Deductive Verification of Advanced
Out-of-Order Microprocessors*

Shuvendu K. Lahiri and Randal E. Bryant

Carnegie Mellon University, Pittsburgh, PA
shuvendu@ece.cmu.edu, Randy.Bryant@cs.cmu.edu

Abstract. This paper demonstrates the modeling and deductive ver-
ification of out-of-order microprocessors of varying complexities using
a logic of Counter Arithmetic with Lambda Expressions and Uninter-
preted Functions (CLU). The microprocessors support combinations of
out-of-order instruction execution, superscalar operation, branch predic-
tion, execute and memory exceptions, and load-store buffering. We il-
lustrate that the logic is expressive enough to model components found
in modern processors. The paper describes the challenges in modeling
and verification with the addition of different design features. The paper
demonstrates the effective use of automatic decision procedure to re-
duce the amount of manual guidance required in discharging most proof
obligations in the verification. Unlike previous methods, the verification
scales well for superscalar processors with wide dispatch and retirement
widths.

1 Introduction

In the last few years, several different techniques have been employed for the
formal verification of advanced microprocessors. These include the use of sym-
bolic model checking [3], compositional model checking [10], deductive verifica-
tion methods based on theorem proving [1,9,13] and symbolic simulation with
decision procedures for quantifier-free first order logic [5, 7].

Most of the previous efforts in verifying microprocessors with unbounded re-
sources (e.g., with an arbitrarily large reorder buffer or load-store queue) are
based on deductive verification methods and involve a general purpose theorem
prover (PVS [12], ACL2 [4]) to discharge the proof obligations in the verifica-
tion. This involves writing down large proof scripts to systematically prove the
invariants. This is both time-consuming and requires very careful understanding
of the theorem provers. Moreover, the lack of counter-examples for failed proofs
renders the invariant strengthening method difficult and relies on the ingenuity
of the user.

In earlier work [11], we used the logic of Counter Arithmetic with Lambda
Expressions and Uninterpreted Functions (CLU), to model and verify a simple
out-of-order execution unit. Deductive verification was used to prove the correct-
ness of the processor by establishing a set of refinement maps [1,10], to show that

* This research was supported in part by the Semiconductor Research Corporation,
Contract RID 1029.001.

the implementation refines the specification. The refinement maps specify the
correctness of signals or values in the implementation with respect to a sequen-
tial Instruction Set Architecture (ISA) model. All the proof obligations were
discharged automatically using sound quantifier instantiation techniques and the
decision procedure for CLU. Further, the use of the restricted logic enabled us
to produce counterexamples for the failed proofs.

In this work, we investigate if the logic of CLU is expressive enough to model
and verify out-of-order processors with advanced features such as speculation, su-
perscalar behavior and buffered memory instructions. We show how the addition
of new instruction types and design features add to the modeling and verification
challenges using CLU. Unlike prior work in the verification of processors with
unbounded resources, we demonstrate the verification of superscalar processors,
where multiple instructions can be dispatched and retired simultaneously.

Category Unbounded|Speculation,| Data Methodology
Resources | Exceptions [Memory
Sawada and Hunt. [13] X X Deductive verification with ACL2
Skakkebaek et al. [14] X Correspondence checking with

manual abstraction

Berezin et al. [3] X Finite State Model Checking
Arons et al. [1] X X Deductive Verification with PVS
Hosabettu et al. [9] X X X Deductive Verification with PVS
Jhala, McMillan [10] X X X Compositional Model Checking
Velev [15] Correspondence Checking
Lahiri et al. [11] X Deductive Verification with UCLID
Current X X X Deductive Verification with UCLID

Fig. 1. Previous efforts for out-of-order processor verification.

Related Work. Figure 1 shows a chronological listing of different approaches
to out-of-order processor verification along with the features of the processors
verified. In the next few paragraphs, we concentrate on previous works that
verify an out-of-order processor supporting speculation, exceptions and memory
instructions with load-store queues.

