
Accepted Manuscript

State-Set Branching: Leveraging BDDs for Heuristic Search

Rune M. Jensen, Manuela M. Veloso, Randal E. Bryant

PII: S0004-3702(07)00107-5
DOI: 10.1016/j.artint.2007.05.009
Reference: ARTINT 2289

To appear in: Artificial Intelligence

Received date: 22 February 2006
Revised date: 30 May 2007
Accepted date: 30 May 2007

Please cite this article as: R.M. Jensen, M.M. Veloso, R.E. Bryant, State-Set Branching: Leveraging
BDDs for Heuristic Search, Artificial Intelligence (2007), doi: 10.1016/j.artint.2007.05.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.artint.2007.05.009

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

State-Set Branching: Leveraging BDDs for

Heuristic Search �

Rune M. Jensen ∗, Manuela M. Veloso, Randal E. Bryant

Computer Science Department,Carnegie Mellon University, 5000 Forbes Ave.,
Pittsburgh, PA 15213-3891, USA

Abstract

In this article, we present a framework called state-set branching that combines
symbolic search based on reduced ordered Binary Decision Diagrams (BDDs) with
best-first search, such as A* and greedy best-first search. The framework relies on
an extension of these algorithms from expanding a single state in each iteration to
expanding a set of states. We prove that it is generally sound and optimal for two A*
implementations and show how a new BDD technique called branching partitioning
can be used to efficiently expand sets of states. The framework is general. It applies
to any heuristic function, evaluation function, and transition cost function defined
over a finite domain. Moreover, branching partitioning applies to both disjunctive
and conjunctive transition relation partitioning. An extensive experimental evalu-
ation of the two A* implementations proves state-set branching to be a powerful
framework. The algorithms outperform the ordinary A* algorithm in almost all do-
mains. In addition, they can improve the complexity of A* exponentially and often
dominate both A* and blind BDD-based search by several orders of magnitude.
Moreover, they have substantially better performance than BDDA*, the currently
most efficient BDD-based implementation of A*.

Key words: Heuristic Search, BDD-based Search, Boolean Representation

� This work is an extended version of a paper presented at AAAI-02 [30]. The work
was supported in part by the Danish Research Agency and the United States Air
Force under Grants Nos F30602-00-2-0549 and F30602-98-2-0135. The views and
conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the Defense Advanced Research Projects Agency (DARPA),
the Air Force, or the US Government.
∗ Corresponding author.

Email addresses: {runej, mmv, bryant}@cs.cmu.edu.
URLs: www.cs.cmu.edu/∼{runej, mmv, bryant}.

Preprint submitted to Elsevier Science 6 June 2007

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
1 Introduction

Informed or heuristic best-first search (BFS) algorithms 1 such as greedy best-
first search and A* [27] are considered important contributions of AI. The
advantage of these algorithms, compared to uninformed or blind search al-
gorithms such as depth-first search and breadth-first search, is that they use
heuristics to guide the search toward the goal and in this way significantly
reduce the number of visited states. The algorithms differ mainly by the way
they evaluate nodes in the search tree. A* is probably the most widely known
BFS algorithm. Each search node of A* is associated with a cost g of reaching
the node and a heuristic estimate h of the remaining cost of reaching the goal.
In each iteration, A* expands a node with minimum expected completion cost
f = g + h. A* can be shown to have much better performance than unin-
formed search algorithms. However, an unresolved problem for this algorithm
is that the number of expanded search nodes may grow exponentially even if
the heuristic has only a small constant relative error [46]. Such heuristic func-
tions are often encountered in practice, since many heuristics are derived from
a relaxation of the search problem that is likely to introduce a relative error.
Furthermore, in order to detect duplicate states and construct a solution, A*
must keep all expanded nodes in memory. For this reason, the limiting factor
of A* is often space rather than time.

