
Appears in the proceedings ofAsian Computer Science Conference (ASIAN ’97), R.K. Shyamasundar and K. Ueda,
eds., LNCS 1345, Springer-Verlag, December 1997, pp. 18-31.

1

Verification of Pipelined Microprocessors by Comparing
Memory Execution Sequences in Symbolic Simulation1

Abstract. This paper extends Burch and Dill’s pipeline verification method [4] to the bit level.
We introduce the idea of memory shadowing, a new technique for providing on-the-fly identical
initial memory state to two different memory execution sequences. We also present an algorithm
which compares the final states of two memories for equality. Memory shadowing and the com-
parison algorithm build on the Efficient Memory Model (EMM) [13], a behavioral memory
model where the number of symbolic variables used to characterize the initial state of a memory
is proportional to the number of distinct symbolic locations accessed. These techniques allow us
to verify that a pipelined circuit has equivalent behavior to its unpipelined specification by simu-
lating two memory execution sequences and comparing their final states. Experimental results
show the potential of the new ideas.

Keywords: pipelined microprocessor verification, memory shadowing, Efficient Memory
Model (EMM), circuit correspondence checking, symbolic simulation.

1. Intr oduction

We are extending Burch and Dill’s pipeline verification method [4] to a bit-level circuit
verification. The idea of a commutative diagram and an underlying abstraction func-
tion, used by Burch and Dill, is not new to verification. It has been introduced by
Hoare [6] for verifying computations on abstract data types in software, and has been
used by Bose and Fisher [1] to verify pipelined circuits. All these verification methods
are based on comparing an implementation transformationFImpl against a specifica-
tion transformationFSpec. The assumption is that the two transformations start from a
pair of matching initial states -QImpl andQSpec, respectively - where the match is
determined according to some abstraction functionAbs (see Figure 1). The correctness
criterion is that the two transformations should yield a pair of matching final states -
Q′Impl and Q′Spec, respectively - where the match is determined by the same abstrac-
tion function. In other words, the abstraction function should make the diagram com-
mute.

The Burch and Dill approach is conceptually elegant in the way it uses a symbolic
simulation of the hardware design to automatically compute an abstraction function
from the pipeline state to the user-visible state. Namely, starting from a general sym-
bolic initial stateQImpl they simulate aflush of the pipeline by stalling it for a sufficient
number of cycles that will allow all partially executed instructions to complete. Then,

1. This research was supported in part by the SRC under contract 97-DC-068.

Randal E. Bryant‡, *

randy.bryant@cs.cmu.edu
Mir oslav N. Velev*

mvelev@ece.cmu.edu

‡School of Computer Science
*Department of Electrical and Computer Engineering

Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.

2

they consider the resulting state of the user-visible memory elements (e.g., the register
file and the program counter) to be the matching stateQSpec.

Figure 1. Commutative diagram for the correctness criterion.

Burch and Dill’s implementation [4][5] of their method requires a high level
abstract model of the implementation that still exposes relevant design issues, such as
pipelining. They work on models that completely represent the control path of the pro-
cessor, but hide the functional details of the data path by means of uninterpreted func-
tions. Our implementation of Burch and Dill’s method, presented in this paper, allows
verification at the bit level.

By verifying at the bit level, we avoid the need to construct an abstracted model of
the circuit. We can verify the actual hardware design, given a logic gate-level or regis-
ter-transfer-level description. A naive implementation of Burch and Dill’s method at
the bit-level would require introducing a symbolic Boolean variable for every bit of
register or memory state. This would lead to unacceptable complexity. Our paper over-
comes this limitation by using the Efficient Memory Model (EMM) [13] to represent
memory state.

The EMM is a behavioral memory model where the number of symbolic vari-
ables used to characterize the initial state of a memory is proportional to the number of
distinct symbolic locations accessed, rather than to the size of the memory. It is based
on the observation that a single execution sequence used in formal verification typi-
cally accesses only a limited number of distinct symbolic locations.Memory state is
represented in the EMM by a list of entries encoding the relative history of memory
operations. The list interacts with the rest of the circuit by means of a software inter-
face developed as part of our symbolic simulator.

