Symbolic Simulation, Model Checking and
Abstraction with Partially Ordered Boolean
Functional Vectors

Amit Goel' and Randal E. Bryant?

! Dept. of ECE, Carnegie Mellon University. agoel@ece.cmu.edu
2 Computer Science Dept., Carnegie Mellon University. Randy .Bryant@cs . cmu. edu

Abstract. Boolean Functional Vectors (BFVs) are a symbolic repre-
sentation for sets of bit-vectors that can be exponentially more compact
than the corresponding characteristic functions with BDDs. Additionally,
BF'Vs are the natural representation of bit-vector sets for Symbolic Simu-
lation. Recently, we developed set manipulation algorithms for canonical
BFVs by interpreting them as totally ordered selections. In this paper
we generalize BFVs by defining them with respect to a partial order. We
show that partially ordered BF'Vs can serve as abstractions for bit-vector
sets and can be used to compute over-approximations in reachability
analysis. In the special case when the underlying graph of the partial
order is a forest, we can efficiently compute an abstract interpretation in
a symbolic simulation framework. We present circuit examples where we
leverage the exponential gap in the representations and inherent struc-
ture in the state-space to demonstrate the usefulness of Partially Ordered
Boolean Functional Vectors.

1 Introduction

Symbolic Model Checking and related state-space exploration techniques usu-
ally represent sets of states with a characteristic function, often using BDDs to
encode the characteristic function. A characteristic function is essentially a test
for membership, returning a one if and only if the input is in the set. Alter-
natively, bit-vector sets can be represented symbolically by Boolean Functional
Vectors (BFVs) [4] which map bit-vectors to bit-vectors; the set represented is
the range of this mapping. Hence, characteristic functions serve as set acceptors
while Boolean Functional Vectors are set generators.

We are interested in the Boolean Functional Vector representation for two
main reasons:

— They can be exponentially more compact than the corresponding character-
istic function when using BDDs as the underlying representation.

— Boolean Functional Vectors are the natural representation for Symbolic Sim-
ulation.

However, there are two drawbacks that have prevented the representation
from being used more often. Firstly, the representation is not canonical, per
se. Secondly, until recently there were no set manipulation algorithms for this
representation.

The representation can be made canonical by placing certain restrictions on
the representation [4, 10]. Recently, we presented algorithms for set union, inter-
section and projection based on our interpretation of the canonical BFV as an
ordered selection [5], thus enabling Symbolic Simulation based Model Checking,.

In this paper, we generalize the framework by defining Boolean Functional
Vectors with respect to a partial order. We show that Partially Ordered Boolean
Functional Vectors serve as abstractions for bit-vector sets. If the underlying
graph of the partial order is a forest, the partially ordered BFVs form a lattice
and the abstraction defines a Galois connection between the BFV space and the
concrete space of bit-vector sets.

The partial order allows us to selectively constrain some variables with re-
spect to each other while ignoring constraints between unrelated variables. This
is in contrast to most other approaches to abstraction where some of the variables
are discarded and all constraints between the remaining variables are retained.

We present algorithms for (abstract) set manipulation and show how to use
these algorithms for image computation. When the underlying graph is a forest,
our method is a complete abstract interpretation. We then present two exam-
ples where we leverage the exponential gap between BFVs and characteristic
functions as well as inherent structure in the state-space to enable efficient ver-
ification.

1.1 Related Work

Boolean Functional Vectors were originally used in [4] for image computation
where symbolic simulation was used for next state computation but all other
set manipulation operations were performed by first converting to characteristic
functions, performing the necessary operations and converting back to Boolean
Functional Vectors for the next iteration. The canonical BFVs were described
in [4, 10]. An efficient algorithm to obtain a BFV from a characteristic function
(parameterization) was presented in [1].