In symbolic model checking [42], a quite different approach has been taken to
verify systems with large state spaces. Instead of representing and manipulat-
ing sets of states explicitly, this is done implicitly using Boolean functions. 2

Given a bit vector encoding of states, characteristic functions are used to
represent subsets of states. In a similar way, a Boolean function can be used
to represent the transition relation of a domain and find successor states via
Boolean function manipulation. The approach potentially reduces both the
time and space complexity exponentially. Indeed during the last decade, re-
markable results have been obtained using reduced ordered Binary Decision
Diagrams (BDDs [9]) as the Boolean function representation. Systems with
more than 10100 states have been successfully verified with the BDD-based
model checker SMV [42]. For several reasons, however, only very limited work
on using heuristics to guide these implicit search algorithms has been carried
out. First of all, the solution techniques considered in formal verification of-
ten require traversal of all reachable states making search guidance irrelevant.
Secondly, it is nontrivial to efficiently handle cost estimates such as the g and

1 In this article, BFS always refers to best-first search and not breadth-first search.
2 By an explicit representation, we mean an enumerative representation that uses
space linear in the number of represented elements. By an implicit representation, we
mean a non-enumerative representation using Boolean expressions to characterize
elements.

2

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
h-costs associated with individual states when representing states implicitly.

In this article, we present a new framework called state-set branching that
combines BDD-based search and best-first search (BFS) and efficiently solves
the problem of representing cost estimates. State-set branching applies to
any BFS algorithm and any transition cost function, heuristic function, and
node-evaluation function defined over a finite domain. The state-set branch-
ing framework consists of two independent parts. The first part extends a
general BFS algorithm to an algorithm called best-set-first search (BSFS)
that expands sets of states in each iteration. The second part is an efficient
BDD-based implementation of BSFS using a partitioning of the transition
relation of the search domain called branching partitioning . Branching parti-
tioning allows sets of states to be expanded implicitly and sorted according to
their associated cost estimates. The approach applies both to disjunctive and
conjunctive partitioning [15].

Two implementations of A* based on the state-set branching framework called
fSetA* anf ghSetA* have been experimentally evaluated in 10 search do-
mains ranging from VLSI-design with synchronous actions, to classical AI
planning problems such as the (N2 − 1)-puzzles and problems used in the
international planning competitions 1998-2004 [40,2,39,29]. We apply four dif-
ferent families of heuristic functions ranging from the minimum Hamming dis-
tance to the sum of Manhattan distances for the (N2 − 1)-puzzles, and HSPr
[8] for the planning problems. In this experimental evaluation, the two A*
implementations outperform implementations of the ordinary A* algorithm
in all domains except one where an efficient Boolean state encoding seems to
be challenging to find. 3 In addition, the results show that they can improve
the complexity of A* exponentially and that they often dominate both the
ordinary A* algorithm and blind BDD-based search by several orders of mag-
nitude. Moreover, they have substantially better performance than BDDA*,
the currently most efficient symbolic implementation of A*.

The main limitation of the state-set branching framework is that a Boolean
state encoding with a compact BDD representation must be found for a tar-
get domain. In most cases this is easy, but for general domain representation
languages such as PDDL [24] it may be challenging to define automated en-
coding techniques. Another issue is whether branching partitionings are easy
to obtain for all heuristics. The experiments in this article show that additive
heuristics like the sum of Manhattan distances and the HSPr heuristic can
be represented compactly. A recent study [32], however, shows that branching
partitionings of the max-pair heuristic [28] may be prohibitively large. It is
not our impression, though, that strong domain dependent heuristics are as

3 By ordinary A* we refer to the graph-search version of A* that maintains a closed
list for duplicate elimination and uses an explicit state representation.

3

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
combinatorial complex as the max-pair heuristic.

The remainder of this article is organized as follows. We first describe related
work in Section 2. We then define search problems in Section 3 and describe
the general BFS algorithm in Section 4. In Section 5, we extend this algo-
rithm to expand sets of states and study a number of example applications of
the new best-set-first search algorithm. In Section 6, we introduce branching
partitioning and other BDD-based techniques to efficiently implement these
algorithms. The experimental evaluation is described in Section 7. Finally, we
conclude and discuss directions for future work in Section 8.

2 Related Work

State-set branching is the first general framework for combining heuristic
search and BDD-based search. All previous work has been restricted to partic-
ular algorithms. BDD-based heuristic search has been investigated indepen-
dently in symbolic model checking and AI. The pioneering work is in symbolic
model checking where heuristic search has been used to falsify design invariants
by finding error traces. Yuan et al. [60] study a bidirectional greedy best-first
search algorithm pruning frontier states according to their minimum Hamming
distance 4 to error states. BDDs representing Hamming distance equivalence
classes are precomputed and conjoined with BDDs representing the search
frontier during search. Yang and Dill [59] also consider minimum Hamming
distance as heuristic function in an ordinary greedy best-first search algorithm.
They develop a specialized BDD operation for sorting a set of states according
to their minimum Hamming distance to a set of error states. The operation
is efficient with linear complexity in the size of the BDD representing the er-
ror states. However, it is unclear how such an operation can be generalized to
other heuristic functions. In addition, this approach finds next states and sorts
them according to their cost estimates in two separate phases. Recent applica-
tions of BDD-based heuristic search in symbolic model checking include error
directed search [51] and using symbolic pattern databases for guided invariant
model checking [49].