Burch and Dill also use a symbolic representation of memory arrays in their
implementation [4]. They apply uninterpreted functions with equality, which allows
them to introduce only a single symbolic variable to denote the initial state of the
entire memory. EachWrite or Read operation results in building a formula over the
current state of the memory, so that the latest memory state reflects the sequence of
memory writes. However, we need bit-level data for various memory locations in order
to verify the data path. This requires our algorithms to introduce symbolic variables
proportional to both the number of distinct symbolic memory locations accessed and
to the number of data bits per location. Furthermore, we need the flexibility to include

Abs

QImpl

QSpec

Abs

Q′Impl

Q′Spec

FSpec

FImpl

3

new symbolic memory locations as part of the initial memory state at any point in the
verification process. Hence, the memory state in our case reflects the relative history of
memory operations, rather than the sequence of writes. This difference will become
clear as we present our algorithms.

An extensive body of research has been spawned by Burch and Dill’s method.
Sawada and Hunt [11] have combined it with theorem proving, assuming the availabil-
ity of a set of invariants that completely specifies the properties of the pipelined pro-
cessor in correct operation. Burch [5] has extended it to superscalar processor
verification by proposing a new flushing mechanism and by decomposing the commu-
tative diagram from [4] into three more easily verifiable commutative diagrams. The
correctness of this decomposition is proven by Windley and Burch [14]. Jones, Seger,
and Dill [8] propose the use of the pipeline as a specification for the correctness of its
forwarding logic. They apply two specially designed instruction sequences that should
yield identical behaviors and compare their effects on the register file. One of the
sequences completely fills the pipeline with instructions and then flushes it with a
sequence of NOPs, while the other consists of the same instructions but separated with
as many NOPs as to avoid the exercising of the forwarding logic.

The contributions of this paper are: 1) the memory shadowing technique for
ensuring identical initial memory state encountered by two different memory execu-
tion sequences; 2) an algorithm to compare the final states of two memories; 3) a
methodology that extends Burch and Dill’s pipeline verification method [4] to effi-
ciently model the complete functionality of the data path at the bit level; and 4) experi-
mental results that confirm the applicability of the new ideas.

We consider two forms of verification: 1) Symbolic Trajectory Evaluation (STE)
[12], where one proves that a circuit satisfies a specification given as a temporal logic
formula; and 2) Correspondence checking, where one proves a correspondence
between two circuits by evaluating two execution sequences starting from a common
initial state and showing that they yield identical final user-visible states, based on the
commutative diagram of Figure 1. We propose using both forms as part of a four step
approach for the verification of pipelined processors. The first step is to use STE to
verify the transistor-level memory elements (both memory arrays and latches), inde-
pendently from the rest of the circuit. Pandey and Bryant have combined symmetry
reductions and STE to enable the verification of very large memory arrays at the tran-
sistor level [9][10]. The second step is to replace the memory arrays with EMMs for
both the implementation and the specification circuits. The third step is to use STE to
verify the non-pipelined specification circuit, which is assumed to support the same
instruction set architecture and to have the same user-visible state as the pipelined pro-
cessor. Our previous paper describes the use of the EMM in this context [13]. The
fourth and last step is to perform correspondence checking between the pipelined pro-
cessor and its specification. This step is the focus of the present work.

In the remainder of the paper, Section 2 summarizes Burch and Dill’s pipeline
verification method. Section 3 describes the symbolic domain used in our algorithms.
Section 4 presents the assumptions, data structures, and algorithms of the EMM. The
memory shadowing technique for providing on-the-fly identical initial memory state to

4

two different execution sequences is explained in Section 5, which also presents an
algorithm that compares for equality the states of two memory arrays. The verification
methodology for correspondence checking by applying memory shadowing is
described in Section 6. Experimental results are presented in Section 7. Finally, con-
clusions are made and future work is outlined in Section 8.

2. Burch and Dill’s Pipeline Verification Method

For the purpose of verifying a pipelined processor, Burch and Dill [4] assume the
availability of a specification non-pipelined circuit, which has user-visible state U =
{0, 1}n and input state I = {0, 1}m. The implementation (possibly pipelined) circuit is
assumed to have the same user-visible and input state, although it can also have pipe-
line state P = {0, 1}k. The combined user-visible and pipeline state of the implementa-
tion is then U × P and will be written in the form 〈u→, p→〉. Each of the circuits is
characterized with its transition function: δI : I × (U × P) → (U × P) for the imple-
mentation, and δS : I × U → U for the specification.