The most prominent use of Boolean Functional Vectors is in Symbolic Trajec-
tory Evaluation (STE) [2] which is a symbolic simulation based bounded model
checking approach. In [3], Chou developed a framework for symbolic ternary sim-
ulation based abstract interpretation. STE has recently been extended to Gen-
eralized Symbolic Trajectory Evaluation (GSTE) [11] to enable model checking
of all w-regular properties. This was made possible by using a reparameteriza-
tion algorithm to convert a given BFV into a canonical BFV. This algorithm,
presented in [12], can be seen as a special case of the projection algorithm pre-
sented here. GSTE also uses a ternary abstraction in which each state element is
classified as concrete or ternary. A choice for a concrete element is represented
by a state variable whereas a choice for a ternary element is represented by the

ternary value X. In this scheme, all relations between concrete values are cap-
tured and the ternary variables can only be constrained by the concrete values.
No relations between ternary values are captured. The abstraction by partial
order BFVs presented here subsumes ternary abstraction. We can model the
ternary abstraction by a partial order in which the concrete variables are related
to each other, all concrete variables precede all ternary variables, and the ternary
variables are unrelated to each other.

The conjunctive canonical decomposition [7] is a symbolic representation
closely related to Boolean Functional Vectors. This correspondence was explored
in our earlier work [5]. The theory we develop here can be applied, with suitable
modifications, to conjunctive decompositions as well.

In [6], the authors perform abstraction using overlapping projections. These
projections correspond to the chains in our partial orders. The difference is
primarily this: with overlapping projections, there is a set constraint for each
projection while with partially ordered BFVs, there is an evaluation function
for each state element. With overlapping projections, the constraints between
variables occurring together in multiple projections will be repeated in each of
these projections. With partially ordered BF Vs, each variable is constrained only
once.

1.2 Preliminaries

An n-length bit-vector X is a mapping from the set of indices Z = {1,...,n} to
the set of Boolean values B = {0, 1}. The set of all n-length bit vectors is noted
[Z — B]. Let < be a partial order on Z and < the associated strict order. The
set of ancestors for index i is given by ancestors(i) = {j|j < i}.

Let <,uin be the minimum relation whose transitive, reflexive closure is <.
When the graph (Z, <,,:n) is a forest, we say that ¢ is a root if it has no ancestors,
and we define parent(i) when ¢ is not a root by parent(i) < i. The set of
children of an index is then given by children(i) = {j|i = parent(j)}.

In the following, V= (v1,...,v,) represents a vector of Boolean variables,
X and Y represent bit-vectors and F , G and H represent Boolean Functional
Vectors.

2 Partially Ordered Boolean Functional Vectors

Definition 1. An (Z,=)-BFV is a vector of Boolean functions F= (fiyees fn)
such that for all indices i:

F(V)= V) + f2(V) v
where fl and f¢ are mutually exclusive Boolean functions of the ancestors of i:
) - frX) =0)))
(Vj € ancestors(i).f;(X) = f;(Y)) = (f}(X) = f1(V)) A (ff(X) = f£(Y))

4

for all X,Y € [T — B).

An (Z,=<)-BFV is to be interpreted as an ordered selection. The variable v;
represents an input choice for the i-th bit while f; is the corresponding selection.
The definition requires that the selection for the i-th bit is constrained only by
the selections for its ancestors. We will refer to f} and ff as the forced-to-one and
free-choice conditions for the i-th bit. Additionally, we define the forced-to-zero
condition f? = —(f!+ f¢).

Definition 2. We define the space F(z <y to include all (Z, <)-BFVs and extend
1t to .7-"& <) by including a bottom element to represent the empty set:

Fiz.<y=1{F|F is an (Z,<)-BFV}
F(LLj) = f(z,j) U {J_}

We now define a concretization function which maps an (Z, <)-BFV to its
range and the bottom element to the empty set.
Definition 3. The concretization function v : .7-%14) — P([Z — B]) is given
by: B
(L) =10
Y(F) ={X €[~ BJFY € [T~ B].F(Y) = X} for all F' € Fiz <)

We say that F abstracts a bit vector set S if ~(F) O S and that F repre-

sents S if y(F) = 5. Not all bit-vector sets S can be represented in .7-'(1 <)but
our definition ensures that if there is a representation for S, then it is unique.
Additionally, vectors in the range of an (Z, <X)-BFV are mapped to themselves:

Theorem 1. Given F',G ¢ Fz,<) and X eI~ B:

Y(F) =+(G) & VX € [T BL.F(X) = G(X)
XeryF) e FX)=X

The above theorem gives us a procedure to obtain the characteristic function
X, (F) for aset from its BFV F'. Recall that x_ 7 (X)=1lifand only if X € v(F).