Jhala and McMillan [10] use compositional model checking (with Cadence
SMV) to verify refinement maps between an out-of-order processor and a se-
quential ISA model. A finite state abstraction is generated by exploiting tem-
poral case-splitting, data-type reduction and symmetry. Model checking is then
used on the abstract state space to verify the properties. Although more auto-
matic than the deductive verification based approaches, the method still requires
the user to explicitly decompose the proof into smaller lemmas to alleviate the
state explosion. Besides, the approach relies heavily on symmetry in the system.
It can be ineffective for many practical systems, where symmetry is broken by
the presence of priority encoders (e.g. processors with wide dispatch and retire
widths) or the heterogeneity of deep pipelines. Since our verification does not
explicitly use symmetry, our approach is robust in the presence of asymmetry in
the design as we demonstrate in the verification of the superscalar processors.

Deductive verification based methods [13,9,1] use general purpose theorem
provers to establish the correctness of microprocessors. Sawada and Hunt [13]
use the ACL2 theorem prover to verify the correctness of microprocessors with

bounded retirement and load-store buffers. They limit at most 15 instructions
in the pipeline at any time. They use a trace-table based intermediate repre-
sentation called MAETT to record redundant information for committed and
in-flight instructions. This intermediate abstraction is used to specify invariants
to relate the ISA and the pipelined implementation. It should be mentioned
that they model external interrupts, which no one else (including our current
models) handle at present. On the other hand, our work considers unbounded
resources and requires significantly fewer lemmas compared to the almost 4000
lemmas in Sawada and Hunt’s case. Hosabettu et al. [9] use a completion func-
tion approach to complete all the partially executed instructions in the system.
The “flushed” state of the implementation is then compared against the ISA
model. The method requires the user to construct an inductive completion func-
tion for the different instruction types (in different stages of execution) and then
compose the different completion functions to obtain the abstraction function.
The PVS [12] theorem prover is used to discharge the proofs. Both Sawada et
al. and Hosabettu et al. use a variant of Burch-Dill method of “flushing” the
pipeline and prove the equivalence of an empty pipeline with the ISA state. Our
approach differs from these methods in two ways. First, we use refinement maps
(similar to Arons et al. [1]) between the implementation and the sequential ISA
to prove the correctness of the processor. Second, the use of decision procedure
reduces the burden of proving most of the proof obligations that arise during
the verification.

The rest of the paper is organized as follows. In Section 2, we provide a brief
overview of the tool UCLID. The section outlines the logic and the method of
verification. In Section 3, the description and modeling of the different out-of-
order processors are presented. Finally, in Section 4, the verification is described.
This includes the definition of different auxiliary fields, the refinement maps,
description of invariants and their proofs.

2 Background

The tool UCLID [6, 11] uses the logic of CLU (described in Fig 2) to model and
verify systems with unbounded resources. CLU is a fragment of quantifier-free
first order logic extended with increment (succ), decrement (pred), equality and
inequality operations over terms (integer expressions). ITE denotes the “if-then-
else” constructor to choose between two terms depending on a boolean control.
The uninterpreted function and predicate symbols can be used to specify an
arbitrary value for the function state variables in the most general state or to
abstract out combinational blocks [5,10] (e.g., the ALU) in the system.

The presence of lambda expressions not only subsumes the interpreted read
and write operators for unbounded arrays [6] but also allows us to model
parallel-update memories. In a parallel-update memory M, an arbitrary num-
ber of entries satisfying some predicate (say P) can get updated (with some
function D) in one step as follows:

M' =)i ITE(P(i), D(i), M(3))
Here M' denotes the next state of the memory M. This is very important for
modeling the forwarding of result data to an arbitrary number of dependent

bool-ezpr ::= true | false | ~bool-ezpr | (bool-expr A bool-ezpr)
| (int-ezpr=1int-expr) | (int-expr< int-ezpr)
| predicate-expr(int-expr, . .., int-ezpr)
int-expr = int-var | ITE(bool-expr, int-expr, int-ezpr)

| succ(int-ezpr) | pred(int-expr)

| function-ezpr(int-expr, ..., int-expr)
predicate-expr ::= predicate-symbol | X int-var, . . ., int-var . bool-expr
function-ezpr ::= function-symbol | X int-var, ..., int-var. int-ezpr

Fig. 2. CLU Syntax. Expressions can denote computations of Boolean values, integer
values, or functions overs integers yielding Boolean or an integer value.

instructions in an out-of-order processor [11]. The succ and pred operations
allow us to model ordered data structures such as queues of arbitrary length,
by performing appropriate increment or decrement operations for the head and
tail pointers for the queue. Various other data structures including content-
addressable memories, and circular queues can be expressed in CLU [11].