Burch and Dill further assume that if the implementation is pipelined, it has or
can be modified to include a stall input. When asserted, this input will prevent new
instructions from entering the pipeline, while letting partially executed instructions
advance and allowing the pipeline state to be flushed. The notation Stall will be used
for the implementation’s transition function when the stall input is asserted. It is also
assumed that the two circuits support the same instruction set architecture and start
from the same arbitrary initial user-visible state.

The method uses a projection function, Proj : (U × P) → U, which removes all
but the the user-visible state from the implementation, and an abstraction function,

Abs(〈u→, p→〉) =̇ Proj(Stalll (〈u→, p→〉)),

which maps the combined user-visible and pipeline state 〈u→, p→〉 of the implementa-
tion to its user-visible state. This is done by stalling the pipeline for as many cycles as
its depth l, so that it can be flushed, and then stripping off all but the user-visible state.
The correctness criterion expressed by Figure 1 is

∀ x→, u→, p→ . Abs(δI(x→, 〈u→, p→〉)) =? δS(x→, Abs(〈u→, p→〉)), (1)

where x→ is an input combination that allows the implementation and the specification
to execute one cycle without stalling, i.e. to start executing one instruction (and to
complete it in the case of the specification).

3. Symbolic Domain

We will consider three different domains - Boolean, address, and data - corresponding
respectively to the control, address, and data information that can be applied at the
inputs of a memory array. Symbolic variables will be introduced in each of the
domains and will be used in expression generation. Address and data expressions will
be represented by vectors of Boolean expressions having width n and w, respectively,
for a memory with N = 2n locations, each holding a word consisting of w bits. The
types BExpr, AExpr , and DExpr will denote respectively Boolean, address, and data

5

expressions in the algorithms to be presented.

We will use the termcontext to refer to an assignment of values to the symbolic
variables. A Boolean expression can be viewed as defining a set of contexts, namely
those for which the expression evaluates totrue.

The selection operatorITE (for “If-Then-Else”), when applied on three Boolean
expressions, is defined as:

ITE(b, t, e) =̇ (b ∧ t) ∨ (¬b ∧ e). (2)

Address comparison is then implemented as:

A1 = A2 =̇ ¬ A1i ⊕ A2i, (3)

while address selectionA1 ← ITE(b, A2, A3) is implemented by selecting the corre-
sponding bits:

A1i ← ITEi(b, A2, A3) =̇ A1i ← (b ∧ A2i) ∨ (¬b ∧ A3i), i = 1, ..., n. (4)

The definition of data operations is similar, but over vectors of widthw.

We have used Ordered Binary Decision Diagrams (OBDDs) [3] to represent the
Boolean expressions in our implementation. However, there is nothing about this work
that intrinsically requires it to be OBDD based. Any canonical representation of Bool-
ean expressions can be substituted.

4. Efficient Modeling of Memory Arrays

4.1 Overview

The assumption of the EMM [13] is that every memory array can be represented, pos-
sibly after the introduction of some extra logic, as a memory with only write and read
ports, all of which have the same numbers of address and data bits (see Figure 2).

Figure 2. View of a memory array as an EMM.

A latch can be viewed as a memory array with a single address, so that it can be
represented as an EMM with one write port and one read port, both of which have the
same number of data bits and only one address input, which is identically connected to
the same constant logic value, e.g.,true.

The interaction of the memory array with the rest of the circuit is assumed to take
place on the rising edge of a portEnable signal. In case of multiple portEnables

n

i = 1

WRITE
PORT 0

READ
PORT 0

Address
Data

Enable

Address
Data
Enable MEMORY ARRAY

(N = 2n addresses
of w bits each)READ

PORT Q

Address
Data
Enable

WRITE
PORT P

Address
Data

Enable

n
w

n
w

n
w

n
w

6

having rising edges simultaneously, the resulting accesses to the memory array will be
ordered according to the priority of the ports.

