
EVC: A Validity Checker for the Logic of Equality with
UninterpretedFunctionsand Memories,Exploiting

Positive Equality and Conservative Transformations1

Abstract. The property of Positive Equality [2] dramatically speedsup validity
checkingof formulas in the logic of Equality with UninterpretedFunctionsand
Memories(EUFM) [4]. The logic expressescorrectnessof high-level microproces-
sors. We presentEVC (Equality Validity Checker)—a tool that exploits Positive
Equalityandotheroptimizationswhentranslatinga formula in EUFM to a proposi-
tional formula, which can then be evaluatedby any Booleansatisfiability (SAT)
procedure.EVC hasbeenusedfor the automaticformal verification of pipelined,
superscalar, and VLIW microprocessors.

1 Intr oduction
Formal verification of microprocessorshas historically required extensive manual
intervention.Burch andDill [4] raisedthe degreeof automationby usingflushing—
feedingtheimplementationprocessorwith bubblesin orderto completepartially exe-
cutedinstructions—tocomputeamappingfrom implementationto specificationstates.
Thecorrectnesscriterionis thatonestepof theimplementationshouldbeequivalentto
0, or 1, or up to k (for animplementationthatcanfetchup to k instructionspercycle)
stepsof a specificationsingle-cycle processorwhen startingfrom equivalent states,
whereequivalency is determinedvia flushing.However, theverificationefficiency has
still dependedon manuallyprovided case-splittingexpressions[4][5] whenusingthe
specializeddecisionprocedureSVC [16]. In order to apply the methodto complex
superscalarprocessors,Hosabettu[9] and Sawada [15] requiredmonthsof manual
work, using the theoremproversPVS [13] andACL2 [10], respectively. We present
EVC, a validity checker for the logic of EUFM, as an alternative highly efficient tool.

2 Hardware Description Language
In orderto beverifiedwith EVC, ahigh-level implementationprocessorandits specifi-
cationmustbe definedin our HardwareDescriptionLanguage(HDL). That HDL is
similar to a subsetof Verilog [17], exceptthat word-level valuesdo not have dimen-
sionsbut arerepresentedwith a singleterm-level expression,accordingto thesyntax
of EUFM [4]. Hence,netsare requiredto be declaredof type term or type bit.
Additionally, anetcanbedeclaredasinput, e.g.,thephaseclocksthatdeterminethe
updatingof stateor the signalsthat control the flushing.The HDL hasconstructsfor

Mir oslav N. Velev*

mvelev@ece.cmu.edu
http://www.ece.cmu.edu/~mvelev

Randal E. Bryant‡, *

randy.bryant@cs.cmu.edu
http://www.cs.cmu.edu/~bryant

*Department of Electrical and Computer Engineering
‡School of Computer Science

Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.

1. This research was supported by the SRC under contract 00-DC-684.

the definition of memories and latches (see Fig. 2 for the description of two stages of
the processor in Fig. 1). Memories and latches can have multiple input and/or output
ports—of type inport and outport, respectively. Latch ports have an enable sig-
nal and a list of data signals. Memory ports additionally have an address signal after
the enable. Logic gates—and, or, not, = (term-level equality comparator), and mux
(multiplexor, i.e., ITE operator)—are used for the description of the control path of a
processor. Uninterpreted functions and uninterpreted predicates—such as ALU in
Fig. 2—are used to abstract blocks of combinational logic—the ALU in Fig. 1—as
black boxes. Uninterpreted functions and uninterpreted predicates with no arguments
are considered as term variables and Boolean variables, respectively, and can be used
to abstract constant values that have special semantic meaning, e.g., the data value 0.

Fig. 1. Block diagram of a 3-stage pipelined processor.

