Appears in the proceedings Asian Computer Science Cordace(ASIAN '97, R.K. Styamasundar and K. Ueda,
eds., LNCS 1345, Spring&erlag, December 1997, pp. 18-31.

Verification of Pipelined Microprocessors by Comparing
Memory Execution Sequences in Symbolic Simulatidn

Randal E. Bryant® " Mir oslav N. Vele/"
randy. bryant @s. cmu. edu mvel ev@ce. cnu. edu

*school of Computer Science
*Department of Electrical and Computer Engineering
Carngyie Mellon Unversity, Pittslurgh, A 15213, U.S.A.

Abstract. This paper @ends Burch and Dik pipeline erification method [4] to the bitVel.

We introduce the idea of memory shattty, a nev technique for praiding on-the-fly identical

initial memory state to tadifferent memory xecution sequences.aMlso present an algorithm
which compares the final states obtmemories for equalitfemory shadeing and the com-
parison algorithm kild on the Eficient Memory Model (EMM) [13], a bek#@ral memory
model where the number of symbol@riables used to characterize the initial state of a memory
is proportional to the number of distinct symbolic locations accessed. These techniques allo

to verify that a pipelined circuit has egalent behwior to its unpipelined specification by simu-
lating two memory &ecution sequences and comparing their final states. Experimental results
shav the potential of the meideas.

Keywords: pipelined microprocessorerification, memory shaeong, Eficient Memory
Model (EMM), circuit correspondence checking, symbolic simulation.

1. Intr oduction

We are gtending Burch and Dil§ pipeline erification method [4] to a bitel circuit
verification. The idea of a commutatidiagram and an underlying abstraction func-
tion, used by Burch and Dill, is notweto verification. It has been introduced by
Hoare [6] for werifying computations on abstract data types in sofywand has been
used by Bose and Fisher [1] terify pipelined circuits. All theseerification methods
are based on comparing an implementation transformégjqy) aginst a specifica-
tion transformatiorFgpe. The assumption is that thedwransformations start from a
pair of matching initial states @, and Qgpe, respectiely - where the match is
determined according to some abstraction funcibs(see Figure 1). The correctness
criterion is that the tev transformations should yield a pair of matching final states -
Q'impl @nd Q'speg respectiely - where the match is determined by the same abstrac-
tion function. In other wrds, the abstraction function should rake diagram com-
mute.

The Burch and Dill approach is conceptuallygalat in the vay it uses a symbolic
simulation of the hardare design to automatically compute an abstraction function
from the pipeline state to the usésible state. Namelystarting from a general sym-
bolic initial stateQ,y, they simulate dlushof the pipeline by stalling it for a didient
number of gcles that will allev all partially executed instructions to complete. Then,

1. This research as supported in part by the SRC under contract 97-DC-068.

they consider the resulting state of the ugisible memory elements (e.g., thgister
file and the program counter) to be the matching Qag.

=
QSpec Spec Q Spec
Fimpl
lepl |mp Q Impl

Figure 1. Commutative diagram for the correctnesscriterion.

Burch and Dills implementation [4][5] of their method requires a higkele
abstract model of the implementation that stijp@ses releant design issues, such as
pipelining. Thg work on models that completely represent the control path of the pro-
cessorbut hide the functional details of the data path by means of uninterpreted func-
tions. Our implementation of Burch and B8limethod, presented in this papasiows
verification at the bit heel.

By verifying at the bit lgel, we &oid the need to construct an abstracted model of
the circuit. Vi can erify the actual hardare design, gien a logic gte-lesel or reyis-
tertransferlevel description. A nae implementation of Burch and D#I'method at
the bit-level would require introducing a symbolic Booleaariable for gery bit of
register or memory state. Thisowld lead to unacceptable comytg. Our paper eer-
comes this limitation by using thefleEfent Memory Model (EMM) [13] to represent
memory state.