During symbolic simulation, the memory state is represented by a list containing
entries of the form 〈c, a, d〉, where c is a Boolean expression denoting the set of con-
texts for which the entry is defined, a is an address expression denoting a memory
location, and d is a data expression denoting the contents of this location. The context
information is included for modeling memory systems where the Write and Read oper-
ations may be performed conditionally depending on the value of a control signal. Ini-
tially the list is empty.

The list interacts with the rest of the circuit by means of a software interface
developed as part of the symbolic simulation engine. The interface monitors the port
Enable lines. Should a rising edge occur at a port Enable, a Write or a Read opera-
tion will result, as determined by the type of the port. The Boolean expression c for the
contexts of the memory operation will be formed as the condition for a rising edge on
the port Enable. The operation will be performed if c is a non-zero Boolean expres-
sion. The Address and Data lines of the port will be scanned in order to obtain the
address expression a and the data expression d, respectively. A Write operation com-
pletes with the insertion of the entry 〈c, a, d〉 in the list. A Read operation retrieves
from the list a data expression rd that represents the data contents read from the mem-
ory at address a given the contexts c. The software interface completes the Read oper-
ation by asserting the Data lines of the port to the data expression ITE(c, rd, d), i.e. to
the retrieved data expression rd under the contexts c of the operation and to the old
data expression d otherwise. The routines needed by the software interface for access-
ing the list are presented next.

4.2 Memory Support Operations

The list entries are kept in order from head (low priority) to tail (high priority). Intu-
itively, the entries towards the low priority end correspond to the initial state of the
memory, while the ones at the high priority end represent recent memory updates, with
the tail entry being the result of the latest memory Write operation. Entries may be
inserted at either end, using procedures InsertHead and InsertTail, and may be deleted
using procedure Delete.

The function Valid, when applied to a Boolean expression, returns true if the
expression is valid, i.e. true for all contexts, and false otherwise. Note that in all of the
algorithms, a Boolean expression cannot be used as a control decision in the code,
since it will have a symbolic representation. On the other hand, we can make control
decisions based on whether or not an expression is valid.

The function GenDataExpr generates a new data expression, whose variables are
used to denote the initial state of memory locations that are read before ever being
written.

4.3 Implementation of Memory Read and Write Operations

The Write operation, shown as a procedure in Figure 3, takes as arguments a memory

7

list, a Boolean expression denoting the contexts for which the write should be per-
formed, and address and data expressions denoting the memory location and its
desired contents, respectively. As the code shows, it is implemented by simply insert-
ing an element into the tail (high priority) end of the list, indicating that this entry
should overwrite any other entries for this address. As an optimization, it removes any
list elements that for all contexts are overwritten by this operation. Note that this opti-
mization need not be performed, as will become apparent after the definition of the
Read operation. We could safely leave any overwritten element in the list.

procedure Write(List mem, BExpr c, AExpr a, DExpr d)

/* Write data d to location a under contexts c */

/* Optional optimization */

for each 〈ec, ea, ed〉 in mem do
if Valid(ec ⇒ [c ∧ a=ea]) then

Delete(mem, 〈ec, ea, ed〉)
/* Perform Write */

InsertTail(mem, 〈c, a, d〉)

Figure 3. Implementation of the Write operation.

The Read operation is shown in Figure 4 as a function which, given a memory
list, a Boolean expression denoting the contexts for which the read should be per-
formed, and an address expression, returns a data expression indicating the contents of
this location.

function Read(List mem, BExpr c, AExpr a): DExpr
/* Read from location a under contexts c */

g ← GenDataExpr()

return ReadWithDefault(mem, c, a, g)

function ReadWithDefault(List mem, BExpr c, AExpr a, DExpr d): DExpr
/* Read from location a, using d for contexts where no value found */

rd ← d

found ← false
for each 〈ec, ea, ed〉 in mem from head to tail do

match ← ec ∧ a=ea

rd ← ITE(match, ed, rd)

found ← found ∨ match

if ¬Valid(c ⇒ found) then
InsertHead(mem, 〈c, a, d〉)

return rd

Figure 4. Implementation of the Read operation.