From Theorem 1 it follows that x_ z (X) =1 if and only if F(X) = X. Hence,

we can derive:
= H v; < fi(V)
ieT

We observe that (vy < fi,...,v, < fn) is a canonical conjunctive decomposi-
tion [7] for v(F). The theory we develop in this paper for Boolean Functional
Vectors applies, with suitable modifications, to conjunctive decompositions as
well.

We now define a partial ordering C on .7-'(2 <) by lifting the subset ordering
C on bit-vector sets.

Definition 4. The partial ordering C is defined on f& <) b

FCGey(F)Cv(G)

vl

v2 vl v2 v3
(a) =1 (b) =<2 (c) =3

Fig. 1. Partial Orders used in Example 1

Ezample 1. Given S = {000,100,111}, Z = 1,2,3 and V= (v1, v2,v3), let <1,
<9 and =<3 be the reflexive transitive closures of the partial orders depicted in
Figures 1(a),1(b) and 1(c) respectively.

The (Z,=1)-BFV F = (v1,v1 - vg,v1 - v9) represents S, i.e., ’y(fl) =G5.

The (Z,=2)-BFV Fy = (v1,v71 - v9,v1 - v3) abstracts S. We have ’y(l*:"g) =
{000, 100,101, 110,111} which is a superset of S. Moreover, F, is the minimum
abstraction for S in .’F(Lzyj).

The (Z,=<3)-BFVs G = ((va - v3) + (-3 - —ws) - v1,v2,v3) and H = ((vy +
v3) + (—wy - —w3) - v1, Vg, v3) abstract S, since 4(G) = {000,001,010,100,111}
and v(H) = {000, 101,110,100, 111}. Note that G and H are unrelated minimal
abstractions.

Lemma 1. If (Z,<un) s a forest then there is a minimum abstraction «(S)
in]—“é < for every set S CP([Z — BJ).

Theorem 2. If (Z,<nin) is a forest then:

1. (}"&5)7 C) forms a complete lattice. For ﬁ7 G e fé’j), the least upper bound
and greatest lower bound are given by:

FUG = a((F)Ur(@)
FrG=a((F)Nn(G))

2. The pair of adjoined functions («,~) forms a Galois connection between the
concrete space (P([Z — B]),C) and the abstract space (.7-'&_’5)72). For all
SeP(Zw— B)) and F € fé’j):

5 S y(al9))

F=a(y(F))

Note that concretization does not lose any information. Furthermore, if (Z, <)
is a total order, then the abstract space]—"(Ji <) is isomorphic to the concrete space

P(|Z — B]) and no information is lost in abstraction, either:

Theorem 3. If]:(Jij) is totally ordered, then for all S € P([Z — B]):
S =7(a(9))

3 Algorithms

In this section, we assume that (Z, <.,) is a forest and present algorithms for
computing the least upper bound and greatest lower bound of (Z, <X)-BFVs F
and G to give us abstractions for set union and intersection respectively. We also
present an algorithm to compute the minimum abstraction for projection.

The set union and intersection algorithms are modified from [5] to take into
account that = is not necessarily a total order. The algorithm for projection is
new and is more efficient than computing the union of the cofactors because of
fewer intermediate computations.

The algorithms presented here can be modified for the case when (Z, <,,in)
is not a forest. The modifications are required to account for cases when there
are conflicting constraints from unrelated ancestors for the selection of a bit. In
such a case, we could obtain a minimal abstraction by choosing the constraint
from one of these ancestors, or an upper bound of these minimal abstraction by
ignoring all constraints in case of a conflict.

