, € E(V U Z) denote the initial state expression and the next state
expression for x.

A concrete system state assigns an interpretation to every state symbol. The set
of states of the concrete system is given by Xy, the set of interpretations of the state
element symbols. For convenience, we denote concrete states using letters s and ¢ rather
than the more formal oy,.

From our system model, we can characterize the behavior of the concrete system
in terms of an initial state set Q2 C X, and a next-state function operating on sets
Nc: P(Xy) — P(Xy). The initial state set is defined as (f, = {<q0>0J los €
X 7}, i.e., the set of all possible valuations of the initial state expressions. The next-state
function N¢ is defined for a single state s as No(s) = {(d),.,, lozr € Xz}, i.e., the set
of all valuations of the next-state expressions for concrete state s and arbitrary input.
The function is then extended to sets of states by defining No(Sc) = U, s, No(s).
We define the set of reachable states R as containing those states s such that there is
some state sequence sg, s1, ..., S, With sg € Q%, Sn = s,and s;11 € Ne(s;) forall
values of 7 such that 0 < i < n.

3 Predicate Abstraction with | ndexed Predicates

We use indexed predicates to express constraints on the system state. To define the ab-
stract state space, we introduce a set of predicate symbols P and a set of index symbols
X. The predicates consist of a named set ¢, where for each p € P, predicate ¢y is a
Boolean formula over the symbolsin V U X.

Our predicates define an abstract state space 3, consisting of all interpretations
op of the predicate symbols. For k = |P|, the state space contains 2* elements. We can
denote a set of abstract states by a Boolean formula ) € E(P). This expression defines
a set of states (v)) = {op| (1), = true}.

We define the abstraction function « to map each concrete state to the set of abstract
states given by the valuations of the predicates for all possible values of the index vari-
ables: a(s) = {<¢>>MX lox € Yx}. We then extend the abstraction function to apply
to sets of concrete states in the usual way: a(Sc) = U,c g, @(5)-

We define the concretization function ~ for a set of abstract states Sy C Xp:
v(Sa) = {s|VoX € Xy <¢>S,UX € SA}, to require universal quantification over the
index symbols.

The universal quantifier in this definition has the consequence that the concretiza-
tion function does not distribute over set union. In particular, we cannot view the con-



cretization function as operating on individual abstract states, but rather as generating
each concrete state from multiple abstract states.

Predicate abstraction involves performing a reachability analysis over the abstract
state space, where on each step we concretize the abstract state set via -, apply the
concrete next-state function, and then abstract the results via «.. We can view this pro-
cess as performing reachability analysis on an abstract system having initial state set
QY% = «(Q%) and a next-state function operating on sets: N 4(S4) = a(Nc(v(Sa))).

It is important to note that there is no transition relation associated with this next-
state function, since ~ cannot be viewed as operating on individual abstract states. In
previous work [20], we provide examples where a pair of abstract states s, and s/,
each has an empty set of abstract successors, but the set of successors of {sg,s/,} is
non-empty.

We perform reachability analysis on the abstract system using N 4 as the next-state
function: RY = QY% and Rj"" = R, U Na(RY,). Since the abstract system is finite,
there must be some n such that R7, = R’;™'. The set of all reachable abstract states
R, isthen R%;. Let p4 € E(P) be the expression representing R 4. The corresponding
set of concrete states is given by v(R4), and can be represented by the expression
VX : pa[¢/P]. In previous work [20], we showed that the concretization of R 4 (or
equivalently VX' : p4 [¢p/P]) is the strongest universally quantified inductive invariant
that can be constructed from the set of predicates.

Since there is no complete way for handling quantifiers in first order logic with
equality and uninterpreted functions [16], we resort to sound quantifier instantiation
techniques to compute an overapproximation of the abstract state space. The quantifier
instantiation method uses heuristics to choose a finite set of terms from the possible
infinite range of values and replaces the universal quantifier by a finite conjunction
over the terms. More details of the technique can be found in [20] and details of the
quantifier instantiation heuristic can be found in [22]. The method has sufficed for all
the examples we have seen so far. The predicate abstraction is carried out efficiently by
using Boolean techniques [21].