8

The main part of theRead operation is implemented with the functionReadWith-
Default. The purpose ofReadWithDefault is to construct a data expression giving the
contents of the memory location denoted by its argument address expression. It does
this by scanning through the list from lowest to highest priority, adding a selection
operator to the expression that chooses between the list element’s data expression and
the previously formed data expression, based on the match condition. It also generates
a Boolean expressionfound indicating the contexts for which a matching list element
has been encountered.ReadWithDefault has as its fourth argument a “default” data
expression to be used when no matching list element is found. When this case arises, a
new list element is inserted into thehead (low priority) end of the list.

The Read operation is implemented by callingReadWithDefault with a newly
generated symbolic data expressiong as the default. The contexts for whichReadWith-
Default does not find a matching address in the list are those for which the addressed
memory location has never been accessed by either a read or a write. The data expres-
sion g is then returned to indicate that the location may contain arbitrary data. By
inserting the entry〈c, a, d〉 into the list, we ensure that subsequent reads of this loca-
tion will return the same expression. Note that computing and testing the validity of
c ⇒ found is optional. We could safely insert the list element unconditionally,
although at an increased memory usage.

5. Comparing Memory Execution Sequences

In some applications, we wish to test whether two sequences of memory operations,
which we will refer to as “A” and “B,” yield identical behaviors. That is, we assume
the two sequences start with matching initial memory states. For each externally visi-
bleRead operation in sequence A, its counterpart in sequence B must return the identi-
cal value. Furthermore, the final states resulting from the two sequences must match.
To implement this, we require some mechanism for guaranteeing that consistent values
are used for the initial contents of the two memories. In addition, we require an algo-
rithm for comparing the contents of two memories.

5.1 Maintaining Consistent Initial States

If we were to execute the operations for the two sequences independently, we would
generate different symbols to represent the initial memory contents, and hence we
would not yield matching results. Even if we could “reset” our symbol generator, so
that the execution sequence B used the same series of generated symbols as sequence
A, there would be a mismatch if the two sequences access memory locations in a dif-
ferent order. Instead, we modify theRead operation to maintain a consistent initial
state between the memory being operated on, and a “shadow” memory, as shown in
Figure 5.

When executing the sequence A, we would use memory B as the shadow, and
conversely when executing the sequence B, we would use memory A as the shadow.
Note that theWrite operations proceed as before. With this shadowing, any time a
symbolic variable is assigned to represent the initial state of a memory location, the
same symbol will be assigned to the same location and under the same context in both

9

memories, thus enforcing the assumption that the two memories have matching initial
states.

function ShadowRead(List mem, List shadow, BExpr c, AExpr a): DExpr
/* Read from location a under context c */

/* Maintain consistency with shadow memory */

g ← GenDataExpr()

ReadWithDefault(shadow, c, a, g)

return ReadWithDefault(mem, c, a, g)

Figure 5. Implementation of the Read operation when initial state consistency
between two memories must be maintained.

5.2 Comparing Final States

In comparing the contents of two memories, we can exploit the fact that only a small
number of locations actually have defined values for any given context. Figure 6 shows
function CompareMem which constructs a Boolean expression indicating the contexts
for which two memories have matching contents. This code only checks the locations
denoted by the set of address expressions occurring in the two lists. As a further opti-
mization, it maintains a table tested to ensure that only one comparison is performed
for each unique address expression.

function CompareMem(List MemA, List MemB): BExpr
/* Compare states of two memories */

same ← true
tested ← ∅
for each 〈ec, ea, ed〉 in MemA do
if (ea ∉ tested) then

g ← GenDataExpr()

da ← ReadWithDefault(MemA, ec, ea, g)

db ← ReadWithDefault(MemB, ec, ea, g)

same ← same ∧ (da =db)

tested ← tested ∪ {ea}

for each 〈ec, ea, ed〉 in MemB do
if (ea ∉ tested) then

g ← GenDataExpr()

da ← ReadWithDefault(MemA, ec, ea, g)

db ← ReadWithDefault(MemB, ec, ea, g)

same ← same ∧ (da =db)

tested ← tested ∪ {ea}

return same

Figure 6. Comparing states of two memories.

