EVC: A Validity Checker for the Logic of Equality with
Uninter pretedFunctionsand Memories, Exploiting

Positive Equality and Consewative Transformations®
Mir oslav N. Velev" Randal E. Bryant¥
mvel ev@ce. crmu. edu randy. bryant @s. cnu. edu

http://ww. ece. crru. edu/ ~nvel ev http://ww. cs. cnmu. edu/ ~br yant

*Department of Electrical and Computer Engineering
*school of Computer Science
Carngjie Mellon Unversity, Pittsturgh, A 15213, U.S.A.

Abstract. The property of Positve Equality [2] dramatically speedsup validity

checkingof formulasin the logic of Equality with UninterpretedFunctionsand
Memories(EUFM) [4]. The logic expressesorrectnes®f high-level microproces-
sors. We presentEVC (Equality Validity Checler)—a tool that exploits Positve

Equality andotheroptimizationswhentranslatinga formulain EUFM to a proposi-
tional formula, which can then be evaluatedby ary Booleansatisfiability (SAT)

procedure EVC hasbeenusedfor the automaticformal verification of pipelined,
superscalarand VLIW microprocessors.

1 Intr oduction

Formal verification of microprocessordas historically required extensive manual
intervention.Burch andDill [4] raisedthe degreeof automationby usingflushing—
feedingtheimplementatiorprocessowith bubblesin orderto completepartially exe-

cutedinstructions—taccomputea mappingfrom implementatiorio specificatiorstates.
Thecorrectnessriterionis thatonestepof theimplementatiorshouldbe equivalentto

0, or 1, or upto k (for animplementatiorthat canfetch up to k instructionspercycle)

stepsof a specificationsingle-g/cle processomwhen starting from equivalent states,
whereequivaleny is determinedvia flushing.However, the verificationefficiencgy has
still dependedn manuallyprovided case-splittingexpressiong4][5] whenusingthe

specializeddecisionprocedureSVC [16]. In orderto apply the methodto comple

superscalaprocessorsHosabettu[9] and Savada[15] requiredmonthsof manual
work, usingthe theoremprovers PVS [13] and ACL2 [10], respectiely. We present
EVC, a walidity checler for the logic of EUFM, as an alternegihighly eficient tool.

2 Hardware Description Language

In orderto beverifiedwith EVC, a high-level implementatiorprocessoandits specifi-
cation mustbe definedin our Hardware DescriptionLanguagegHDL). That HDL is
similar to a subsetof Verilog [17], exceptthat word-level valuesdo not have dimen-
sionsbut arerepresentedavith a singleterm-level expressionaccordingto the syntax
of EUFM [4]. Hence,netsare requiredto be declaredof typet er mor type bi t .
Additionally, anetcanbedeclaredasi nput , e.g.,thephaseclocksthatdeterminghe
updatingof stateor the signalsthat control the flushing. The HDL hasconstructgor

1. This research as supported by the SRC under contract 00-DC-684.

the definition of memories and latches (see Fig. 2 for the description of two stages of
the processor in Fig. 1). Memories and latches can have multiple input and/or output
ports—of typei nport and out port, respectively. Latch ports have an enable sig-
nal and a list of data signals. Memory ports additionally have an address signal after
the enable. Logic gates—and, or, not , = (term-level equality comparator), and nmux
(multiplexor, i.e., ITE operator)—are used for the description of the control path of a
processor. Uninterpreted functions and uninterpreted predicates—such as ALU in
Fig. 2—are used to abstract blocks of combinational logic—the ALU in Fig. 1—as
black boxes. Uninterpreted functions and uninterpreted predicates with no arguments
are considered as term variables and Boolean variables, respectively, and can be used
to abstract constant values that have special semantic meaning, e.g., the data value 0.

WB_Valid
WB_DestReg
WB_Result
X RegsEqual
IF_EX & forward EX_WB
RegFil — AEX_SrcReg =
egFile
Data EXDaa _lg1ALU Data
write_RegFile
Resul
au (Rl |
PC I: EX_Op .
IMem
EX_DestReg
EX_Valid
] = > >
Flush L e
phil
phi2

Fig. 1. Block diagram of a 3-stage pipelined processor.