Flush_bar = (not Flush)
IF_Valid = (and Valid Flush_bar)
(latch IF_EX
 (inport phi2 (SrcReg Data Op DestReg IF_Valid))
 (outport phi1 (EX_SrcReg EX_Data EX_Op EX_DestReg EX_Valid)))
RegsEqual = (= EX_SrcReg WB_DestReg)
forward = (and RegsEqual WB_Valid)
ALU_Data = (mux forward WB_Result EX_Data)
Result = (ALU EX_Op ALU_Data)
(latch EX_WB
 (inport phi2 (Result EX_DestReg EX_Valid))
 (outport phi1 (WB_Result WB_DestReg WB_Valid)))
write_RegFile = (and phi1 WB_Valid)
(memory RegFile
 (inport write_RegFile WB_DestReg (WB_Result))
 (outport phi2 SrcReg (Data)))

Fig. 2. Using our HDL to describe the Execution and Write-Back stages.

In order to fully exploit the efficiency of Positive Equality, the designer of high-level

IMem

IF_EX

RegFile

PC

+4

1
0

Flush

phi1

phi2

SrcReg

DestReg

Valid

Op

Data

EX_WB

ALU
Result

=

EX_Op

EX_DestReg

EX_Valid

EX_Data

WB_Result

WB_DestReg
WB_Valid

forward

ALU_Data

RegsEqual

write_RegFile

EX_SrcReg

microprocessors must follow some simple restrictions. Data operands must not be
compared by equality comparators, e.g., in order to determine a branch-on-equal con-
dition. Instead, the equality comparison must be abstracted with the same uninter-
preted predicate in both the implementation and the specification processor. Also, a
flush signal must be included in the implementation processor, as shown in Fig. 1, in
order to turn newly fetched instructions into bubbles during flushing. That extra input
will be optimized away by setting it to 0 (the value during normal operation) when
translating the high-level processor description to a gate-level synthesizable HDL.

3 Tool Flow
Our term-level symbolic simulator, TLSim, takes as input an implementation and a
specification processor described in our HDL, as well as a command file that defines
simulation sequences by asserting the input signals—phase clocks and flush con-
trols—to binary values. Symbolic initial state for latches and memories is introduced
automatically and event-driven symbolic simulation is performed according to the
command file. TLSim allows for multiple simulation sequences to start from the same
initial state, as well as to use the final state reached after symbolically simulating one
processor as the initial state for another. States of the same memory or latch, reached
after different simulation sequences, can be compared for equality. The resulting for-
mulas can be connected with similar formulas for other memories and latches via
Boolean connectives in order to form the EUFM correctness formula. The symbolic
simulation and generation of the correctness formula take less than a second even for
complex designs. The formula is output in the SVC command language [16].

Our second tool, EVC (Equality Validity Checker), automatically translates the
EUFM correctness formula to an equivalent propositional formula by exploiting Posi-
tive Equality [2] and a number of other optimizations [3][18][20][21]. The implemen-
tation processor is correct if the propositional formula is a tautology. Otherwise, a
falsifying assignment is a counterexample. The propositional formula can be output in
a variety of formats, including CNF and ISCAS, allowing the use of many SAT proce-
dures for evaluating it. BDD [6] and BED [23] packages are integrated in EVC.

4 Summary of Results
A single-issue 5-stage pipelined DLX processor [8] can be formally verified with EVC
in 0.2 seconds on a 336 MHz Sun4. In contrast, SVC [16]—a tool that does not exploit
Positive Equality—does not complete the evaluation of the same formula in 24 hours.
Furthermore, the theorem proving approach of completion functions [9] could be
applied to a similar design after 1 month of manual work by an expert user. Finally, the
symbolic simulation tool of Ritter, et al. [14] required over 1 hour of CPU time for ver-
ification of that processor. A dual-issue superscalar DLX with one complete and one
arithmetic pipeline can be formally verified with EVC in 0.8 seconds [21]. A compara-
ble design was verified by Burch [5], who needed 30 minutes of CPU time only after
manually identifying 28 case-splitting expressions, and manually decomposing the
commutative diagram for the correctness criterion into three diagrams. Moreover, that
decomposition was sufficiently subtle to warrant publication of its correctness proof as
a separate paper [24]. The theorem proving approach of completion functions [9]

required again 1 month of manual work for a comparable dual-issue DLX.
EVC hasbeenusedto formally verify processorswith exceptions,multicycle func-