10

CompareMem compares matching locations in the two memories using the func-
tion ReadWithDefault, with a newly generated symbolic data expression g as the
default value. This operation will add a list element and return a data expression
dependent on g only when either some Write operation has been performed with con-
text argument c ≠ true, or some Write operation was performed to one memory, with-
out a counterpart for the other. By using the same, newly-generated symbol for a pair
of accesses, we maintain consistency between the initial states of the two memories as
well as the property that each memory location can have an arbitrary initial value.

5.3 Observation

One final subtlety about our comparison technique is worth noting. Normally two exe-
cution sequences will yield matching final memory states only if they perform identi-
cal Write operations, at least for the final writes to each memory location. Thus, if
sequence A performs a write to some address a, one would expect sequence B to do
likewise. Consider the case, however, where sequence A first reads from address a and
then writes that value back to address a. Then location a is still in its initial state, and
there is no need for sequence B to either read or write this location. Observe that our
method wil correctly handle this case. In executing sequence A, we will add entries
〈true, a, g〉 to both lists. The Write operation in A may cause this entry to be replaced,
but since it preserves the initial state of this location, the two memories will compare
successfully.

The condition described above is also the reason why the list for memory A must
be used as a shadow argument for the Read operations performed on memory B. Even
though we have already evaluated the effect of all Read and Write operations by
sequence A, sequence B may access memory locations never accessed by A. This is
allowed as long as the accesses do not alter the values at these or any other memory
locations.

On the other hand, suppose sequence A writes to address a without ever reading
the initial state, while sequence B never reads or writes this address. Then the list for A
will contain an entry with address a, while the list for B will not. Executing ReadWith-
Default(memB, a, g) will return an expression involving g, which will not equal the
expression returned by ReadWithDefault(memA, a, g), and hence the mismatch will be
detected.

6. Correspondence Checking by Applying Memory Shadowing

When applying memory shadowing, the EMM software interface uses function Shad-
owRead for performing reads, and procedure Write for performing writes. Shadow-
Read provides the two execution sequences with identical initial memory state by
constructing it on-the-fly. We check the correctness criterion (1) of Burch and Dill’s
method by applying function CompareMem on all the user-visible memory elements.
The universal quantification is done implicitly by using the same symbolic initial
memory state and the same symbolic instruction for both execution sequences.

The steps of our methodology are:

1. Load the implementation (possibly pipelined) circuit and associate every

11

memory element in it with empty original and shadow memory lists.

2. Cycle the implementation with a symbolic instruction.

3. Flush the implementation.

4. Swap the original and shadow memory lists for every memory element.

5. Flush the implementation.

6. Swap the implementation and the specification (non-pipelined) circuits by
keeping the memory lists for every user-visible memory element.

7. Cycle the specification with the same symbolic instruction as used in Step 2.

8. Compare the original, memi, and the shadow, shadowi, memory lists for every
user-visible memory element i and let equalityi =̇ CompareMem(memi, shad-
owi), i = 1, ..., u, where u is the number of user-visible memory elements.

9. Form the Boolean expression for our correctness criterion:

legal_instruction ⇒ equalityi, (5)

where legal_instruction is a Boolean expression for the symbolic instruction
from Steps 2 and 7 to be legal.

It is also possible to traverse the commutative diagram with another sequence of
circuit and memory swaps, i.e. to first flush the implementation, swap it with the spec-
ification, cycle the specification, swap it with the implementation, swap the memory
lists, and perform Steps 2, 3, 8, and 9 from above. As expected, our experiments found
that the two sequences of traversing the commutative diagram perform comparably in
terms of CPU time and memory for our simple circuit presented next.

7. Experimental Results

We implemented all the correspondence checking routines, presented in this paper,
within a tool [7] that supports the STE technique. Although correspondence checking
and STE are two different forms of verification, as noted in Section 1, they have in
common the use of a symbolic simulator and the EMM. This allows them to be applied
on the same circuit descriptions, which can be in both gate-level and register-transfer-
level form. Furthermore, gate-level circuits can be automatically generated from tran-
sistor-level circuits [2].