In general, heuristic BDD-based search has received little attention in symbolic
model checking. The reason is that the main application of BDDs in this field is
verification where all reachable states must be explored. For Computation Tree
Logic (CTL) checking [15], guiding techniques have been proposed to avoid
a blow-up of intermediate BDDs during a reachability analysis [7]. However,
these techniques are not applicable to search since they are based on defining

4 The Hamming distance between two Boolean vectors is the number of bits in the
two vectors with different value.

4

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
lower and upper bounds of the fixed-point of reachable states.

In AI, Edelkamp and Reffel [21] developed the first BDD-based implementa-
tion of A* called BDDA*. BDDA* can use any heuristic function defined over a
finite domain and has been applied to planning as well as model checking [51].
Several extensions of BDDA* have been published including duplicate elimina-
tion, weighted evaluation function, pattern data bases, disjunctive transition
relation partitioning, and external storage [18,19]. BDDA* is currently the
most efficient symbolic implementation of A*. It contributes a combination of
A* and BDDs where a single BDD is used to represent the search queue of
A*. In each iteration, all states with minimum f -costs are extracted from this
BDD. The successor states and their associated f -cost are then computed via
arithmetic BDD operations and added to the BDD representing the search
queue.

There are two major differences between BDDA* and the SetA* algorithms
presented in this article.

(1) Our experimental evaluation of BDDA* shows that its successor state
function scales poorly (see Section 7.6). A detailed analysis of the compu-
tation shows that the complexity mainly is due to the symbolic arithmetic
operations. For this reason, a main philosophy of state-set branching is
to use BDDs only to represent state information. Cost estimates like the
f -cost of a state is represented explicitly in a search tree.

(2) State-set branching introduces a novel approach called branching parti-
tioning that makes it possible to use a transition relation partitioning to
propagate cost estimates efficiently between sets of states during search.
In this way, a best-first search algorithm called best-set-first search that
expands sets of states in each iteration can be efficiently implemented
with BDDs. As shown by our experimental evaluation in Section 7, this
has a dramatic positive effect on the efficiency of the algorithms.

An ADD-based 5 implementation of A* called ADDA* has also been developed
[26]. ADDs [3] generalize BDDs to finite valued functions and may simplify
the representation of numeric information like the f -cost of states [58]. Similar
to BDDA*, however, ADDA* performs arithmetic computations via complex
ADD operations. It has not been shown to have better performance than
BDDA* [26].

A recent comparison of A* and a symbolic implementation of A* called SA* on
500 random 8-puzzle problems shows that SA* consistently uses more memory
than A* and is outperformed by A* if the heuristic is strong [45]. These
results are not confirmed by the experimental evaluation in this article where
ghSetA* typically uses less memory than A* and often finds solutions much

5 ADD stands for Algebraic Decision Diagram [3].

5

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
faster than A*. We believe that there are several reasons for the observed
differences. First, SA* does not use state-set branching to compute child nodes
but instead relies on the less efficient two phase approach developed by Yuan
et al. Second, SA* stores expanded nodes without merging nodes with the
same g-cost. This is done by ghSetA* and may lead to significant space
savings. Third, 8-puzzle problems are very small (< 106 states) compared
with the benchmark problems considered in our evaluation. It is unclear to
what extent symbolic approaches pay off on such small problems. Fourth,
the state-space of an (N2 − 1)-puzzle is a subspace of a permutation space
consisting of all possible permutations of n elements. It is easy to show that
a BDD representation of a permutation space is exponentially more compact
than an explicit representation. It is, however, still exponential in the number
of elements in the permutation. For this reason, we may expect a high memory
consumption of BDD-based search on (N2 − 1)-puzzles. Indeed, we get fairly
weak results for fSetA* and ghSetA* on the 24 and 35-puzzle benchmarks.

Other related applications of BDDs for search include HTN planning [37],
STRIPS planning [12,16,56,23,33,10], universal planning [13,34], adversarial
planning [35,17], fault tolerant planning [36], conformant planning [14], plan-
ning with extended goals [47], planning under partial observability [5,6], and
shortest path search [53,52].