tional units, andbranchprediction[19]. It canautomaticallyabstractthe forwarding
logic of memoriesthat interactwith stallinglogic in a conservative way thatresultsin
anorderof magnitudespeedupwith BDDs [21]. A comparative study[22] of 28 SAT-
checkers, 2 decisiondiagrams—BDDs[1][6] and BEDs [23]—and 2 ATPG tools
identifiedtheSAT-checkerChaff [11] asthemostefficient meansfor evaluatingthe
Booleanformulas generatedby EVC, outperformingthe other SAT proceduresby
ordersof magnitude.We alsocomparedtheeij [7] andthesmalldomains[12] encod-
ings for replacingequalitycomparisonsthat areboth negatedandnot negatedin the
correctnessEUFM formula.We foundtheeij encodingto resultin 4 timesfasterSAT
checkingwhenverifying complex correctdesignsandto consistentlyperformbetter
for buggy versions.Now a 9-wide VLIW processorthat imitatesthe Intel Itanium in
many speculative featuressuchas predicatedexecution,register remapping,branch
prediction,andadvancedloadscanbeformally verifiedin 12 minutesof CPUtime by
usingChaff. That designwaspreviously verified in 31.5 hourswith BDDs [20]. It
canhave up to 42 instructionsin flight andis far morecomplex thanany otherproces-
sor formally verifiedin anautomaticway previously. We alsofoundPositive Equality
to bethemostimportantfactorfor our success—withoutthis propertytheverification
timesincreaseexponentiallyfor verysimpleprocessors[22], evenwhenusingChaff.

A preliminary version of the tools has been releasedto the Motorola M•Core
Microprocessor Design Center for evaluation.

5 Conclusions and Future Work
EVC is anextremelypowerful validity checker for the logic of Equalitywith Uninter-
pretedFunctionsand Memories(EUFM) [4]. Its efficiency is due to exploiting the
propertyof Positive Equality[2] in orderto translatea formulain EUFM to a proposi-
tional formula that can be evaluatedwith SAT procedures,allowing for gains from
their improvements.In thefuture,wewill automatethetranslationof formally verified
high-level microprocessors,definedin our HDL andverified with EVC, to synthesiz-
able gate-level Verilog [17]. TLSim andEVC, as well as the benchmarksusedfor
experiments, are available by ftp.2

References
[1] R.E.Bryant,“Symbolic BooleanManipulationwith OrderedBinary-DecisionDiagrams,”

ACM Computing Surveys, Vol. 24, No. 3 (September 1992), pp. 293-318.
[2] R.E. Bryant,S. German,andM.N. Velev, “ProcessorVerificationUsing Efficient Reduc-

tionsof theLogic of UninterpretedFunctionsto PropositionalLogic,”2 ACM Transactions
on Computational Logic (TOCL), Vol. 2, No. 1 (January 2001).

[3] R.E.Bryant,andM.N. Velev, “BooleanSatisfiabilitywith Transitivity Constraints,”2 Com-
puter-Aided Verification (CAV ’00), E.A. Emersonand A.P. Sistla, eds., LNCS 1855,
Springer-Verlag, July 2000, pp. 86-98.

[4] J.R.Burch,andD.L. Dill, “AutomatedVerificationof PipelinedMicroprocessorControl,”
Computer-AidedVerification (CAV ’94), D.L. Dill, ed., LNCS 818,Springer-Verlag,June
1994, pp. 68-80.http://sprout.stanford.edu/papers.html.

2. Available from: http://www.ece.cmu.edu/~mvelev

[5] J.R. Burch, “Techniques for Verifying Superscalar Microprocessors,” 33rd Design Auto-
mation Conference (DAC ’96), June 1996, pp. 552-557.

[6] CUDD-2.3.0, http://vlsi.colorado.edu/~fabio.
[7] A. Goel, K. Sajid, H. Zhou, A. Aziz, and V. Singhal, “BDD Based Procedures for a Theory

of Equality with Uninterpreted Functions,” Computer-Aided Verification (CAV ’98), A.J.
Hu and M.Y. Vardi, eds., LNCS 1427, Springer-Verlag, June 1998, pp. 244-255.