The inductive invariant is then used to prove the property of interest by the decision
procedure inside UCLID. If the assertion holds, then the property is proved. We have
used this method to verify safety properties of cache-coherence protocols, mutual exclu-
sion algorithms, out-of-order microprocessors and sequential software programs with
unbounded arrays [20]. However, most predicates were derived manually by looking at
failures or adding predicates that appear in the transition function.

4 Indexed Predicate Discovery

This section presents a syntactic method for generating indexed predicates, based on
weakest liberal precondition [11] transformer. A similar idea has been used in [23],
but they do not consider indexed predicates. As a result, they can use methods based
on analyzing abstract counterexample traces to refine the set of predicates. In our case,
we only use it as a syntactic heuristic for generating new predicates. An inexpensive
syntactic heuristic is also more suited to our approach since computing the inductive in-
variant is an expensive process [20] for large number of predicates (> 30), even with the



recent advances in symbolic methods for predicate abstraction [21]. More importantly,
the simple heuristic has sufficed for automating the verification of non-trivial problems.

The weakest precondition of a set of states S¢ is the largest set of states 7, such
that for any state t. € T¢, the successor states lie in S¢. If U is an expression rep-
resenting the set of states S¢, then the expression which represents the WP(¥¢) is
VI : W [6/V)]. To obtain this expression in terms of the state variables, one would have
to perform quantifier elimination to eliminate the input symbols Z. In general, elim-
inating quantifiers over integer symbols in the presence of uninterpreted functions in
e [6/V] is undecidable [16].

Let us see the intuition (without any rigorous formal basis, since its only a heuristic)
for using WP for predicate discovery. Consider a predicate ¢ without any index vari-
ables. A predicate represents a property of the concrete system, since it is a Boolean
formula over the state variables. Thus, if WP(¢) (WP(—¢)) is true at a state, then ¢ (re-
spectively —¢) will be true in the next state. Therefore the predicates which appear in
WP(¢) are important when tracking the truth of the predicate ¢ accurately. Since com-
puting WP(¢) as a predicate over V is undecidable in general, we choose predicates
from @ [6/V] without explicitly eliminating the quantifiers over Z. We later provide
a strategy to deal with predicates which involve input symbols. This intuition can be
naturally extended to indexed predicates. In this case, our aim is to generate predicates
which involve the index symbols. For a predicate ¢ over VUX, the predicates in ¢ [6/V]
involve X and is a good source for mining additional indexed predicates.

We start with the set of predicates in the property to be proved. If the final prop-
erty to be proved is VX : ¥(V, X), we extract the indexed predicates that appear in
(Y, X). At each predicate discovery step, we generate new predicates from the weak-
est precondition of the existing predicates. An inductive invariant over the combined set
of predicates is constructed by predicate abstraction. If the invariant implies the prop-
erty, we are done. Otherwise, we iterate the process. This process can be repeated until
no more predicates are discovered or we exhaust resources.

There are several enhancements over the simple idea that were required to generate

meaningful predicates. The problems encountered and our solutions are as follows:
If-then-Else Constructs. To generate atomic predicates, the if-then-else (ITE) con-
structs are eliminated from the WP expression by two rewrite rules. First, we distribute a
function application over an ITE term to both the branches i.e. f(ITE(G, Ty, Fy)) —
ITE(G, f(T1), f(E1)). Second, we distribute the comparisons over ITE to both the
branches, i.e. |TE(G1, Ty, El) <11y — (Gl ATy > Tg) \Y (—|G1 A Eq 1 Tg), where
i€ {<, =}. Since the only arithmetic supported in our modeling formalism is addition
by constants [5], the final predicates (after all the rewrites are applied) are of the form
Ty <1 Ty 4 ¢, where T is an integer symbol or a function application.
Input Symbols. Since predicates relate state variables, input symbols in Z should not be
considered as part of predicates (the input symbols are universally quantified out while
computing the WP). Boolean valued input variables can be safely ignored. However,
integer input variables are different.