The EMM is a behdoral memory model where the number of symbokgciv
ables used to characterize the initial state of a memory is proportional to the number of
distinct symbolic locations accessed, rather than to the size of the ménmbased
on the obsemtion that a singlexecution sequence used in formatification typi-
cally accesses only a limited number of distinct symbolic locatMamory state is
represented in the EMM by a list of entries encoding the velistory of memory
operations. The list interacts with the rest of the circuit by means of aasefimer-
face deeloped as part of our symbolic simulator

Burch and Dill also use a symbolic representation of memory arrays in their
implementation [4]. The apply uninterpreted functions with equalityhich allavs
them to introduce only a single symboliariable to denote the initial state of the
entire memoryEachWrite or Read operation results indilding a formula ger the
current state of the memeorgo that the latest memory state reflects the sequence of
memory writes. Havever, we need bit-leel data for arious memory locations in order
to verify the data path. This requires our algorithms to introduce symhmiigbles
proportional to both the number of distinct symbolic memory locations accessed and
to the number of data bits per location. Furthermore, we need:thzlifie to include

new symbolic memory locations as part of the initial memory state at any point in the
verification process. Hence, the memory state in our case reflects the relative history of
memory operations, rather than the sequence of writes. This difference will become
clear as we present our algorithms.

An extensive body of research has been spawned by Burch and Dill’s method.
Sawada and Hunt [11] have combined it with theorem proving, assuming the availabil-
ity of a set of invariants that completely specifies the properties of the pipelined pro-
cessor in correct operation. Burch [5] has extended it to superscalar processor
verification by proposing a new flushing mechanism and by decomposing the commu-
tative diagram from [4] into three more easily verifiable commutative diagrams. The
correctness of this decomposition is proven by Windley and Burch [14]. Jones, Seger,
and Dill [8] propose the use of the pipeline as a specification for the correctness of its
forwarding logic. They apply two specially designed instruction sequences that should
yield identical behaviors and compare their effects on the register file. One of the
sequences completely fills the pipeline with instructions and then flushes it with a
sequence of NOPs, while the other consists of the same instructions but separated with
as many NOPs as to avoid the exercising of the forwarding logic.

The contributions of this paper are: 1) the memory shadowing technique for
ensuring identical initial memory state encountered by two different memory execu-
tion sequences; 2) an algorithm to compare the final states of two memories; 3) a
methodology that extends Burch and Dill’s pipeline verification method [4] to effi-
ciently model the complete functionality of the data path at the bit level; and 4) experi-
mental results that confirm the applicability of the new ideas.

We consider two forms of verification: 1) Symbolic Trajectory Evaluation (STE)
[12], where one proves that a circuit satisfies a specification given as a temporal logic
formula; and 2) Correspondence checking, where one proves a correspondence
between two circuits by evaluating two execution sequences starting from a common
initial state and showing that they yield identical final user-visible states, based on the
commutative diagram of Figure 1. We propose using both forms as part of a four step
approach for the verification of pipelined processors. The first step is to use STE to
verify the transistor-level memory elements (both memory arrays and latches), inde-
pendently from the rest of the circuit. Pandey and Bryant have combined symmetry
reductions and STE to enable the verification of very large memory arrays at the tran-
sistor level [9][10]. The second step is to replace the memory arrays with EMMs for
both the implementation and the specification circuits. The third step isto use STE to
verify the non-pipelined specification circuit, which is assumed to support the same
instruction set architecture and to have the same user-visible state as the pipelined pro-
cessor. Our previous paper describes the use of the EMM in this context [13]. The
fourth and last step isto perform correspondence checking between the pipelined pro-
cessor and its specification. This step is the focus of the present work.

In the remainder of the paper, Section 2 summarizes Burch and Dill’s pipeline
verification method. Section 3 describes the symbolic domain used in our algorithms.
Section 4 presents the assumptions, data structures, and algorithms of the EMM. The
memory shadowing technique for providing on-the-fly identical initial memory state to

two different execution sequences is explained in Section 5, which also presents an
algorithm that compares for equality the states of two memory arrays. The verification
methodology for correspondence checking by applying memory shadowing is
described in Section 6. Experimental results are presented in Section 7. Finally, con-
clusions are made and future work is outlined in Section 8.