[8] J.L. Hennessy, and D.A. Patterson, Computer Architecture: A Quantitative Approach, 2nd
edition, Morgan Kaufmann Publishers, San Francisco, CA, 1996.

[9] R. Hosabettu, “Systematic Verification of Pipelined Microprocessors,” Ph.D. thesis,
Department of Computer Science, University of Utah, August 2000.

[10] M. Kaufmann, P. Manolios, J.S. Moore, Computer-Aided Reasoning: ACL2 Case Studies,
Kluwer Academic Publishers, Boston/Dordrecht/London, 2000.

[11] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff: Engineering an
Efficient SAT Solver,” 38th Design Automation Conference (DAC ’01), June 2001.

[12] A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel, “Deciding Equality Formulas by
Small-Domain Instantiations,” Computer-Aided Verification (CAV ’99), N. Halbwachs and
D. Peled, eds., LNCS 1633, Springer-Verlag, June 1999, pp. 455-469.

[13] PVS Specification and Verification System (PVS), http://pvs.csl.sri.com.
[14] G. Ritter, H. Eveking, and H. Hinrichsen, “Formal Verification of Designs with Complex

Control by Symbolic Simulation,” Correct Hardware Design and Verification Methods
(CHARME ’99), L. Pierre and T. Kropf, eds., LNCS 1703, Springer-Verlag, September
1999, pp. 234-249.

[15] J. Sawada, “Formal Verification of an Advanced Pipelined Machine,” Ph.D. thesis, Depart-
ment of Computer Science, University of Texas at Austin, December 1999.

[16] Stanford Validity Checker (SVC), http://sprout.stanford.edu.
[17] D.E. Thomas, and P.R. Moorby, The Verilog Hardware Description Language, 4th edi-

tion, Kluwer Academic Publishers, Boston/Dordrecht/London, 1998.
[18] M.N. Velev, and R.E. Bryant, “Superscalar Processor Verification Using Efficient Reduc-

tions of the Logic of Equality with Uninterpreted Functions to Propositional Logic,”2 Cor-
rect Hardware Design and Verification Methods (CHARME ’99), L. Pierre and T. Kropf,
eds., LNCS 1703, Springer-Verlag, September 1999, pp. 37-53.

[19] M.N. Velev, and R.E. Bryant, “Formal Verification of Superscalar Microprocessors with
Multicycle Functional Units, Exceptions, and Branch Prediction,”2 37th Design Automa-
tion Conference (DAC ’00), June 2000, pp. 112-117.

[20] M.N. Velev, “Formal Verification of VLIW Microprocessors with Speculative Execution,”2

Computer-Aided Verification (CAV ’00), E.A. Emerson and A.P. Sistla, eds., LNCS 1855,
Springer-Verlag, July 2000, pp. 296-311.

[21] M.N. Velev, “Automatic Abstraction of Memories in the Formal Verification of Supersca-
lar Microprocessors,”2 Tools and Algorithms for the Construction and Analysis of Systems
(TACAS ’01), T. Margaria and W. Yi, eds., LNCS, Springer-Verlag, April 2001,
pp. 252-267.

[22] M.N. Velev, and R.E. Bryant, “Effective Use of Boolean Satisfiability Procedures in the
Formal Verification of Superscalar and VLIW Microprocessors,”2 38th Design Automation
Conference (DAC ’01), June 2001.

[23] P.F. Williams, “Formal Verification Based on Boolean Expression Diagrams,” Ph.D. thesis,
Department of Information Technology, Technical University of Denmark, Lyngby,
Denmark, August 2000.

[24] P.J. Windley, and J.R. Burch, “Mechanically Checking a Lemma Used in an Automatic
Verification Tool,” Formal Methods in Computer-Aided Design (FMCAD ’96), M. Srivas
and A. Camilleri, eds., LNCS 1166, Springer-Verlag, November 1996, pp. 362-376.