A well-formed CLU formula! F is valid (denoted as = F) when it is true
under all possible interpretations of symbols in F'. The decision procedure for
CLU checks the validity of a well-formed formula F' by a validity-preserving
translation to a propositional formula and using Boolean techniques to evaluate
the formula. Counterexamples for invalid formulas are mapped to the state-
variables to produce counter-example traces. Details about the logic and decision

procedure can be found in earlier work [6].
Deductive Verification. A system is verified by proving a set of invariants

inductively. Let 77 (s),. .., 2, (s) be a set of invariants on a state s of the system.
To prove the base case, we show:
IZ Tl(S()) /\TQ(So).../\Tn(So) (].)

where s is the start (reset) state of the system. For the induction step, we start
with a general state s and then symbolically simulate the system for one step to
obtain state d(s), where § is the transition function. We then show:

ETi(s)A ... AT(s) = Ti(6(s)) 2)

for each 1 < i < n. Usually, the property to be verified is specified as one of
these invariants. The other invariants are added (manually) to strengthen the
inductive invariant.

Similar to our previous work [11], we restrict the invariants to be of the
form Vzi....Vog.®(x1,...,x), where 1, ..., T are integer variables free in the
CLU formula &(x1,...,2x). To prove that such an invariant is inductive (in
Equation 2), we need to decide formulas of the form

=V VeU(x,. . 2m) = Yy VP, -5 Yk) 3)

! An integer variable x is said to be bound in expression E when it occurs inside a
lambda expression for which x is one of the argument variables. An expression is
well-formed when it contains no unbound variables.

Since checking validity for first-order formulas of the form (3) is undecidable [8],
we perform a sound translation of the formula in (3) to a CLU formula, which
can be checked by a decision procedure.

The reduction of the formula in Equation 3 involves replacing the universal
quantifiers to the right of the implication with fresh skolem constants Y1, - .., Jg-
The antecedent of the implication, ¥ is instantiated over terms appearing in
the consequent @. Details of the quantifier instantiation can be found in earlier
work [11]. If A,; denote the set of terms to instantiate the variable z;, then the
final formula becomes:

/\ U(ty,...,tm)| = ®U1,---,Uk) (4)
t1..lm €Ay X X Az,

3 00O Processor Description

00O (shown in Figure 3) is a model of an out-of-order processor that employs
Tomasulo’s algorithm, supports speculative execution, exceptions, memory in-
structions and load-store queues. On each step, the system arbitrarily chooses

Register
Rename Unit
srcl
D Load/Store
PROGRAM c o2 Queue
MEMORY c dispatgh
— | o | et
D opcode
E i mm
RESULT BUS retirg
—— opcode

e S =oroeR
ALU BUFFER

HE D AL —

nop? execute = §
~1opa DATAMEMORY o it (TR
W

Tth?
execute?

execute_mem?
retire?

commit_mem?

rnH4z00

Fig. 3. An Out-of-order processor with exceptions, speculation and memory
instructions.

between six different operations: dispatch, execute, execute_mem, retire, com-
mit_mem and nop. During dispatch, an instruction is dispatched to the Reorder
Buffer(ROB). An entry is also created in the Load-Store Queue (LSQ) if it is a
memory instruction. During ezecute, a ready arithmetic or branch instruction
in the ROB (with all operands valid) is scheduled for execution. During eze-
cute_mem, the memory instruction at the head of the LsqQ is executed. Load
instructions can obtain their data from the preceding store instructions when
there is an address match in the Store-Queue (STQ). Otherwise the data comes
from data memory. The store instructions are enqueued into the STQ after exe-
cution with the store address and the data. During retire, the instruction at the

head of the ROB is retired and the register state is updated. For store instruc-
tions, the entry in STQ is marked as retired. The actual memory update takes
place during a commit_mem operation.