2. Burch and Dill's Pipeline \érification Method

For the purpose of verifying a pipelined processor, Burch and Dill [4] assume the
availability of a specification non-pipelined circuit, which has user-visible state U =
{0, 1}" and input state I = {0, 1}™. The implementation (possibly pipelined) circuit is
assumed to have the same user-visible and input state, although it can also have pipe-
line state P ={0, 1} K The combined user-visible and pipeline state of the implementa
tion is then U x P and will be written in the form [r, p’[] Each of the circuits is
characterized with itstransition function: &;: Ix(UxP) - (U xDP) for theimple-
mentation, and &g : IxU - U for the specification.

Burch and Dill further assume that if the implementation is pipelined, it has or
can be modified to include a stall input. When asserted, this input will prevent new
instructions from entering the pipeline, while letting partialy executed instructions
advance and allowing the pipeline state to be flushed. The notation Stall will be used
for the implementation’s transition function when the stall input is asserted. It is aso
assumed that the two circuits support the same instruction set architecture and start
from the same arbitrary initial user-visible state.

The method uses a projection function Proj: (U xP) - U, which removesall
but the the user-visible state from the implementation, and an abstraction function

Abgr, pl) = Proj(Stall (G, pL)),

which maps the combined user-visible and pipeline state r, pr0 of the implementa-
tion to its user-visible state. Thisis done by stalling the pipeline for as many cycles as
its depth |, so that it can be flushed, and then stripping off all but the user-visible state.
The correctness criterion expressed by Figure 1is

0 @ p . AbgE(x, Or,p) £ 8(x, Abgfr, pD), @)

where X isan input combination that allows the implementation and the specification
to execute one cycle without stalling, i.e. to start executing one instruction (and to
complete it in the case of the specification).

3. Symbolic Domain

We will consider three different domains - Boolean, address, and data - corresponding
respectively to the control, address, and data information that can be applied at the
inputs of a memory array. Symbolic variables will be introduced in each of the
domains and will be used in expression generation. Address and data expressions will
be represented by vectors of Boolean expressions having width n and w, respectively,
for a memory with N = 2" locations, each holding a word consisting of w bits. The
types BExpr, AExpr, and DExpr will denote respectively Boolean, address, and data

expressions in the algorithms to be presented.

We will use the terntontet to refer to an assignment adlues to the symbolic
variables. A Booleanx@ression can be vied as defining a set of cortg, namely
those for which thexgression ealuates tdrue.

The selection operatd¢TE (for “If-Then-Else”), when applied on three Boolean
expressions, is defined as:

ITE(b,t, 8 = (bOY)O(-bOe).
Address comparison is then implemented as:
n

Al=A2 = =

\/ AL 0OA2,

i=1

(2)

3)

while address selectiohl — ITE(b, A2, A3 is implemented by selecting the corre-

sponding bits:

AL < ITE(b, A2, A3 = AL — (b0OA2)0(=bOA3),

i=1, .

The definition of data operations is simjleut over vectors of widthw.

2N

(4)

We hare used Ordered Binary Decision Diagrams (OBDDs) [3] to represent the
Boolean &pressions in our implementation. Wever, there is nothing about thisonk
that intrinsically requires it to be OBDD based.yAranonical representation of Bool-
ean gpressions can be substituted.

4. Efficient Modeling of Memory Arrays

4.1 Overview

The assumption of the EMM [13] is thategy memory array can be represented, pos-
sibly after the introduction of somatea logic, as a memory with only write and read
ports, all of which hee the same numbers of address and data bits (see Figure 2).

— " »]Address
Dat a
Enabl e

READ
PORT 0

————| Addr ess
Dat a
Enabl e

READ
PORT Q

MEMORY ARRAY

(N =2" addresses
of w bits each)

WRITE Address

Dat a
PORT 0 Enabl e

WRITE Address

Dat a
PORT P Enabl e

Figure 2. \iew of a memory array as an EMM.

A latch can be viwed as a memory array with a single address, so that it can be
represented as an EMM with one write port and one read port, both of wh&kthka
same number of data bits and only one address input, which is identically connected to
the same constant logialue, e.g.true.

The interaction of the memory array with the rest of the circuit is assumeato tak
place on the rising edge of a p&rabl e signal. In case of multiple poEnabl es

having rising edges simultaneously, the resulting accesses to the memory array will be
ordered according to the priority of the ports.