Fl ush_bar = (not Flush)
IF_Valid = (and Valid Flush_bar)
(latch I F_EX
(inport phi2 (SrcReg Data Op DestReg | F_Valid))
(outport phil (EX_SrcReg EX Data EX Op EX DestReg EX Valid)))

RegsEqual = (= EX_SrcReg WB_Dest Reg)
forward = (and RegsEqual WB Val i d)

ALU Data = (nux forward WB_Result EX Data)
Resul t = (ALU EX_Op ALU Dat a)

(latch EX_WB

(inport phi2 (Result EX DestReg EX Valid))
(outport phil (WB_Result WB DestReg WB Valid)))
wite_RegFile = (and phil WB_Valid)
(mermory RegFile
(inport wite_RegFile WB DestReg (WB_Result))
(outport phi2 SrcReg (Data)))

Fig. 2. Using our HDL to describe the Execution and Write-Back stages.

In order to fully exploit the efficiency of Positive Equality, the designer of high-level

microprocessors must follow some simple restrictions. Data operands must not be
compared by equality comparators, e.g., in order to determine a branch-on-equal con-
dition. Instead, the equality comparison must be abstracted with the same uninter-
preted predicate in both the implementation and the specification processor. Also, a
flush signal must be included in the implementation processor, as shown in Fig. 1, in
order to turn newly fetched instructions into bubbles during flushing. That extra input
will be optimized away by setting it to O (the value during normal operation) when
trang ating the high-level processor description to a gate-level synthesizable HDL.

3 Tool Flow

Our term-level symbolic simulator, TLSi m takes as input an implementation and a
specification processor described in our HDL, as well as a command file that defines
simulation sequences by asserting the input signals—phase clocks and flush con-
trols—to binary values. Symbolic initial state for latches and memories is introduced
automatically and event-driven symbolic simulation is performed according to the
command file. TLSi mallows for multiple simulation sequences to start from the same
initial state, as well as to use the final state reached after symbolically ssmulating one
processor as the initial state for another. States of the same memory or latch, reached
after different simulation sequences, can be compared for equality. The resulting for-
mulas can be connected with similar formulas for other memories and latches via
Boolean connectives in order to form the EUFM correctness formula. The symbolic
simulation and generation of the correctness formula take less than a second even for
complex designs. The formulais output in the SVC command language [16].

Our second tool, EVC (Equality Validity Checker), automatically translates the
EUFM correctness formula to an equivalent propositional formula by exploiting Posi-
tive Equality [2] and a number of other optimizations [3][18][20][21]. The implemen-
tation processor is correct if the propositional formula is a tautology. Otherwise, a
falsifying assignment is a counterexample. The propositional formula can be output in
avariety of formats, including CNF and ISCAS, allowing the use of many SAT proce-
duresfor evaluating it. BDD [6] and BED [23] packages are integrated in EVC.

4 Summary of Results

A single-issue 5-stage pipelined DLX processor [8] can be formally verified with EVC
in 0.2 seconds on a 336 MHz Sun4. In contrast, SVC [16]—atool that does not exploit
Positive Equality—does not complete the evaluation of the same formulain 24 hours.
Furthermore, the theorem proving approach of completion functions [9] could be
applied to asimilar design after 1 month of manual work by an expert user. Finally, the
symbolic ssimulation tool of Ritter, et al. [14] required over 1 hour of CPU time for ver-
ification of that processor. A dual-issue superscalar DLX with one complete and one
arithmetic pipeline can be formally verified with EVCin 0.8 seconds [21]. A compara-
ble design was verified by Burch [5], who needed 30 minutes of CPU time only after
manually identifying 28 case-splitting expressions, and manually decomposing the
commutative diagram for the correctness criterion into three diagrams. Moreover, that
decomposition was sufficiently subtle to warrant publication of its correctness proof as
a separate paper [24]. The theorem proving approach of completion functions [9]

required agin 1 month of manual evk for a comparable dual-issue DLX.