3.1 Set Union

In selecting a vector from the union of two sets, we could select the vector from
either of the operands. If we select the bits one at a time (in an order consistent
with <), initially we can make a selection from either set. In this scenario, the
bit being selected is forced-to-zero(one) if and only if it is forced-to-zero(one) in
both sets. We can continue to select from either set, until we commit ourselves
to one of the operands. This happens when the bit being selected is forced-to-
zero(one) in one of the operand sets and we select the opposite value. From then
on, we can exclude the operand set that disagrees with our selection.

Given (Z, <)-BFVs F and G, we define conditions f and g¥ to indicate when

F and G can be excluded from the selection for the union. If i is a root, then:
fi=0
9 =0

Otherwise, let j = parent(i):

ff=ff+f§)-hj+ff-1-ﬂhj
9i =95 95 -hj+g;-hy

We now define H so that bit i is forced-to-zero(one) in the union if and only if
it is forced-to-zero(one) in the non-excluded sets:

W =g+ g+ 1)
hi=fl-gi+fl-gf +f7 g

Theorem 4. Given (Z,=)-BFVs F and G, let H be defined as above. Then:
H=Fud

From Theorems 2 and 4, it follows that our algorithm computes an over-approximation

— —

of the corresponding set union, i.e., y(H) 2 v(F) U~(G).

3.2 Set Intersection

A vector can be selected from the intersection of two sets only if it can be selected
in both sets. Hence, we can make selections for bits only if both operands agree
on the selection. The selection is forced-to-zero(one) in the intersection if it is
forced-to-zero(one) in either operand. We must be careful, however, to avoid
conflicts that can occur when, for some bit, the selection in one operand is
forced-to-zero while the selection is forced-to-one in the other operand because
of the selections made for the ancestors of the bit in question.

Given (Z, <)-BFVs F and G, we define elimination conditions e; to indicate
conflicting selections while computing the intersection:

€= E: (f5 - g; + 1} - 9] +Vvj.¢)
jEchildren(i)

If there is no possible selection for some bit, then the intersection is empty:
(Jie;=1)= H=1
Otherwise, we obtain a vector K by eliminating the conflicts:

k) = f) + g7 + €ifv;—1
kzl = fz'l + gzl + 61'\1)1-4—0

We then obtain H by normalizing K by propagating the selection constraints
(introduced by the elimination) downstream:

0 _ 1.0

hi - ki\v_,«—hj,Vanncestors(i)
1 _ 71

h’i - ki\11j<—hj,Vj&zncestors(i)

Theorem 5. Given (Z,<)-BFVs F and G, define H as above. Then:
H=FnG

As with set union, it follows from Theorems 5 and 2 that H is an over-approximation
of the corresponding set intersection, i.e., y(H) 2 v(F) Nv(G).

3.3 Projection

Given I’ C Z, the (existential) projection of a set S € P([Z — B]) on I’ is:
projr(S) = {X € [T/ — B)|3Y € S.Vi e T'.Y (i) = X (i)}

In selecting a vector for the projection, we can select an X € [T’ — B] as
long as there is some selection for the bits in (Z\ Z’) that can extend X to some
vector Y in S. The projection loses information about the relation between the
bits retained and the bits projected out. We capture this information with the

Selection
Circuit Heuristic
Mode!

!

L
= Loop = Symbolic = Re- set | .|| Reached (-

Initial Control || Simulation | ' _|parametrize Union ||| States

States ——=

Fix

Point?

Fig. 2. Symbolic Reachability Analysis using Symbolic Simulation with Boolean Func-
tional Vectors

don’t-care conditions f2¢. If i is a root, then f2¢ = 0. Otherwise, let j = parent (i)

in:
oo gt gt
_ fjdc + ij “hj+ fjl - =h; otherwise.