Experiments were performed on the pipelined addressable accumulator shown in
Figure 7. The current instruction is specified by the inputs Addr, Clear, In, and
Nop, where the last one indicates whether the instruction is a nop and is used for flush-
ing the pipeline. The pipeline register Hold separates the execution and the write back
stages of the processor. The control logic stores the previous address and compares it
with the present one at the Addr input. In case of equality of the two addresses and a
valid previous instruction (the Nop input was false), the control signal of the multi-
plexor is set so as to select the data output of the Hold register. Hence, data forward-
ing takes effect. For a more detailed description of the circuit (however without a Nop

u

i = 1

12

input) and its verification by STE, the reader is referred to [7] for the case of transis-
tor-level memory elements, and to [13] for the case of EMM-replaced memory ele-
ments.

For all of the experiments, the dual-ported register file was removed from the cir-
cuit and replaced with an EMM. The software interface ensures that: 1) a Read opera-
tion takes place relative to phi1; and 2) a Write operation takes place relative to
phi2, as long as the corresponding instruction was not a Nop - see the register file
connections shown in Figure 7.(b).

Figure 7. (a) The pipelined addressable accumulator; (b) the connections of its
register file when replaced by an EMM.The thick lines indicate buses, while the
thin ones are of a single bit.

The experiments were performed on an IBM RS/6000 43P-140 with a 233MHz
PowerPC 604e microprocessor, having 512 MB of physical memory, and running AIX
4.1.5. Table 1 shows the results from the STE verification of the pipelined addressable
accumulator. Table 2 - from the correspondence checking between the same circuit and
its non-pipelined version (the specification circuit) by applying memory shadowing.
Finally, Table 3 presents the results from the STE verification of the specification cir-
cuit. In all of the tables, N is the number of addresses and w is the number of data bits
per address.

It can be observed that the results in Table 1 depend on N, while those in Tables 2
and 3 are almost constant with N. The reason is that for the experiments for Table 1,
the RegFile and the Hold latch are initialized conditionally on the equality of the
current and previous addresses, as opposed to unconditionally which is the case in the
experiments for Tables 2 and 3. The idea is that these conditions will cancel the effect
of the forwarding logic, and the output of the multiplexor will be simple (see [7] and
[13] for details). However, when the RegFile and the Hold latch are read, the ini-
tialization conditions get conjuncted with the contents of every data bit. Hence, the
BDDs get bigger, require more CPU time to process, and the results depend on N.

(a)

MEMORY

ARRAY

READ
PORT

WRITE
PORT

Address

Data

Enable

Address

Data

Enable

(b)

phi2

phi1

(to MUX)
(from Hold)

Addr previous Addr

(from Control)

Reg

Hold

Control

File

MUX

Addr

Clear

In
Out

Nop

previous Nop previous Out

13

8. Conclusions and Future Work

We are very encouraged by our results. Correspondence checking between the pipe-
lined addressable accumulator and its non-pipelined version required CPU time and
memory that are logarithmic with respect to N, and linear with respect to w. By com-
paring the sum of the same entries in Tables 2 and 3 to their corresponding entry in
Table 1, it can be concluded that for pipelined processors with sufficiently large mem-
ory state, it may take less CPU time and memory to verify an equivalent non-pipelined
circuit and then to check it for correspondence to the pipelined one, than to directly

N

CPU Time (s) Memory (MB)

w w

16 32 64 128 16 32 64 128

16 33 65 129 259 1.8 2.4 3.5 5.8

32 38 75 147 300 2.2 2.4 3.5 5.8

64 51 99 200 402 2.2 3.2 5.1 9.0

128 83 163 324 661 2.3 3.3 5.2 9.2

Table 1. Experimental results for the pipelined addressable accumulator, verified
by STE.

N

CPU Time (s) Memory (MB)

w w

16 32 64 128 16 32 64 128

16 19 38 75 151 1.7 2.1 3.0 4.8

32 20 38 76 152 1.8 2.4 3.6 6.0

64 20 39 77 153 1.8 2.4 3.7 6.1

128 20 39 77 153 1.8 2.4 3.7 6.1

Table 2. Experimental results for the pipelined addressable accumulator, verified
by correspondence checking with its non-pipelined version.