During symbolic simulation, the memory state is represented by alist containing
entries of the form [¢, a, d[] where ¢ is a Boolean expression denoting the set of con-
texts for which the entry is defined, a is an address expression denoting a memory
location, and d is a data expression denoting the contents of this location. The context
information isincluded for modeling memory systems where the Write and Read oper-
ations may be performed conditionally depending on the value of a control signal. Ini-
tialy thelist is empty.

The list interacts with the rest of the circuit by means of a software interface
developed as part of the symbolic simulation engine. The interface monitors the port
Enabl e lines. Should arising edge occur at aport Enabl e, aWrite or a Read opera-
tion will result, as determined by the type of the port. The Boolean expression c for the
contexts of the memory operation will be formed as the condition for arising edge on
the port Enabl e. The operation will be performed if ¢ is a non-zero Boolean expres-
sion. The Addr ess and Dat a lines of the port will be scanned in order to obtain the
address expression a and the data expression d, respectively. A Write operation com-
pletes with the insertion of the entry [¢, a, dlin the list. A Read operation retrieves
from the list a data expression rd that represents the data contents read from the mem-
ory at address a given the contexts c. The software interface compl etes the Read oper-
ation by asserting the Dat a lines of the port to the data expression ITE(c, rd, d), i.e. to
the retrieved data expression rd under the contexts c of the operation and to the old
data expression d otherwise. The routines needed by the software interface for access-
ing the list are presented next.

4.2 Memory Support Operations

The list entries are kept in order from head (low priority) to tail (high priority). Intu-
itively, the entries towards the low priority end correspond to the initial state of the
memory, while the ones at the high priority end represent recent memory updates, with
the tail entry being the result of the latest memory Write operation. Entries may be
inserted at either end, using procedures InsertHead and InsertTail, and may be deleted
using procedure Delete.

The function Valid, when applied to a Boolean expression, returns true if the
expression isvalid, i.e. true for all contexts, and false otherwise. Note that in all of the
algorithms, a Boolean expression cannot be used as a control decision in the code,
since it will have a symbolic representation. On the other hand, we can make control
decisions based on whether or not an expression isvalid.

The function GenDataExpr generates a new data expression, whose variables are
used to denote the initial state of memory locations that are read before ever being
written.

4.3 Implementation of Memory Read and Write Operations

The Write operation, shown as a procedure in Figure 3, takes as arguments a memory

list, a Boolean expression denoting the contexts for which the write should be per-
formed, and address and data expressions denoting the memory location and its
desired contents, respectively. As the code shows, it is implemented by simply insert-
ing an element into the tail (high priority) end of the list, indicating that this entry
should overwrite any other entries for this address. As an optimization, it removes any
list elements that for all contexts are overwritten by this operation. Note that this opti-
mization need not be performed, as will become apparent after the definition of the
Read operation. We could safely leave any overwritten element in the list.

procedure Write(L ist mem, BExpr ¢, AExpr a, DExpr d)
/* Write data d to location a under contextsc */

/* Optional optimization */

for each [éc, ea, eddin memdo

if Validlec O [c Oa=ea]) then
Delete(mem, [éc, ea, edl)
* Perform Write */
InsertTail(mem, (¢, a, d))

Figure 3. Implementation of the Write operation.

The Read operation is shown in Figure 4 as a function which, given a memory
list, a Boolean expression denoting the contexts for which the read should be per-
formed, and an address expression, returns a data expression indicating the contents of
thislocation.

function Read(List mem, BExpr c, AExpr &): DExpr
/* Read from location a under contextsc */

g « GenDataExpr()

return ReadWithDefault(mem, c, a, g)

function ReadWithDefault(List mem, BExpr ¢, AExpr a, DExpr d): DExpr
[* Read from location a, using d for contexts where no value found */
rd —« d
found —~ false
for each [éc, ea, edJin mem from head to tail do
match — ec Ja=ea
rd — ITE(match, ed, rd)
found ~ found O match
if =Valid(c 0 found) then
InsertHead(mem, [¢, a, d))
return rd

Figure4. Implementation of the Read operation.