Instructions are retired in program order to track precise exceptions. An
exceptions can be raised as a result of either arithmetic instruction execution,
an illegal data address for a memory instruction or an illegal address for a branch
instruction. If the currently retiring instruction raises an exception, the ROB and
LsQ are flushed. All of the non-retired entries in the STQ are also dropped and
all of the registers in the register file set the reg.valid bit to true.

The main components of the design are (i) a Reorder Buffer for inorder
completion and precise exceptions, (ii) a Register Rename unit for out of order
execution, (iii) a Load-store queue for non-executed memory instructions, (iv)
a Store-Queue for stores which have finished execution. Below we describe the
modeling of each of them in some detail.

Reorder Buffer. The reorder buffer (ROB) is modeled as a queue with head
and tail pointers. It also supports simultaneous update of a subset of entries if an
operand tag matches the currently executing instruction. Each entry in the ROB
contains fields for the instruction type rob.itype, opcode rob.opcode, destina-
tion register rob.dest, immediate value rob.imm, operand values rob.srcival,
and rob. src2val, program counter rob.pc, prediction flag rob.mispredict and
target address rob.target. To indicate if the operands are ready, it maintains
rob.srclvalidand rob.src2validbits and fields rob.srcitagand rob.src2tag
indicating the instructions producing the data. The rob.valid bit indicates the
instruction has finished execution. The field rob.value stores the write-back
value for arithmetic and load instructions.

Register Rename Unit. The register rename unit consists of an infinite
array of (reg.valid, reg.val, reg.tag) tuples. Every time an arithmetic or
load instruction is dispatched with destination register d, the reg.valid bit for
d is set to false and the tag for the dispatched instruction is recorded in the
reg.tag field. A retiring instruction sets the reg.valid bit to true if its tag
matches the tag stored in the register. A retiring mispredicted branch or an
instruction with an exception, causes all of the registers to simultaneously reset
their reg.valid bits to true.

Load-Store Queue. The load-store queue (LSQ) maintains the non-executed
memory instructions in program order. Memory instructions are enqueued in the
LSQ during dispatch and dequeued during execute_mem. Each LSQ entry contains
a pointer to the corresponding ROB entry, called 1lsq rob_ptr. The result of
execution for a load instruction is written back in the rob.value field of the
ROB entry pointed to by the 1sq_rob_ptr. For store instructions, the data in
src2val of the corresponding ROB entry and the address is enqueued into the
STQ.

Store Queue. The store queue (STQ) maintains the store instructions which
have finished execution, in program order. A pointer stq_retire ptr points to
the first non-retired instruction in the sTQ. During a squash operation (due to

an exception or misspeculation for the retiring instruction), all of the non-retired
instructions in the STQ are abandoned.

Since the system supports forwarding data from a preceding store instruction
to a dependent load, there is a need to (i) find if an address is present in the STQ
and (ii) identify the latest entry with the matching address. Since an associative
lookup can’t be modeled directly for infinite structures in UCLID, we maintain
a map structure, stq_pos, which maps each memory address to the position of
the latest entry (if present) in the STQ. An address A is present in the sTQ iff
(stq_head < stqpos(A) < stq_tail) A (stq_addr(stq_pos(A)) = A).

This way of modeling the associative lookup however has one problem. During
a squash operation, the non-retired instructions in the sTQ are abandoned. This
would require resetting stq_pos for a given address A to the latest retired entry in
the sTQ which matches the address A (if present). To circumvent this problem,
we maintain another map stqnonspec_pos which maps an address A to the
latest retired entry in the STQ, which matches A (if present). It is updated every
time a store instruction is retired. During squash, the map stq nonspec_pos is
copied onto stq_pos. Note that this map is not required if stores are committed
to memory during retire.

4 Verification of the Processors

We establish refinement maps to prove the correctness of the implementations
with respect to a sequential instruction set architecture (ISA). The ISA state
components consists of the register file, data memory and, program counter.

We built the models of the out-of-order processors incrementally to study
the effect of different features on both the modeling and the verification effort.
Figure 4 shows the different models and the features that were added with each
model.

First, we describe the various auxiliary data structures and variables added
and later express the correctness criteria for the augmented system.

4.1 Auxiliary Fields

We had to add a number of auxiliary variables to the system to enable the
verification. These variables do not affect the system operation, but are added
for two principal reasons, discussed below.