N

CPU Time (s) Memory (MB)

w w

16 32 64 128 16 32 64 128

16 23 46 91 183 1.5 1.7 2.1 3.0

32 23 46 92 183 1.5 1.7 2.2 3.0

64 23 46 91 183 1.5 1.8 2.3 3.3

128 24 47 92 186 1.5 1.8 2.3 3.4

Table 3. Experimental results for the non-pipelined addressable accumulator,
verified by STE.

14

verify the pipelined processor. Furthermore, when the pipelined processor is incremen-
tally modified, it can directly be checked for correspondence to its non-pipelined ver-
sion, assuming the latter is already verified, and the savings in CPU time and memory
will be even greater.

Future work may focus on applying the memory shadowing methodology on real-
life processors. Crucial for that will be techniques for resolving the conflicting order-
ings of variables generated by function GenDataExpr, when representing the initial
state of the pipeline registers. Namely, some of the instruction bits may correspond to
both the functional code in one class of instructions and to a part of an immediate data
operand in another class. The variables generated in the former case, since used in the
control of the processor, will require to be towards the front of the variable ordering.
However, the ones generated in the latter case, since used in the data path, will be more
efficiently placed around the end of the variable ordering.

References

[1] S. Bose, and A. L. Fisher, “Verifying Pipelined Hardware Using Symbolic Logic Simulation,” Inter-
national Conference on Computer Design, October 1989, pp. 217-221.

[2] R. E. Bryant, “Extraction of Gate Level Models from Transistor Circuits by Four-Valued Symbolic
Analysis,” International Conference on Computer Aided Design, November 1991, pp. 350-353.

[3] R. E. Bryant, “Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams,” ACM Com-
puting Serveys, Vol. 24, No. 3 (September 1992), pp. 293-318.

[4] J. R. Burch, and D. L. Dill, “Automated Verification of Pipelined Microprocessor Control,” CAV ‘94,
D. L. Dill, ed., LNCS 818, Springer-Verlag, June 1994, pp. 68-80.

[5] J. R. Burch, “Techniques for Verifying Superscalar Microprocessors,” DAC ‘96, June 1996, pp. 552-
557.

[6] C. A. R. Hoare, “Proof of Correctness of Data Representations,” Acta Informatica, 1972, Vol.1, pp.
271-281.

[7] A. Jain, “Formal Hardware Verification by Symbolic Trajectory Evaluation,” Ph.D. thesis, Department
of Electrical and Computer Engineering, Carnegie Mellon University, August 1997.

[8] R. B. Jones, C.-J. H. Seger, and D. L. Dill, “Self-Consistency Checking,” FMCAD ‘96, M. Srivas and
A. Camilleri, eds., LNCS 1166, Springer-Verlag, November 1996, pp. 159-171.

[9] M. Pandey, “Formal Verification of Memory Arrays,” Ph.D. thesis, School of Computer Science, Car-
negie Mellon University, May 1997.

[10] M. Pandey, and R. E. Bryant, “Exploiting Symmetry When Verifying Transistor-Level Circuits by
Symbolic Trajectory Evaluation,” CAV ‘97, O. Grumberg, ed., LNCS 1254, Springer-Verlag, June
1997, pp. 244-255.

[11] J. Sawada, and W. A. Hunt, Jr., “Trace Table Based Approach for Pipelined Microprocessor Verifica-
tion,” CAV ‘97, O. Grumberg, ed., LNCS 1254, Springer-Verlag, June 1997, pp. 364-375.

[12] C.-J. H. Seger, and R. E. Bryant, “Formal Verification by Symbolic Evaluation of Partially-Ordered
Trajectories,” Formal Methods in System Design, Vol. 6, No. 2 (March 1995), pp. 147-190.

[13] M. Velev, R. E. Bryant, and A. Jain, “Efficient Modeling of Memory Arrays in Symbolic Simulation,”
CAV ‘97, O. Grumberg, ed., LNCS 1254, Springer-Verlag, June 1997, pp. 388-399.

[14] P. J. Windley, and J. R. Burch, “Mechanically Checking a Lemma Used in an Automatic Verification
Tool,” FMCAD ‘96, M. Srivas and A. Camilleri, eds., LNCS 1166, Springer-Verlag, November 1996,
pp. 362-376.