EVC hasbeenusedto formally verify processorsvith exceptionsmulticycle func-
tional units, and branchprediction[19]. It canautomaticallyabstractthe forwarding
logic of memorieghatinteractwith stallinglogic in a conserative way thatresultsin
anorderof magnitudespeedupwith BDDs [21]. A comparatie study[22] of 28 SAT-
checlers, 2 decisiondiagrams—BDDg[1][6] and BEDs [23]—and 2 ATPG tools
identifiedthe SAT-checler Chaf f [11] asthe mostefficient meandor evaluatingthe
Booleanformulas generatedby EVC, outperformingthe other SAT proceduresby
ordersof magnitude We alsocompareche g; [7] andthe smalldomains[12] encod-
ings for replacingequality comparisonghat are both negatedand not negatedin the
correctnes&UFM formula. We foundthe g; encodingto resultin 4 timesfasterSAT
checkingwhen verifying complec correctdesignsandto consistentlyperform better
for buggy versions.Now a 9-wide VLIW processothatimitatesthe Intel Itaniumin
mary speculatie featuressuch as predicatedexecution, register remapping,branch
prediction,andadwancedoadscanbeformally verifiedin 12 minutesof CPUtime by
using Chaf f . That designwas previously verified in 31.5 hourswith BDDs [20]. It
canhave upto 42 instructionsin flight andis far morecomple thanary otherproces-
sorformally verifiedin anautomaticway previously. We alsofound Positve Equality
to bethe mostimportantfactorfor our success—withouthis propertythe verification
timesincreasexponentiallyfor very simpleprocessorf22], evenwhenusingChaf f .

A preliminary version of the tools has beenreleasedto the Motorola M« Core
Microprocessor Design Center foraduation.

5 Conclusionsand Future Work

EVC is anextremelypowerful validity checler for thelogic of Equality with Uninter-
preted Functionsand Memories(EUFM) [4]. Its efficiengy is dueto exploiting the
propertyof Positve Equality[2] in orderto translatea formulain EUFM to a proposi-
tional formula that can be evaluatedwith SAT proceduresallowing for gains from
theirimprovementsin thefuture,we will automatehetranslationof formally verified
high-level microprocessorgjefinedin our HDL andverified with EVC, to synthesiz-
able gate-level Verilog [17]. TLSI mand EVC, as well asthe benchmarksusedfor
experiments, arevailable by ftp?

References

[1] R.E.Bryant,“Symbolic BooleanManipulationwith OrderedBinary-DecisionDiagrams,
ACM Computing Sursys, \bl. 24, No. 3 (September 1992), pp. 293-318.

[2] R.E.Bryant,S.GermanandM.N. Veley, “Processoierification Using Efficient Reduc-
tionsof the Logic of Uninterpreted=unctionsto Propositional.ogic; 2 ACM Transactions
on Computational Logic (@CL), Wol. 2, No. 1 (January 2001).

[3] R.E.Bryant,andM.N. Veley, “BooleanSatisfiabilitywith Transitiity Constraint$? Com-
puterAided \erification (CAY '00), E.A. Emersonand A.P. Sistla, eds, LNCS 1855,
SpringerVerlag, July 2000, pp. 86-98

[4] J.R.Burch,andD.L. Dill, “AutomatedVerificationof PipelinedMicroprocessoControl;
ComputerAided Verification (CAV '94), D.L. Dill, ed, LNCS 818, SpringerVerlag,June
1994, pp. 68-8tht t p: / / sprout . st anf or d. edu/ papers. htnl .

2. Available from: htt p://www. ece. cnu. edu/ ~nvel ev

(5]

6]
(7]

(8]
[9]
[10]
[11]

[12]

[13]
[14]

[19]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

J.R. Burch, “Techniques for Verifying Superscalar Microprocessors,” 33rd Design Auto-
mation Conference (DAC ' 96), June 1996, pp. 552-557.
CUDD-2.3.0,http://vlsi.col orado. edu/ ~f abi o.