The abstract projection H is now defined so that a bit is forced-to-zero(one) if
and only if it is forced-to-zero(one) in the care space irrespective of the values
of the projected out bits. Let V"' = {v;|¢ € (Z\ Z’)}. Then, for i € I":

R = V(59 + fi)
Wl = V(4 1)

Theorem 6. Given an (Z,=<)-BFV F and T' C I, let H be defined as above.
Then:

—

H = a(projz (v(F)))

4 Symbolic Simulation, Model Checking and Abstraction

Using the algorithms from the previous section, we can perform the computations
necessary for symbolic model checking using Boolean Functional Vectors. We can
compute the image (or pre-image) of a given set of states relative to a transition
relation by computing the relational cross product which involves intersection
and projection. The fix-point iterations also require set union and an equality
check to determine the fix point. If the model is a circuit, however, forward image
computation can be performed by symbolic simulation, making it unnecessary
to compute the transition relation and its intersection with the current set of
states for forward reachability analysis (Figure 2).

Consider a circuit with state elements S = (sq, ..., s;j) and transition func-

tions A = (01,...,0,), we associate the choice variables V= (v1,...,v,) with

Input Output

L R,
Ly Ry
Compare
If 1 OTut
B ==
L R, Out 3/\]lap In
(a) Sorter (b) A compare-and-swap ele-

ment

Fig. 3. An Up/Down Sorter

S. Given an (Z,<)-BFV for a set of current states F', we can simulate the

circuit with the state variables set to F to obtain the next state vector G =
(6,(F),...,6,(F)). We can then reparameterize G using the next-state variables
V= (Up41,.--,V2n) to obtain a canonical abstraction H. Note that the range
of G is the exact image of the set of states we simulated with. The abstraction
occurs during reparameterization and is determined by the partial order <.

H is obtained by projecting out the current state bits from the extended
(Zon, Zon)-BEV (v1,...,04,91,--.,9n) over (Zon, <a2,) where Ty, = {1,...,2n}
and <5, is obtained by extending =< to Z,, by requiring that all present state
bits precede all next state bits. In practice, we project out one variable at a
time, heuristically choosing a ‘low-cost’ variable. This allows us to optimize the
projection algorithm by only modifying (and computing constraints for) the com-
ponents that are dependent on the variable being projected out, thus avoiding
the generation of the monolithic relation between the non-canonical G and the
canonical H.

We note that symbolic simulation followed by re-parameterization computes
a complete abstract interpretation of the circuit transition function [3] when
(Z, <min) is a forest.

4.1 Example: Up/Down Sorter

Consider the Up/Down Sorter [9] of Figure 3. It has 2n words, each m bits wide,
arranged in two columns. Initially, all the words are set to 0. On any cycle, we
may either insert a word at Input or extract the maximum word in the sorter
from Output. The operation of the sorter may be viewed as a two step process: an
insert or extract followed by a compare and swap. If we are inserting a word, then
in the first step, all words in the left column are pushed down, with L, getting
Input. For a read operation, in the first step all words in the right column are

pushed one up, with R,, getting 0 and the value in R; read out at Qutput. In the
second step, adjacent words are compared and if the entry in the left column is
greater than the corresponding entry in the right column, the two are swapped.

1. Insert:
(L} — Input) A (V1 <i<n.Li , — L;)

or Read:
(Output «— R1) A (V1 <i < n.R, « Riy1) A (R), < 0)
2. Compare and Swap:

else (Li, R;)

The sorter works by maintaining the right column in sorted order so that
Ry > Ry > -+ > R,. Additionally, the right entry is always greater than or
equal to the corresponding left entry, i.e., R; > L; for all 1 < i < n. These two
invariants guarantee that R; is the maximum entry in the sorter.

The basic data structure is a sorted array (the right column) which is hard
to represent as a characteristic function with BDDs. Let ! represent the j-th
bit of the i-th word of the right column. If we choose a word-based BDD variable
order, i.e., (ri,r?, ...,r7 ...,rk ... r™) then the BDD for the characteristic
function is exponential in m. On the other hand, if we choose the bit-sliced
order (ri,rd, ... rL ... ¢ ... r™), then the representation is exponential in
n. If m = n, then we conjecture that the BDD for the characteristic function is
exponential in n, irrespective of the variable order used.