3 Search Problems

A search domain is a finite graph where vertices denote world states and edges
denote state transitions. Transitions are caused by activity in the world that
changes the world state deterministically. Sets of transitions may be defined
by actions , operator schemas, or guarded commands. In this article, however,
we will not consider such abstract transition descriptions. If a transition is
directed from state s to state s′, state s′ is said to be a successor of s and state
s is said to be the predecessor of s′. The number of successors emanating from
a given state is called the branching factor of that state. Since the domain
is finite, the branching factor of each state is also finite. Each transition is
assumed to have positive transition cost .

Definition 1 (Search Domain) A search domain is a triple D = 〈S, T , c〉
where S is a finite set of states, T ⊆ S × S is a transition relation, and
c : T → R

+ is a transition cost function.

A search problem is a search domain with a single initial state and a set of
goal states.

Definition 2 (Search Problem) Let D = 〈S, T , c〉 be a search domain. A

6

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

A B

C D h=1

21

h=2

h=0
1 G

1

1

h=1

s0

Fig. 1. An example search problem consisting of four states, five transitions, initial
state s0 = C, and a single goal state G = {B}. The dashed path is an optimal
solution. The h-costs associated with each state define the heuristic function used
in Section 4.

search problem for D is a triple P = 〈D, s0,G〉 where s0 ∈ S and G ⊆ S.

A solution π to a search problem is a path from the initial state to one of
the goal states. The solution length is the number of transitions in π and the
solution cost is the sum of the transition costs of the path.

Definition 3 (Search Problem Solution) Let D = 〈S, T , c〉 be a search
domain and P = 〈D, s0,G〉 be a search problem for D. A solution to P is
a sequence of states π = s0, . . . , sn such that sn ∈ G, and T (sj, sj+1) for
j = 0, 1, . . . , n − 1.

An optimal solution to a search problem is a solution with minimum cost. We
will use the symbol C∗ to denote the minimum cost. Figure 1 shows a search
problem example and an optimal solution.

4 Best-First Search

Best-first search algorithms are characterized by building a search tree super-
imposed over the state space during the search process. Each search node in
the tree is a pair 〈s, �e〉 where s is a single state and �e ∈ R

d is a d-dimensional
real vector representing the cost estimates associated with the node (e.g., �e
could be a two dimensional vector containing the g and h-cost associated with
a search node of A*). Figure 2 shows a general BFS algorithm. We assume that
the initial state is associated with cost estimate �e0. The solution extraction
function in line 5 simply obtains a solution by tracing back the transitions
from the goal node to the root node. expand in line 6 finds the set of child
nodes of a single node, and enqueueAll inserts each child in the frontier
queue.

7

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
function BFS(s0, �e0,G)
1 frontier ←makeQueue(〈s0, �e0〉)
2 loop
3 if |frontier | = 0 then return failure
4 〈s, �e〉 ←removeTop(frontier)
5 if s ∈ G then return extractSolution(frontier , 〈s, �e〉)
6 frontier ←enqueueAll(frontier ,expand(〈s, �e〉))

Fig. 2. The general best-first search algorithm.

A* is a BFS algorithm 6 that sorts the unexpanded nodes in the priority
queue in ascending order of the a cost estimate given by a heuristic evaluation
function f . The evaluation function is defined by

f(n) = g(n) + h(n),

where g(n) is the cost of the path in the search tree leading from the root node
to n, and h(n) is a heuristic function estimating the cost of a minimum cost
path leading from the state in n to some goal state. 7 Thus f(n) measures the
minimum cost over all solution paths constrained to go through the state in
n. The search tree built by A* for the example problem and heuristic function
defined in Figure 1 is shown in Figure 3.

C

AD

BC

f = 2

f = 2 f = 2

f = 4 f = 2

Fig. 3. Search tree example.

A* is sound and complete, since the node expansion operation is assumed to be
correct, and infinite cyclic paths have unbounded cost. A* further finds optimal
solutions if the heuristic function h(n) is admissible, that is, if h(n) ≤ h∗(n) for
all n, where h∗(n) is the minimum cost of a path going from the state in n to a

6 However, practical implementations of A* includes a closed list to detect duplicate
states.
7 For a heuristic function to be valid, we require that h(n) ≥ 0 for all n and h(n) = 0
for all n containing a goal state.