Model Features
0OO0O0O.base Out-of-order execution, inorder retirement
0O00.ex Arithmetic exceptions
0OO0O0.ex_br Branch Prediction
OO0O0.ex_br_mem simp|Memory instructions, LSQ, STQ, Stores commit during retire
O0O0.ex_br_.mem Stores commit during commit_mem

Fig. 4. Description of different models.

First, we add auxiliary variables to express invariants about the correctness of
values of variables in the system (similar to other works [1, 10]). These additional
state variables, called shadow variables in our case (prefixed with shdw.), predict
the correct value for some actual state variables. For instance, the shadow entry

shdw.srclval predicts the correct value for the state variable rob.srclval
— for any index t in the ROB, if rob.srclval(t) contains a valid entry, then
rob.srclval(t) = shdw.srclval(t). The shadow variables for an instruction
are usually updated by the ISA machine during dispatch [11].

Second, we need to add additional variables to express an invariant of the
form Q1x1,-..,Qnrn-®(21,...,2,), where &(z1,...,z,) is a CLU formula and
at least one of the @; is 3. For instance, consider the invariant — for every non-
executed memory instruction t in the ROB, there exists a “corresponding” entry
in the LSQ. This is hard to express without existential quantifiers. We maintain
a pointer aux.rob_1sq ptr for each ROB entry to point to the corresponding
entry in the LsSQ. We can restate the invariant as — for every non-executed
memory instruction t in the ROB, aux.rob_1lsq_ptr(t) is present in the LSQ.
The variables in this category are prefixed with aux., e.g. (aux.rob_1sq_ptr).
These variables essentially act as witnesses for the existential quantifiers.

Below we describe the auxiliary fields that were added with each design
feature.

1. O0O.base. The auxiliary fields required were shdw.srclval, shdw.src2val
and shdw.value for expressing the correct values of the data operands and result
in each ROB entry.

2. 000.ex, 000.ex_br. First we maintained a pointer into the ROB,
named shdw.exn mpred_tag to keep track of the earliest instruction that will
raise an exception or cause a misprediction. We also required a map shdw.reg.tag,
which maps a register to the latest nonspeculative instruction in the ROB that
modifies the register. Notice that in the presence of misprediction or exceptions,
the instruction in the reg.tag may not be the last instruction to write into the
register before flushing the system.

3. 000.ex_br_mem_simp. The addition of load and store instructions
required the addition of the largest number of auxiliary variables. First, with
each ROB entry, we maintain two additional pointers, aux.rob_1sq ptr and
aux.rob_stq._ptr to point to an entry in the LSQ and STQ respectively. Sec-
ond, we also add inverse pointer aux.stq_rob_ptr from a STQ entry to the cor-
responding ROB entry. Note that 1sq rob_ptr is already present in the actual
model. Third, a map shdw.mem tag is added which maps each memory address
to the latest non-speculative instruction in the ROB which modifies the address.
As we shall see later, this is required to express the refinement map for the data
memory. Fourth, for every load instruction in the ROB, we maintain two pointers
shdw.1d tag and aux.1ld stq_ptr. The first pointer points to the store instruc-
tion (if any) in the ROB that would forward the data (due to an address match)
to the load. The second pointer points to the STQ entry that forwards the data
to the load.

4. 000.ex_br_mem. We did not require any further auxiliary structure to
prove this model.

4.2 Correctness via Refinement Maps

The correctness of the implementation is proved by establishing three refinement
maps with the ISA model.

The correctness for the register file is established by the following lemma:

reg.val(r) if reg.valid(r) is true

Vr: ISA.rf(r) = { _ Otherwise

The lemma states that if a register is not the destination of any of the instruc-
tions in the ROB, then the values in the implementation model and the ISA
model are the same.