A. Goel, K. Sgjid, H. Zhou, A. Aziz, and V. Singhal, “BDD Based Procedures for a Theory
of Equality with Uninterpreted Functions,” Computer-Aided \erification (CAV '98), A.J.
Hu and M.Y. Vardi, eds., LNCS 1427, Springer-Verlag, June 1998, pp. 244-255.

J.L. Hennessy, and D.A. Patterson, Computer Architecture: A Quantitative Approach, 2nd
edition, Morgan Kaufmann Publishers, San Francisco, CA, 1996.

R. Hosabettu, “Systematic Verification of Pipelined Microprocessors,” Ph.D. thesis,
Department of Computer Science, University of Utah, August 2000.

M. Kaufmann, P. Manolios, J.S. Moore, Computer-Aided Reasoning: ACL2 Case Studies,
Kluwer Academic Publishers, Boston/Dordrecht/L ondon, 2000.

M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff: Engineering an
Efficient SAT Solver,” 38th Design Automation Conference (DAC '01), June 2001.

A. Pnudli, Y. Rodeh, O. Shtrichman, and M. Siegel, “Deciding Equality Formulas by
Small-Domain Instantiations,” Computer-Aided Verification (CAV ' 99), N. Halbwachs and
D. Peled, eds., LNCS 1633, Springer-Verlag, June 1999, pp. 455-469.

PV S Specification and Verification System (PVS), htt p: // pvs. csl . sri.com

G. Ritter, H. Eveking, and H. Hinrichsen, “Formal Verification of Designs with Complex
Control by Symbolic Simulation,” Correct Hardware Design and Verification Methods
(CHARME '99), L. Pierre and T. Kropf, eds., LNCS 1703, Springer-Verlag, September
1999, pp. 234-249.

J. Sawada, “Formal Verification of an Advanced Pipelined Machine,” Ph.D. thesis, Depart-
ment of Computer Science, University of Texas at Austin, December 1999.

Stanford Validity Checker (SVC), htt p: // sprout . st anf or d. edu.

D.E. Thomas, and PR. Moorby, The Verilog” Hardware Description Language, 4th edi-
tion, Kluwer Academic Publishers, Boston/Dordrecht/London, 1998.

M.N. Velev, and R.E. Bryant, “ Superscalar Processor Verification Using Efficient Reduc-
tions of the Logic of Equality with Uninterpreted Functions to Propositional Logic,"? Cor-
rect Hardware Design and Verification Methods (CHARME '99), L. Pierre and T. Kropf,
eds., LNCS 1703, Springer-Verlag, September 1999, pp. 37-53.

M.N. Velev, and R.E. Bryant, “Formal Verification of Superscalar Microprocessors with
Multicycle Functional Units, Exceptions, and Branch Prediction;”? 37th Design Automa-
tion Conference (DAC ' 00), June 2000, pp. 112-117.

M.N. Velev, “Formal Verification of VLIW Microprocessors with Speculative Execution,"2
Computer-Aided Verification (CAV '00), E.A. Emerson and A.P. Sistla, eds., LNCS 1855,
Springer-Verlag, July 2000, pp. 296-311.

M.N. Velev, “Automatic Abstraction of Memories in the Formal Verification of Supersca-
lar Microprocessors,” 2 Tools and Al gorithms for the Construction and Analysis of Systems
(TACAS ’'01), T. Margaria and W. Yi, eds, LNCS, Springer-Verlag, April 2001,
pp. 252-267.

M.N. Velev, and R.E. Bryant, “Effective Use of Boolean Satisfiability Procedures in the
Formal Verification of Superscalar and VLIW Microprocessors,”2 38th Design Automation
Conference (DAC ' 01), June 2001.

PF. Williams, “Formal Verification Based on Boolean Expression Diagrams,” Ph.D. thesis,
Department of Information Technology, Technical University of Denmark, Lyngby,
Denmark, August 2000.

PJ. Windley, and J.R. Burch, “Mechanically Checking a Lemma Used in an Automatic
Verification Tool,” Formal Methods in Computer-Aided Design (FMCAD '96), M. Srivas
and A. Camilleri, eds., LNCS 1166, Springer-Verlag, November 1996, pp. 362-376.