The principal source of integer inputs is the arbitrary index that is generated for
choosing a process or an instruction to execute non-deterministically. Ignoring predi-
cates containing inputs can often result in loosing useful predicates. Consider a frag-



ment of a code for modeling a simple protocol in UCLID, where pc is a function state
variable, representing the state of each process and cid is an arbitrary process identifier
(input) generated to at each step.

next[pc] := (* next state of 'pc' state variable *)
Lanbda (i). case * next state for the ith index *)
i I=cid cope(i) ; (* if i !'=cid, remain unchanged *)
pc(cid) = A : B; (* else if pc(i) = A update to B *)
pc(cid) =B : C; (* else if pc(i) = B, update to C *)
def aul t : pe(i); (* else remain unchanged *)
esac;

Let us assume that we are generating the set of predicates for pc(z) = C, where z €
X. The set of predicates generated from this code fragment is {z = cid,pc(cid) =
A, ..., }. Ignoring predicates containing cid returns an empty set of new predicates.

To circumvent this problem, we check if an input variable inp appears in any predi-
cate inp = x, where x € X. In such a case, we say z is a match for inp. We repeat this
for each input symbol in Z. We can have multiple input variables to index into a multi-
dimensional array. Let X% be the named set of index variables, such that X'Z represents
the match for input a.

We first ignore predicates that contain input variables without any matches. For

any other predicate ¢, we generate the predicate ¢ [XI/I]. For the above example,
the predicates generated are: {x = x,pc(x) = A,...,}, which generates important
predicates. Trivial predicates such as x = x are ignored.
Arithmetic Predicates. In the presence of even simple arithmetic in the model, e.g.
0(vy) = vy + 1, predicate abstraction generates too many predicates, often generating
towerssuchasv i vo+1,..., v 1 v, + k. Most often these predicates are not essential
for the property to be proved.

To prevent such predicates, we only generate predicates of the form T, = T3 or
T, < T,, where T; is a integer state variable or a function application. The first time we
see a predicate 77 <1 T + ¢ (where ¢ # 0), we generate the predicates 73, = 75 and
Ty < T». We ignore the predicate 77 < T + ¢ for the next step of predicate generation.
This step is automatically performed. If predicates involving +c are required, the user is
expected to provide them. This step can be seen as a lightweight acceleration approach.
Nested Function Applications. While generating predicates for a given index variable,
say ¢, we add new index variables to be placeholders for nested function applications.
For instance, if the predicate discovered is F(G(i)) = T3, where F and G are state vari-
ables, we introduce a new index variable j, add the predicate j = G(¢) and replace the
predicate (with the nested function application) with a new predicate F(j) = T1. All
nested occurrences of G(¢) are replaced with j for subsequent predicates. At present,
the user determines if new index variables have to be added, as the addition of too many
index variables often overwhelm the predicate abstraction engine. We are currently au-
tomating this step.

Generalizing from a fixed index. Suppose we have a state variable v and we have a
predicate that involves P(v), (where P is a function or predicate state variable). If at
some point in the future, we see the predicate x = v, where = € X, then we rewrite all
the predicates which contains v as an argument to a function or predicate state variable



by substituting « for v. For example, the predicate P(v) = 5 is rewritten as P(z) =
5. This rule has the effect of generalizing a predicate. It also removes the predicate
P(v) = 5, since it can be constructed as a combination of x = v and P(x) = 5. We have
found this rule crucial for generating important predicates and also keep the size of the
predicate set small.

5 Case Studies
5.1 Bakery Protocol

In this section, we describe the verification of mutual exclusion property for a version of
N-process Bakery algorithm proposed by Lamport [24]. For this verification, we only
model atomic reads and writes. A version with non-atomic reads and writes has been
verified with manually supplied predicates [20].

Each process has a Boolean variable choosing, a ticket number and a loop index
j. Each process can be in one of 6 program locations { Lo, . . ., L5 }. A program counter
variable pc holds the current program location a process is in. All the statements for a
particular program location are executed atomically. The test (a1, ap) < (by, by) stands
fOI’a1 <biVa =biAay Sbg

The variables are initialized as:

choosing := Lanbda i. false ; | := Lanbda i. O ;
nunber := Lanbda i. 0 ; pc := Lanbda i. LO ;

and the overall protocol for the process at index i is described in the following pseudo
code:

LO : choosing[i] :=true; goto L1 ;

L1 : nunber[i] := max(nunber[O0],..,number[ N-1]) + 1;
choosing[i] := false; j[i] :=0; goto L2 ;