The sorted array can be efficiently represented by a Boolean Functional Vec-
tor using BDDs, by organizing the words as a balanced binary search tree, e.g.,
Figure 4, and using a bit-sliced BDD variable order. The words are constrained
only by the values of their ancestors. The relation between the unrelated words
is captured implicitly by transitivity through common ancestors. The largest
BDDs are for the m-th bits of the leaves. These are linear in m and exponential
in the depth of the tree, hence linear in n. Since there are n - m functions in
the Boolean Functional Vector, one for each bit of each entry, the bound for the
overall representation is quadratic in n and m.

m
R, Ly Rg
/\L\ M\
R, L, Rg R; Lg R,
¢ ¢ ! ¢
Ly Ls Ls Ly

Fig. 4. Partial Order on Words for an Up-Down Sorter with n = 7.

1e+06

100000

10000

1000 -

Size (Number of BDD Nodes)

Bit-Sliced ——
Linear -—-»-—
BFV --x

2 4 6 8 10 12 14 16 18 20

Fig. 5. Size of BDD representations for Up-Down Sorters with with n = m.

Figure 5 plots the sizes of the Boolean Functional Vector (using the binary
tree layout) and characteristic function representations (using the linear and bit-
sliced BDD variable orders) for the reachable states of an up-down sorter with
a depth of n (2n entries), each n bits wide (m = n).

The partial order in this case is accurate enough to represent the actual state-
space of the sorter so that there is no information lost in the abstraction. The
ordering constraints between entries unrelated by the partial order are captured
by implicit transitivity through their common ancestor. Hence, the use of the
partial order does not affect the size of the state-space; any linear extension of
the partial order (e.g. the DFS order) would give the same size for the final state-
space. However, the partial order is useful during reachability analysis since it
prevents the computation of unnecessary constraints.

Figure 6 shows the peak live node count and runtime for reachability analysis,
starting from a state with all entries set to 0. The experiments were performed
on a Sun-Fire 280R (SUN UltraSPARC-III+ 1015 MHz CPU) with the memory
limit set to 1 GB and the time limit set to 10 hours. The experiments with
the characteristic function representation were performed using VIS with the
MLP heuristics [8]. The current-state and next-state variables are interleaved in
the BDD variable order. As expected, there is an exponential gap between the
Boolean Functional Vector and characteristic function based approaches. Note
that there is a significant performance improvement obtained by using the partial
order BFVs instead of the totally ordered BFVs. The largest experiment with
partially ordered BFVs (n = 20) had 800 state bits, all of which are relevant to
the property, i.e. the global sorted order.

4.2 Example: FIFO Equivalence

Consider the two implementations of a FIFO queue shown in Figure 7. In the
shift register, new entries are inserted at the front of the queue, the other entries
shifting over by one. In the ring buffer, the new entries are inserted at the
head pointer. In both implementations, the oldest entries are read out at the tail
pointer. We can check the equivalence of the two implementations by performing
reachability analysis on the product machine.

1e+07 100000
- 10000 |
10406 |- 4)
. 1000 + e

100000 | 100 |

10000 -/ 0

Peak Live BDD Nodes
e
Runtime (seconds)

1k

Bit-Sliced ——

1000 ¢ 7 Bit-Sliced —— J

BFV-total BFV-total =
o BFV-paral o R - 2
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
n n

100

Fig. 6. Symbolic Reachability Analysis for Up-Down Sorters with n = m.

Given the value for the head pointer, there is a correspondence between the
entries in the two queues. In general, though, we cannot fix such a correspondence
since the head pointer can change. The BDD for the characteristic function of
the reachable state-space is provably exponential in n, irrespective of the variable
order. In [7], McMillan showed that there is a canonical conjunctive decomposi-
tion for this state-space that is quadratic in n. The basic observation is that the
entries are conditionally independent since we can fix the correspondence once
the value of the control signals is known. The conjunctive decomposition factors
out the conditionally independent variables into separate components. The same
observations essentially apply to the Boolean Functional Vector representation.