For the data memory, recall that shdw.memtag maps a memory address

a to a position in the ROB (if present), containing the latest nonspeculative
store instruction to write to address a. Thus, if there are no (non-retired) non-
speculative instructions in the ROB which modifies ¢ and there are no (retired)
instructions in the sTQ which modifies a, then both the ISA memory and the
implementation memory should have the same value for a. The refinement map
for data memory can be stated as :

mem(a) if shdw.memtag(a) is not present in ROB and
Va : ISA.mem(a) = a is not present in the STQ
— Otherwise

Similarly, there is a refinement map for the program counter:

pc If shdw.exn mpred_tag is not present in ROB
and squash is false

exn_pc If squash is true

- Otherwise

ISA.pc =

Note that shdw.exn mpred_tag is present in the ROB iff some instruction in
the ROB would raise an exception or cause misprediction. The signal squash is
asserted after an exception is raised by the retiring instruction.

4.3 Invariants

In this section, we shall discuss the main categories into which we classified the
invariants. The main categories of invariants are:

1. Consistency Invariants. These invariants express the relationship be-
tween the state variables of the actual system. These invariants can be stated
without the help of auxiliary or shadow structures. For instance, the invariant
that every executed instruction has ready operands can be stated without adding
any auxiliary information to the model.

2. Ordering Invariants. Since the model contains three ordered data struc-
tures (ROB, LSQ, STQ), it is very important to maintain the program order of
entries in the three queues. For example, if an instruction I; precedes another
instruction I in the 1LSQ, then I; should precede I ROB as well.

3. Bijective Invariants. These invariants establish the relationship between
two functions that act almost as inverses of each other. Examples include the
pair of maps aux.rob_stqptr and aux.stqrob_ptr. For any valid sTQ index
z, aux.rob_stq ptr (aux.stqrob_ptr(x)) = x. For any ROB index y with an
executed store instruction, aux.stqrob_ptr(aux.rob_stq ptr(y)) = y.

4. Value Invariants. These invariants mainly specify the correctness of the
data values in the model with reference to the shadow (predicted) values. For

instance, for an executed arithmetic instruction, the value in rob.value should
equal the shdw.value field for the same ROB entry. Value invariants involving
memory instructions are more involved.

5. PC Invariants. These invariants specify the primary and auxiliary in-
variants for the correctness of the program counter. The invariants relate the
program counter (pc) and the exception program counter (exn pc) with the
program counter of the ISA model in the presence and absence of misprediction
or exception.

6. Misprediction Invariants. These invariants state the relationship of
the shdw.exn mpred_tag with the instructions in the ROB. For example, if any
instruction in the ROB would raise an exception or be mispredicted, then the
shdw.exn mpred_tag points to the earliest such instruction in the program order.

7. Register Tag Invariants. These invariants relate the reg.tag with the
shadow entry shdw.reg.tag. For example, if none of the instructions in the ROB
raises an exception or is mispredicted, then reg.tag(r) = shdw.reg.tag(r),
for any register r that would be modified by an instruction in the ROB.

8. Memory Tag Invariants. These invariants relate the different maps for
the memory instructions, namely shdw.mem tag, shdw.1d tag, aux.1ld stq_ptr,
stq._pos, stqnonspec_pos and stq retire ptr. These are the most involved
invariants for the verification of the processor models with memory instructions.

9. Other Invariants. These invariants cannot be categorized into one of
the classes mentioned above. They were mostly obtained from failed proofs after
analyzing the counterexamples.

Figure 5 illustrates the classification of the invariants into the different log-
ical categories described above for each of the benchmarks. The purpose of the
classification is to understand the complexity of invariants for different parts of
the design. The number of value invariants grows dramatically when we intro-
duce memory instructions in the model, due to the need to define the correct
values for load instructions in the presence of store forwarding. Moreover, since
we need the additional map stq nonspec_pos for model 000. ex_mem br, we have
more value and memory-tag invariants for this model compared to the model
000.ex_mem_br_simp.

Technique [O0O.base|000.ex|000.ex_br|{O00.ex_br_-mem _simp|O0O.ex_br_-mem
Consistency 5 5 7 6 6
Ordering 6 6
Bijective - - - 4 4
Value 6 7 7 10 13
PC 3 4 7 8 8
Misprediction - 8 8 8 8
Register Tag - 8 8 8 8
Memory Tag - - - 15 16
Other 3 2 2 2 2

[Total #] 17 [34] 39 [67 [71 I

Fig. 5. Classification of the number of invariants for different models.