The main part of th®ead operation is implemented with the functiBeadWith-
Default. The purpose dReadWithDefault is to construct a datagression giing the
contents of the memory location denoted by itgiarent addressxpression. It does
this by scanning through the list fromwlest to highest priorityadding a selection
operator to thex@ression that chooses between the list eleseiata rpression and
the previously formed dataxg@ression, based on the match condition. It also generates
a Boolean gpressionfound indicating the contds for which a matching list element
has been encounteredeadWthDefault has as its fourth gument a “dedult” data
expression to be used when no matching list element is found. When this case arises, a
new list element is inserted into tiead (low priority) end of the list.

The Read operation is implemented by callirRggadWithDefault with a nevly
generated symbolic datagressiorg as the defult. The contets for whichReadWith-
Default does not find a matching address in the list are those for which the addressed
memory location has mer been accessed by either a read or a write. Thexjatse
sion g is then returned to indicate that the location may contain arbitrary data. By
inserting the entrye, a, dlinto the list, we ensure that subsequent reads of this loca-
tion will return the samexg@ression. Note that computing and testing thkdity of
c O found is optional. V& could safely insert the list element unconditionally
although at an increased memory usage.

5. Comparing Memory Execution Sequences

In some applications, we wish to test whether sgquences of memory operations,
which we will refer to asA” and “B,” yield identical behaiors. That is, we assume

the two sequences start with matching initial memory statese&ch gternally visi-

ble Read operation in sequence A, its counterpart in sequence B must return the identi-
cal value. Furthermore, the final states resulting from treedgquences must match.

To implement this, we require some mechanism for guaranteeing that consikiest v

are used for the initial contents of theotmemories. In addition, we require an algo-
rithm for comparing the contents ofaumemories.

5.1 Maintaining Consistent Initial States

If we were to gecute the operations for thedwequences independentiye would
generate dferent symbols to represent the initial memory contents, and hence we
would not yield matching results. &w if we could “reset” our symbol generatso

that the ®ecution sequence B used the same series of generated symbols as sequence
A, there would be a mismatch if the twsequences access memory locations in a dif-
ferent order Instead, we modify th®ead operation to maintain a consistent initial

state between the memory being operated on, and a \8hademory as shwn in

Figure 5.

When eecuting the sequence A, weowld use memory B as the shadand
conversely when xecuting the sequence B, wewld use memory A as the shado
Note that theWrite operations proceed as beforeitthis shadwing, ary time a
symbolic \ariable is assigned to represent the initial state of a memory location, the
same symbol will be assigned to the same location and under the sarmeindrdéh

memories, thus enforcing the assumption that the two memories have matching initial
states.

function ShadowRead(L ist mem, List shadow, BExpr ¢, AExpr a): DExpr
/* Read from location a under context ¢ */
[* Maintain consistency with shadow memory */

g < GenDataExpr()

ReadWithDefault(shadow, c, a, g)

return ReadWithDefault(mem, c, a, g)

Figure 5. Implementation of the Read operation when initial state consistency
between two memories must be maintained.

5.2 Comparing Final States

In comparing the contents of two memories, we can exploit the fact that only a small
number of locations actually have defined values for any given context. Figure 6 shows
function CompareMem which constructs a Boolean expression indicating the contexts
for which two memories have matching contents. This code only checks the locations
denoted by the set of address expressions occurring in the two lists. As a further opti-
mization, it maintains a table tested to ensure that only one comparison is performed
for each unique address expression.

function CompareMem(List MemA, List MemB): BExpr
[* Compare states of two memories */
same < true
tested — O
for each [éc, ea, ed(in MemA do
if (ea O tested) then
g < GenDataExpr()
da — ReadWithDefault(MemA, ec, ea, g)
db — ReadWithDefault(MemB, ec, ea, g)
same — same [J(da =db)
tested — tested O {ea}
for each [éc, ea, edCin MemB do
if (ea O tested) then
g « GenDataExpr()
da — ReadWithDefault(MemA, ec, ea, g)
db — ReadWithDefault(MemB, ec, ea, g)
same — same [(da =db)
tested ~ tested O {ea}
return same

Figure6. Comparing states of two memories.