8

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
goal state. The heuristic function is called consistent if h(n) ≤ c(n, n′)+h(n′)
for every successor node n′ of n. The complexity of A* is directly tied to the
accuracy of the estimates provided by h. When A* employs a perfectly in-
formed heuristic (h(n) = h∗(n)) and f -cost ties are broken by giving highest
priority to the node with lowest h-cost, it is guided directly toward the closest
goal. At the other extreme, when no heuristic at all is available (h(n) = 0),
the search becomes exhaustive, normally yielding exponential complexity. In
general, A* with duplicate elimination using a consistent heuristic has linear
complexity if the absolute error of the heuristic function is constant, but it
may have exponential complexity if the relative error is constant. Subexpo-
nential complexity requires that the growth rate of the error is logarithmically
bounded [46]

|h(n) − h∗(n)| ∈ O(log h∗(n)).

The complexity results are discouraging due to the fact that practical heuristic
functions often are based on a relaxation of the search problem that causes
h(n) to have constant or near constant relative error. The results show that
practical application of A* still may be very search intensive. Often better
performance of A* can be obtained by weighting the g and h-component of
the evaluation function [48]

f(n) = (1 − w)g(n) + wh(n), where w ∈ [0, 1]. (1)

Weights w = 0.0, 0.5, and 1.0 correspond to uniform cost search, A*, and
greedy best-first search. Weighted A* is optimal in the range [0.0, 0.5] if the
heuristic function is admissible but often finds solutions faster in the range
(0.5, 1].

5 State-Set Branching

The state-set branching framework has two independent parts: a modification
of the general BFS algorithm to a new algorithm called best-set-first search
(BSFS), and a collection of BDD-based techniques for implementing the new
algorithm efficiently. In this section, we will describe the BSFS algorithm. In
the next section, we show how it is implemented with BDDs.

9

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

BA

DC

h=1

h=2 h=1

h=0

G

s0

δf = 0

δf = 0

δf = 2

δf = 3δf = 0

Fig. 4. The example search problem with δf costs.

5.1 Best-Set-First Search

Assume that each transition T (s, s′) for a particular heuristic search algo-
rithm changes the cost estimates with δ�e(s, s′). Thus if s is associated with
cost estimates �e and s′ is reached by T (s, s′) then s′ will be associated with
cost estimates �e + δ�e(s, s′). For A*, the cost estimates can be one or two di-
mensional: either it is the f -cost or the g and h-cost of a search node. In the
first case δ�e(s, s′) is the f -cost change caused by the transition. The δf costs
of our example problem are shown in Figure 4. The BSFS algorithm shown in
Figure 5 is almost identical to the BSFS algorithm defined in Figure 2. How-
ever, the state set version traverses a search tree during the search process
where each search node contains a set of states associated with the same cost
estimates. Multiple states in each node emerge because child nodes having

function BSFS(s0, �e0,G)
1 frontier ←makeQueue(〈{s0}, �e0〉)
2 loop
3 if |frontier | = 0 then return failure
4 〈S,�e〉 ←removeTop(frontier)
5 if S ∩ G = ∅ then return extractSolution(frontier , 〈S ∩ G, �e〉)
6 frontier ←enqueueAndMerge(frontier,stateSetExpand(〈S,�e〉))

Fig. 5. The best-set-first search algorithm.

identical cost estimates are coalesced by stateSetExpand in line 6 and be-
cause enqueueAndMerge may merge child nodes with nodes on the frontier
queue having identical cost estimates. The state-set expansion function is de-
fined in Figure 6. The next states of some child associated with cost estimates
�e are stored in child [�e]. The outgoing transitions from each state in the parent
node are used to find all successor states. The function makeNodes called
at line 6 constructs the child nodes from the completed child map. Each child
node contains states having identical cost estimates. However, there may exist
several nodes with the same cost estimates. In addition, makeNodes may
prune some of the child states (e.g., to implement duplicate elimination in

10

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
A*).

As an example, Figure 7 shows the search tree traversed by the BSFS algo-
rithm for A* applied to our example problem. In order to reduce the number
of search nodes even further, enqueueAndMerge of the BSFS algorithm
may merge nodes on the search frontier having identical cost estimates. This
transforms the search tree into a Directed Acyclic Graph (DAG), but as proven
in the appendix this does not affect the soundness of the BSFS algorithm. The
extractSolution function in line 5 uses the backward traversal described
in the proof of Lemma 7 to extract a solution. It is not possible to show com-
pleteness of the BSFS algorithm since it covers incomplete algorithms such as
greedy best-first search.