4.4 Proving the Invariants

The invariants are proved by the method described in Section 2. This method
of instantiating the quantifiers with concrete sub-terms in the formula often
generates the necessary terms to prove the valid formulas.

The number of combinations to instantiate can be exponential in the number
of bound variables in the antecedent of Equation 3. The bound variables are
indices to the different memories and unbounded arrays in the system. For the
models without memory, the bound variables are register identifiers and ROB
indices and the maximum number of combinations to instantiate was limited
to 14 in these cases. With the introduction of LSQ and STQ, we needed upto 8
bound variables — to include LsQ and sTQ indices and memory address. The
number of combinations to instantiate increased up to 28800 for 000.ex_br _mem.
It is crucial to have a fast decision procedure for the large cases.

For most of the models, all the invariants were proved using the instantiation
schemes described in Section 2. For the more complex models with multiple
ordered structures, we had to resort to manual instantiation of a few invariants
— 4 invariants for 000.ex_br mem_simp and 8 invariants for 000.ex_br_mem. In
most of these cases, at most two additional terms were needed. The terms were
obtained easily by inspecting the counterexamples produced during the failed
attempts.

Figure 6 summarizes the verification effort for the different models by several
criteria. Note that the final models with the memory instructions are significantly
more complicated to prove because of the large number of ordered data structures
(LsQ and STQ in addition to ROB). Proving 000. ex_br_mem is more complicated
than 000.ex _br mem_simp because the presence of the retired instructions in the
sTQ?. Some of the criteria (# of invariants, person-effort) listed in Fig 6 are

Category 000.{000.[000. 000. 000.
base ex |ex_br |ex_br.mem_simp|ex_br_mem
7t of invariants 17 34 39 67 71
Time Taken to Prove (sec) 54 [235.76] 403 1594.24 2200
UCLID Proof Script Size (KB) | 9.91 [20.06 [23.59 68.67 66.79
Total Time Spent (Person Days)[2 5 2 15 10

Fig. 6. Proof Effort for different models. Time taken to prove denotes the time
taken by UCLID to prove all the invariants inductive. Proof script size consist of the
definition of invariants, auxiliary state variables and the proofs. The number of “Person
Days” is the added effort for each model and is not cumulative.

very subjective and would differ from user to user depending on the knowledge
of the design, dexterity with the tool or theorem prover and his/her ingenuity.
But the ability to relieve the user from proving most of the proof obligations,
results in a much smaller proof script size compared to previous attempts using
a general-purpose theorem prover. For processors comparable to 000.ex_br_mem,
proof-script sizes for Sawada and Hunt [13] and Hosabettu et al. [9] are 2300KB
and 1909KB respectively, as reported in [10].

2 The proof-script size of 000.ex_br_mem is smaller than 000.ex_br_mem_simp because
of some cleanups in the former scripts

One of the important contributions of this work is that we can use the au-
tomation and efficiency of the integer decision procedure for CLU to decide
the large quantifier-free formulas. Previous attempts involving SVC [2], were
unsuccessful, because of the rational interpretation of variables®. This produces
numerous spurious counterexamples, since it does not properly model the integer
semantics of the array indices.

4.5 Verifying Superscalar Processors

Previous attempts at the verification of out-of-order processors with unbounded
resources consider processors that could only dispatch and retire a single instruc-
tion at each step *. Increasing the dispatch-width or the retirement width results
in a more complex control logic for additional data forwarding. It also breaks
the symmetry of entries in the reorder buffer, because of the explicit priority
among the instructions in the dispatch-width. This reduces the effectiveness of
approaches which use symmetry to reduce the complexity of the state space.
Since our technique does not explicitly depend on symmetry, we can handle out-
of-order processors with superscalar nature. To illustrate this, we generated a
set of models with different dispatch and retirement widths on top of the pro-
cessor model 000.base. Unlike 000.base, an arbitrary number of instructions
can execute on any step. Moreover, dispatch, execute and retirement can occur
concurrently instead of the interleaving model previously considered.