CompareMem compares matching locations in the two memories using the func-
tion ReadWithDefault, with a newly generated symbolic data expression g as the
default value. This operation will add a list element and return a data expression
dependent on g only when either some Write operation has been performed with con-
text argument c # true, or some Write operation was performed to one memory, with-
out a counterpart for the other. By using the same, newly-generated symbol for a pair
of accesses, we maintain consistency between the initial states of the two memories as
well as the property that each memory location can have an arbitrary initial value.

5.3 Observation

One final subtlety about our comparison technique is worth noting. Normally two exe-
cution sequences will yield matching final memory states only if they perform identi-
cal Write operations, at least for the final writes to each memory location. Thus, if
sequence A performs a write to some address a, one would expect sequence B to do
likewise. Consider the case, however, where sequence A first reads from address a and
then writes that value back to address a. Then location ais still initsinitial state, and
there is no need for sequence B to either read or write this location. Observe that our
method wil correctly handle this case. In executing sequence A, we will add entries
(frue, a, glto both lists. The Write operation in A may cause this entry to be replaced,
but since it preserves the initial state of this location, the two memories will compare
successfully.

The condition described above is also the reason why the list for memory A must
be used as a shadow argument for the Read operations performed on memory B. Even
though we have aready evaluated the effect of al Read and Wkite operations by
seguence A, sequence B may access memory locations never accessed by A. Thisis
allowed as long as the accesses do not alter the values at these or any other memory
locations.

On the other hand, suppose sequence A writes to address a without ever reading
theinitial state, while sequence B never reads or writes this address. Then thelist for A
will contain an entry with address a, while the list for B will not. Executing ReadWith-
Default(memB, a, g) will return an expression involving g, which will not equal the
expression returned by ReadWithDefault(memA, a, g), and hence the mismatch will be
detected.

6. Correspondence Checking by Applying Memory Shadowing

When applying memory shadowing, the EMM software interface uses function Shad-
owRead for performing reads, and procedure Write for performing writes. Shadow-
Read provides the two execution sequences with identical initial memory state by
constructing it on-the-fly. We check the correctness criterion (1) of Burch and Dill’s
method by applying function CompareMem on &l the user-visible memory elements.
The universal quantification is done implicitly by using the same symbolic initial
memory state and the same symbolic instruction for both execution sequences.

The steps of our methodology are:
1. Load the implementation (possibly pipelined) circuit and associate every

10

memory element in it with empty original and shadow memory lists.
Cycle the implementation with a symbolic instruction.

Flush the implementation.

Swap the original and shadow memory lists for every memory element.
Flush the implementation.

o o W DN

Swap the implementation and the specification (non-pipelined) circuits by
keeping the memory lists for every user-visible memory element.

~

Cycle the specification with the same symbolic instruction as used in Step 2.

8. Compare the original, mem;, and the shadow, shadow;, memory lists for every
user-visible memory element i and let eguality; = CompareMem(memy, shad-
ow;), i =1, ..., u, whereu isthe number of user-visible memory elements.

9. Form the Boolean expression fl?r our correctness criterion:
legal_ingtruction 0 /\ equality;, (5)
i=1

where legal_instruction is a Boolean expression for the symboalic instruction
from Steps 2 and 7 to be legal.

It is also possible to traverse the commutative diagram with another sequence of
circuit and memory swaps, i.e. to first flush the implementation, swap it with the spec-
ification, cycle the specification, swap it with the implementation, swap the memory
lists, and perform Steps 2, 3, 8, and 9 from above. As expected, our experiments found
that the two sequences of traversing the commutative diagram perform comparably in
terms of CPU time and memory for our simple circuit presented next.

7. Experimental Results

We implemented all the correspondence checking routines, presented in this paper,
within atool [7] that supports the STE technique. Although correspondence checking
and STE are two different forms of verification, as noted in Section 1, they have in
common the use of a symbolic simulator and the EMM. This allows them to be applied
on the same circuit descriptions, which can be in both gate-level and register-transfer-
level form. Furthermore, gate-level circuits can be automatically generated from tran-
sistor-level circuits[2].