We can take this further by realizing that the entries in any one of the queues
are not correlated. The correlation we are interested in is between entries in the
shift register and the corresponding entries (given the control signals) in the
ring buffer. Hence, we can use a partial order such as the one in Figure 7(c). We
obtain approximately a 3X improvement in runtime with the partially ordered
BFVs as compared to the totally ordered BF Vs for all values of n tried.

Ctrl
S3 Sa S1
el [L [e (o [T [] l}g%
tjil taTil hjad
(out) (out) (in) Rs Ry Ry
(a) Shift Register (b) Ring Buffer (c) Partial Order

Fig. 7. Equivalence Checking for two Implementations of a FIFO

5

Conclusions and Future Work

We have developed a general framework for symbolic simulation, model check-
ing and abstraction using partially ordered Boolean Functional Vectors. Our
examples demonstrated that this framework can allow us to efficiently verify
some circuits where characteristic functions would fail. The most important fu-
ture work from a practical point of view is the development of an automated
abstraction-refinement framework and a dynamic reordering procedure for BEV
components to work in tandem with BDD variable reordering.

References

(1]

2]

3]

[11]

[12]

Mark D. Aagaard, Robert B. Jones, and Carl-Johan H. Seger. Formal Verification
Using Parametric Representations of Boolean Constraints. In Proceedings of the
36th Design Automation Conference (DAC’ 99), pages 402—407, 1999.

Randal E. Bryant, Derek L. Beatty, and Carl-Johan H. Seger. Formal hardware
verification by symbolic ternary trajectory evaluation. In Proceedings of the 28th
Design Automation Conference (DAC’91), pages 397-402, 1991.

Ching-Tsun Chou. The Mathematical Foundation of Symbolic Trajectory Eval-
uation. In Proceedings of the 11th International Conference on Computer Aided
Verification (CAV’99), pages 196-207, 1999.

O. Coudert, C. Berthet, and J. C. Madre. Verification of Sequential Machines
using Boolean Functional Vectors. In Proceedings of the IFIP International Work-
shop on Applied Formal Methods for Correct VLSI Design, pages 179-196, 1989.
Amit Goel and Randal E. Bryant. Set Manipulation with Boolean Functional
Vectors for Symbolic Reachability Analysis. In 2008 Design Automation and Test
in Burope(DATE’03), pages 816-821, 2003.

Shankar G. Govindaraju, David L. Dill, Alan J. Hu, and Mark A. Horowitz. Ap-
proximate Reachability with BDDs using Overlapping Projections. In Proceedings
of the 35th Design Automation Conference (DAC’98), pages 451-456, 1998.
Kenneth L. McMillan. A Conjunctively Decomposed Boolean Representation for
Symbolic Model Checking. In Proceedings of the 8th International Conference on
Computer Aided Verification (CAV’96), pages 13-24, 1996.

In-Ho Moon, Gary D. Hachtel, and Fabio Somezni. Border-Block Triangular Form
and Conjunction Schedule in Image Computation. In 8rd Internation Conference
on Formal Methods in Computer Aided Design (FMCAD’00), pages 73-90, 2000.
Simon W. Moore and Brian T. Graham. Tagged up/down sorter — A hardware
priority queue. The Computer Journal, 38(9):695-703, 1995.

H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli.
Implicit State Enumeration of Finite State Machines Using BDDs. In Proceedings
of the IEEE International Conference on Computer-Aided Design(ICCAD’90),
pages 130-133, 1990.

Jin Yang and Carl-Johan H. Seger. Introduction to Generalized Symbolic Trajec-
tory Evaluation. In Proceedings of the IEEFE International Conference on Com-
puter Design(ICCD’01), pages 360-367, 2001.

Jin Yang and Carl-Johan H. Seger. Generalized Symbolic Trajectory Evaluation
- Abstraction in Action. In Formal Methods in Computer-Aided Design (FM-
CAD’02), pages 70-87, 2002.