L2 : if (!'choosing(j[i])) then {goto L3;}
el se {goto L2;}

L3 : if (nunmber(j[i]) =0 |]

(nunber[i],i) <= (nunber[j[i]],j)) then {goto L4;}

el se {goto L3;}

L4 : if (j[i] <N then {j[i] :=j[i]+1;, goto L2;}
el se {goto L5;}

L5 : Critical-Section; nunber[i] := 0 ; goto LO;

We model the computation of the maximum value of number(0), . . ., number(N — 1),
in program location L4 as an atomic operation. This is modeled by introducing a state
variable max which takes on arbitrary values at each step, and an axiom that says:
Vi : max > number(7). At each step, at most one process (at index cid) is scheduled to
execute.

Proving Mutual Exclusion The property we want to prove is that of mutual exclusion,
namely Vi, j : pc(i) = Ls Apc(j) = Ls = (i = j). We start out with a single index
variable 7. We start with the predicates in the property, namely {pc(i) = Ls}.



The predicates discovered after the first round are: P = { j(i) = N, N < j(4),
pc(i) = L4, i = j(i), i < j(i), I = j(i), number(i) = number(l), number(i) <
number(!), number(l) = 0, pc(i) = Ls, choosing(l), pc(i) = La, pc(i) = Ly,
pc(i) = Lo, i = N, N < 4, ¢ < 0 }. We introduced a second index symbol I when
the predicate number(:) = number(j(i)) with nested function application was encoun-
tered. We replaced this predicate with {{ = j(i), number(i) = number(l)}. Similarly
the predicates number(i) = number(j(i)) and choosing(j(¢)) were replaced with
number(i) = number(!) and choosing(l) respectively. We ignored one redundant
predicate j(¢) > N, since both j(¢) = Nand j(¢) < N are present. We also encountered
the predicate ¢ = cid, and thus we will replace all future occurrences of cid with i in
subsequent predicates. It took 0.81 seconds to discover that the initial set of predicates
was not sufficient and to discover these predicates.

It took 55.8 seconds to find a counterexample with this set of predicates. The next
set of predicates generated are: P? = {i = 0,1 = 0, < j(i), number(i) = 0,
pc(l) = Ls,pc(l) = Ly, 1 =4, 1l =N, N < [,] < 0, number(i) < 0, 0 < number(l),
pc(l) = Lo, 0 < N, N < 0 }. We filtered out quite a number of predicates using
our rules. First the predicate j(i) + 1 = N gave rise to {j(¢) = N,j(i) < N}, both
of which are already present. Similarly j(i) + 1 < N did not give rise to any new
predicates. Likewise, the predicates generated from ¢ = j(i) 4 1 are also present in
P'. We ignored predicates which involve max since it is merely a input. The predicate
I < j(i) was generated from [ = j(i) + 1 (I = j(¢) is already present). Finally I = i
was generated from [ = cid by substituting ¢ for cid in the predicate. All the filtering
happened automatically inside the tool, we describe them to point out the effectiveness
of the various rules.

With this set of 33 predicates, we were able to derive an inductive invariant in 471
seconds and 18 iterations of the abstract reachability. The inductive invariant implies
the mutual exclusion property.

5.2 Directory-based Cache Coherence Protocol

For the directory-based German’s cache-coherence protocol, an unbounded number of
clients (cache), communicate with a central home process to gain exclusive or shared
access to a memory line. The state of each cache can be {invalid, shared, exclusive}.
The home maintains explicit representations of two lists of clients: those sharing the
cache line (sharer_1ist) and those for which the home has sent an invalidation request
but has not received an acknowledgment (invalidate 1list).

The client places requests {req_shared, req_exclusive} on a channel ch_1 and the
home grants {grant_shared, grant_exclusive} on channel ch_2. The home also sends
invalidation messages invalidate along ch_2. The home grants exclusive access to a
client only when there are no clients sharing a line, i.e. Vi : sharer 1ist(i) = false.
The home maintains variables for the current client (current_client) and the current
request (current_command). It also maintains a bit exclusive granted to indicate
that some client has exclusive access. The cache lines acknowledge invalidation re-
quests with a invalidate_ack along another channel ch_3. At each step an input cid is
generated to denote the process that is chosen at that step. Details of the protocol oper-



ation with single-entry channels can be found in many previous works including [28].
We will refer to this version as german-cache.