Experiments were performed on the pipelined addressable accumulator shown in
Figure 7. The current instruction is specified by the inputs Addr, d ear, | n, and
Nop, where the last one indicates whether the instruction isanop and is used for flush-
ing the pipeline. The pipeline register Hol d separates the execution and the write back
stages of the processor. The control logic stores the previous address and compares it
with the present one at the Addr input. In case of equality of the two addresses and a
valid previous instruction (the Nop input was false), the control signa of the multi-
plexor is set so as to select the data output of the Hol d register. Hence, data forward-
ing takes effect. For a more detailed description of the circuit (however without a Nop

11

input) and its verification by STE, the reader is referred to [7] for the case of transis-
tor-level memory elements, and to [13] for the case of EMM-replaced memory ele-
ments.

For all of the experiments, the dual-ported register file was removed from the cir-
cuit and replaced with an EMM. The software interface ensures that: 1) a Read opera-
tion takes place relative to phi 1; and 2) a Write operation takes place relative to
phi 2, aslong as the corresponding instruction was not a Nop - see the register file
connections shown in Figure 7.(b).

Addr Control - v (from Control)
— - .
‘ Addr previous Addr
Reg |
File | READ WRITE

PORT MEMORY| pORT

ARRAY | address

| Addr ess <
Dat a Dat a |-
—®| Enabl e Enabl e
phi 1l
phi 2
v
(to MUX) previous Nop previous Qut

(from Hol d)

(@) (b)

Figure 7. (a) The pipelined addessable accumulator; (b) the connections of its
register file when eplaced by an EMM. The thick lines indicate buses, while the
thin ones are of asingle hit.

The experiments were performed on an IBM RS/6000 43P-140 with a 233MHz
PowerPC 604e microprocessor, having 512 MB of physical memory, and running Al X
4.1.5. Table 1 shows the results from the STE verification of the pipelined addressable
accumulator. Table 2 - from the correspondence checking between the same circuit and
its non-pipelined version (the specification circuit) by applying memory shadowing.
Finally, Table 3 presents the results from the STE verification of the specification cir-
cuit. In all of the tables, N is the number of addresses and w is the number of data bits
per address.

It can be observed that the results in Table 1 depend on N, while those in Tables 2
and 3 are amost constant with N. The reason is that for the experiments for Table 1,
the RegFi | e and the Hol d latch are initialized conditionally on the equality of the
current and previous addresses, as opposed to unconditionally which is the case in the
experiments for Tables 2 and 3. The idea is that these conditions will cancel the effect
of the forwarding logic, and the output of the multiplexor will be simple (see [7] and
[13] for details). However, when the RegFi | e and the Hol d latch are read, the ini-
tialization conditions get conjuncted with the contents of every data bit. Hence, the
BDDs get bigger, require more CPU time to process, and the results depend on N.

12

CPU Time (9) Memory (MB)
N w w
16 32 64 | 128 16 32 64 | 128
16 33 65 | 129 | 259 || 1.8 | 24 | 35 | 58
32 38 75 | 147 | 300 || 22 | 24 | 35 | 58
64 51 99 | 200 | 402 || 22 | 32 | 51 | 90
128 83 | 163 | 324 | 661 || 23 | 33 | 52 | 92
Table 1. Experimental esults br the pipelined addressable accumulatqrverified
by STE.
CPU Time (9) Memory (MB)
N w w
16 32 64 | 128 16 3R 64 | 128
16 19 38 75 | 151 || 17 | 21 | 30 | 48
32 20 38 76 | 152 || 1.8 | 24 | 36 | 60
64 20 39 77 | 153 || 1.8 | 24 | 37 | 61
128 20 39 77 | 153 || 1.8 | 24 | 37 | 61

Table 2. Experimental esults br the pipelined addressable accumulatqrverified

by correspondence checking with its non-pipelinedersion.

CPU Time (s) Memory (MB)
N w w
16 32 64 128 16 32 64 128
16 23 46 91 | 183 15 17 21 3.0
3R 23 46 92 | 183 15 17 22 3.0
64 23 46 91 183 15 1.8 23 33
128 24 47 92 186 15 18 23 34

Table 3. Experimental esults br the non-pipelined addressable accumulatqr
verified by STE.