Width max # max Time
Dispatch|Retire|instant |prop-vars| Total |Conversion
1 1 10 439 58.69 53.90
1 2 28 682| 93.56 84.98
1 4 88 1060(249.42 201.42
1 6 180 1433(470.44 362.63
1 8 304 1993(800.31 553.80
2 1 12 551| 86.63 84.98
2 2 28 798|137.43 118.04
2 4 88 1152(308.55 232.46
2 6 180 1660(675.86 506.96
2 8 304 2098(1040.6 605.91

Fig. 7. Effect of processor width on verification. “Width” denotes the width of
the processor. “max # instant” denotes the maximum number of instantiations to prove
any invariant, “max prop-vars” is the maximum number of propositional variables in
the boolean encoding of the formulas. The “conversion” component of the time is the
time the decision procedure spends encoding a CLU formula to a boolean formula.

The verification of these superscalar processors proceeded automatically with
the proof script for 000.base. This is because the invariants express relationship
between state variables and they are not affected by the change in control logic.
As we see in Fig 7, the verification scales to large enough dispatch and retirement
widths. It should be noticed that the number of terms to instantiate grows as

3 Private Communication with Robert Jones

4 Velev [15] considers large dispatch and retire widths for processors with bounded
resources. But his technique based on rewriting is very specific to the model in the
paper and is hard to extend to models with even register renaming.

we increase the width. This is because more instructions explicitly affect a single
instruction and the instantiation has to account for all of these instructions.
But the total time required to verify grows only linearly and can scale to larger
superscalar width.

References

1.

10.

11.

12.

13.

14.

15.

T. Arons and A. Pnueli. A comparison of two verification methods for speculative
instruction execution. In Proc. Tools and Algorithms for the Construction and
Analysis of Systems (TACAS ’00), LNCS 1785, 2000.

C. Barrett, D. Dill, and J. Levitt. Validity checking for combinations of theories
with equality. In Formal Methods in Computer-Aided Design (FMCAD ’96), LNCS
1166, November 1996.

S. Berezin, A. Biere, E. M. Clarke, and Y. Zhu. Combining symbolic model checking
with uninterpreted functions for out of order microprocessor verification. In Formal
Methods in Computer-Aided Design(FMCAD ’98), LNCS 1522. Springer-Verlag,
November 1998.

R. S. Boyer and J. Moore. A theorem prover for a computational logic. In 10th
Conference on Automated Deduction (CADE ’90), 1990.

R. E. Bryant, S. German, and M. N. Velev. Processor verification using efficient
reductions of the logic of uninterpreted functions to propositional logic. ACM
Transactions on Computational Logic, 2(1):1-41, January 2001.

R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling and verifying systems using
a logic of counter arithmetic with lambda expressions and uninterpreted functions.
In Proc. Computer-Aided Verification (CAV’02), LNCS 2404, July 2002.

J. R. Burch and D. L. Dill. Automated verification of pipelined microprocessor
control. In Computer-Aided Verification (CAV ’94), LNCS 818, pages 68—80, June
1994.

Y. Gurevich. The decision problem for standard classes. The Journal of Symbolic
Logic, 41(2):460-464, June 1976.

R. Hosabettu, G. Gopalakrishnan, and M. Srivas. Verifying advanced microarchi-
tectures that support speculation and exceptions. In (CAV 2000), LNCS 1855,
July 2000.

R. Jhala and K. McMillan. Microarchitecture verification by compositional model
checking. In Computer-Aided Verification, LNCS 2102, July 2001.

S. K. Lahiri, S. A. Seshia, and R. E. Bryant. Modeling and verification of out-of-
order microprocessors in UCLID. In Formal Methods in Computer-Aided Design
(FMCAD ’02), LNCS 2517, pages 142-159. Springer-Verlag, Nov 2002.

S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system. In
11th International Conference on Automated Deduction (CADE), June 1992.

J. Sawada and W. Hunt. Processor verification with precise exceptions and spec-
ulative execution. In Computer-Aided Verification (CAV ’98), LNCS 1427, June
1998.

J. U. Skakkaebaek, R. B. Jones, and D. L. Dill. Formal verification of out-of-order
execution using incremental flushing. In (CAV ’98), LNCS 1427, June 1998.

M. N. Velev. Using rewriting rules and positive equality to formally verify wide-
issue out-of-order microprocessors with a reorder buffer. In Design, Automation
and Test in Europe (DATE ’02), pages 28-35, March 2002.