Since the modeling language of UCLID does not permit explicit quantifiers in the
system, we model the check for the absence of any sharers Vi : sharer 1ist(i) =
false alternately. We maintain a Boolean state variable empty hsl, which assumes
an arbitrary value at each step of operation. We then add an axiom to the system:
empty hsl < Vi : sharer list(i) = false 1.

In our version of the protocol, each cache communicates to the home process
through three directed unbounded FIFO channels, namely the channels ch_1, ch 2, ch_3.
Thus, there are an unbounded number of unbounded channels, three for each client?. It
can be shown that a client can generate an unbounded number of requests before getting
a response from the home. We refer to this version of the protocol as german-cache-fifo.
Proving Cache Coherence We first consider the version german-cache which has been
widely used in many previous works [28, 12, 3] among others and then consider the ex-
tended system german-cache-fifo. In both cases, the cache coherence property to prove
is Vi, j : cache(i) =exclusive Ai # j = cache(j) =invalid. Details of the verification
of both german-cache and german-cache-fifo can be found at the authors homepage?®.
Here, we briefly sketch the highlights of the experiments. All the experiments are run
on an 2.1GHz Pentium machine running Linux with 1GB of RAM. Let P* denote the
predicates discovered after & iterations of WP computation.

Invariant Generation for german-cache For this version, we derived two inductive
invariants, one which involves a single process index 7 and other which involves two
process indices ¢ and j. For brevity, we will only describe the dual indexed invariant.

For the dual indexed invariant, we start off with the predicates in the property,
namely P° = { pc(i) = exclusive, pc(j) = invalid, i = j }. The predicates discovered
in subsequent iterations are listed below:

P! = { ch2(i) = grant_exclusive, ch2(i) = grant_shared, ch3(i) = empty, ch2(i) =
invalidate, ch2(j) = grant_exclusive, ch2(j) = grantshared, ch3(j) = empty,
ch2(j) = invalidate }.

P? = { ch2(i) = empty, current_command = req._exclusive, i = current client,
invalidate_list(i),j = current_client, current_command = reqjhared,
exclusive granted, ch3(:) =invalidate_ack, current_command = empty, ch2(y5)
= empty, invalidate 1ist(j), ch3(j) = invalidate_ack }.

P3 = { sharer_1ist(i), ch1(i) = empty, ch1(i) = req_exclusive, ch1(i) = req_shared,
sharer 1list(j) }.

The inductive invariant which implies the cache-coherency was constructed using these
28 predicates in 1266 seconds using 15 steps of abstract reachability. The entire process
took less than 2000 seconds of CPU time.

Invariant Generation for german-cache-fifo The addition of an unbounded number
of FIFOs increases the complexity of the model. We constructed an inductive invariant

L Our current implementation only handles one direction of the axiom, Vi : empty_hsl =
sharer_list(i) = false, which is sufficient to ensure the safety property.

2 The extension was suggested by Steven German himself

Shttp://ww. ece. cnu. edu/ ~shuvendu/ paper s/ cavO4a- subni t . ps



(which implies cache coherence) with a process index 7 and an index j for the channels.
We needed to add two predicates for the FIFOs manually, which contain constant offsets
(e.9. x < y — 1). The time taken to construct the inductive invariant with 29 predicates
was 3 hours.

6 Conclusions

In this work, we have demonstrated that predicate abstraction with indexed predicates

coupled with simple heuristics for indexed predicate discovery can be very effective

for automated or systematic verification of unbounded systems. The verification is car-
ried out without knowledge about the operation of any of the protocols. The technique

has also been applied for the systematic generation of invariants for an out-of-order

microprocessor engine and a network protocol.

There is a lot of scope for improving the performance of invariant generation pro-
cedure by finding a minimal set of predicates. For instance, the inductive invariant for
german-cache-fifo could be computed using 26 manually specified predicates in 581
seconds. Hence, there is a scope of almost 20X improvement that can be possibly ob-
tained by a suitable selection of predicates. We are also experimenting with proof-based
predicate discovery, where the proof that no concrete counterexample exists within a fi-
nite number of steps is used to discover new predicates.
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