8. Conclusions and Futue Work

We are very encouraged by our results. Correspondence checking between the pipe-
lined addressable accumulator and its non-pipelined version required CPU time and
memory that are logarithmic with respect to N, and linear with respect to w. By com-
paring the sum of the same entries in Tables 2 and 3 to their corresponding entry in
Table 1, it can be concluded that for pipelined processors with sufficiently large mem-
ory state, it may take less CPU time and memory to verify an equivalent non-pipelined
circuit and then to check it for correspondence to the pipelined one, than to directly

13

verify the pipelined processor. Furthermore, when the pipelined processor isincremen-
tally modified, it can directly be checked for correspondence to its non-pipelined ver-
sion, assuming the latter is aready verified, and the savings in CPU time and memory
will be even greater.

Future work may focus on applying the memory shadowing methodol ogy on real-
life processors. Crucial for that will be techniques for resolving the conflicting order-
ings of variables generated by function GenDataExprwhen representing the initial
state of the pipeline registers. Namely, some of the instruction bits may correspond to
both the functional code in one class of instructions and to a part of an immediate data
operand in another class. The variables generated in the former case, since used in the
control of the processor, will require to be towards the front of the variable ordering.
However, the ones generated in the latter case, since used in the data path, will be more
efficiently placed around the end of the variable ordering.

References

[1] S Bose, and A. L. Fisher, “Verifying Pipelined Hardware Using Symbolic Logic Simulation,” Inter-
national Confeence on Computer DesigBctober 1989, pp. 217-221.

[2] R.E. Bryant, “Extraction of Gate Level Models from Transistor Circuits by Four-Valued Symbolic
Analysis” International Confeznce on Computer Aided Desjgtovember 1991, pp. 350-353.

[3] R.E.Bryant,“Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams,” ACM Com-
puting Serves, Vol. 24, No. 3 (September 1992), pp. 293-318.

[4] J. R.Burch, and D. L. Dill, “Automated Verification of Pipelined Microprocessor Control,” CAV ‘94,
D. L. Dill, ed., LNCS 818, Springer-Verlag, June 1994, pp. 68-80.

[5] J. R.Burch, “Techniques for Verifying Superscalar Microprocessors,” DAC ‘96, June 1996, pp. 552-
557.

[6] C.A.R. Hoare, “Proof of Correctness of Data Representations,” Acta Informatica 1972, Vol.1, pp.
271-281.

[7]1 A.Jain, “Formal Hardware Verification by Symbolic Trgjectory Evaluation,” Ph.D. thesis, Department
of Electrical and Computer Engineering, Carnegie Mellon University, August 1997.

[8] R.B.Jones, C.-J. H. Seger, and D. L. Dill, “Self-Consistency Checking,” FMCAD ‘96, M. Srivas and
A. Camilleri, eds., LNCS 1166, Springer-Verlag, November 1996, pp. 159-171.

[9] M. Pandey, “Formal Verification of Memory Arrays,” Ph.D. thesis, School of Computer Science, Car-
negie Mellon University, May 1997.

[10] M. Pandey, and R. E. Bryant, “Exploiting Symmetry When Verifying Transistor-Level Circuits by
Symbolic Trajectory Evauation,” CAV ‘97, O. Grumberg, ed., LNCS 1254, Springer-Verlag, June
1997, pp. 244-255.

[11] J. Sawada, and W. A. Hunt, Jr., “Trace Table Based Approach for Pipelined Microprocessor Verifica-
tion,” CAV ‘97, O. Grumberg, ed., LNCS 1254, Springer-Verlag, June 1997, pp. 364-375.

[12] C.-J. H. Seger, and R. E. Bryant, “Formal Verification by Symbolic Evaluation of Partially-Ordered
Trajectories,” Formal Methods in System Desj@fol. 6, No. 2 (March 1995), pp. 147-190.

[13] M. Velev, R. E. Bryant, and A. Jain, “Efficient Modeling of Memory Arraysin Symbolic Simulation,”
CAV ‘97, O. Grumberg, ed., LNCS 1254, Springer-Verlag, June 1997, pp. 388-399.

[24] P J Windley, and J. R. Burch, “Mechanically Checking a Lemma Used in an Automatic Verification
Tool,” FMCAD ‘96, M. Srivas and A. Camilleri, eds., LNCS 1166, Springer-Verlag, November 1996,
pp. 362-376.

14