5.2 The fSetA* and ghSetA* Algorithms

The BSFS algorithm can be used to implement variants of greedy best-first
search, A*, weighted A*, uniform cost search, and beam search. To simplify
the presentation of BSFS, we have only described its tree-search version, where
states may be repeated many times in the search tree. In a concrete application
of BSFS, however, a closed list of expanded states is maintained to eliminate

function stateSetExpand(〈S,�e〉)
1 child ← emptyMap
2 foreach state s in S
3 foreach transition T (s, s′)
4 �ec ← �e + δ�e(s, s′)
5 child [�ec] ← child [�ec] ∪ {s′}
6 return makeNodes(child)

Fig. 6. The state set expand function.

A, D

C

C B

f = 2

f = 2

f = 4 f = 2

Fig. 7. State-set search tree example.

11

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
many of these duplicates. The elimination strategy depends on the application
and will be discussed independently for each algorithm below. 8

Greedy best-first search is implemented by using the values of the heuristic
function as cost estimates and sorting the nodes on the frontier in ascending
order, such that the top node contains states with least h-cost. The cost esti-
mate of the initial state is �e0 = h(s0) and each transition T (s, s′) is associated
with the change in h, that is, δ�e(s, s′) = h(s′) − h(s). In each iteration, this
greedy best-first search algorithm will expand all states with least h-cost on
the frontier. A strategy for eliminating duplicates that does not compromise
completeness is to subtract all the states in the closed list from the set of
states to expand.

A* can be implemented by setting �e0 = h(s0) and δ�e(s, s′) = c(s, s′) + h(s′)−
h(s) such that the cost estimates equal the f -cost of search nodes. Again
nodes on the frontier are sorted in ascending order and the node with least
f -cost is expanded in each iteration. If the heuristic is consistent, a strategy
for eliminating duplicates that does not compromise optimality is to subtract
all the states in the closed list from the set of states to expand. However,
since this is not possible in general for admissible heuristics, we consider an
implementation without duplicate elimination called fSetA*. The fSetA*

algorithm always merges nodes on the frontier associated with the same f -
cost. 9

An A* implementation with duplicate elimination that does not require the
heuristic function to be admissible or consistent must keep track of the g and
h-cost separately and prune child states reached previously with a lower g-cost.
To achieve this, we can define �e0 = (0, h(s0)) and δ�e(s, s′) = (c(s, s′), h(s′) −
h(s)). The frontier is, as usual, sorted according to the evaluation function
f(n) = g(n) + h(n). An implementation that uses the above strategy for
eliminating duplicates is called ghSetA*. Compared to fSetA*, ghSetA*
merges nodes that have identical g and h-costs. Thus there may be several
nodes on the frontier with same f -cost but different g and h-costs. In each
iteration, ghSetA* may therefore only expand a subset of the states on the
frontier with minimum f -cost. A number of other improvements have been
integrated in ghSetA*. First, it applies the usual tie breaking rule for nodes
with identical f -cost choosing the node with the least h-cost. Thus, in situa-
tions where all nodes on the frontier have f(n) = C∗, the algorithm focuses
the search in a DFS fashion. The reason is that a node at depth level d in
this situation must have greater h-cost than a node at level d + 1 due to the

8 The graph-search version of BSFS never re-expands a state. This strategy, how-
ever, may compromise optimality for some applications.
9 Another reason for studying this algorithm is that it expands the same set of
states as BDDA*.

12

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
non-negative transition costs. In addition, it only merges two nodes on the
frontier if the space used by the resulting node is less than an upper-bound
u. This may help to focus the search further in situations where there is an
abundance of solutions, but space requirements of the frontier nodes grow fast
with the search depth.

Both ghSetA* and fSetA* can easily be extended to the weighted A* al-
gorithm described in Section 4. Using an approach similar to the one used by
Pearl [46], fSetA* and ghSetA* can be shown to be optimal given an ad-
missible heuristic. In particular this is true when using the trivial admissible
heuristic function h(n) = 0 of uniform cost search. The proofs are given in the
appendix. 10

6 BDD-based Implementation

The motivation for defining the BSFS algorithm is that it can be efficiently
implemented with BDDs. In this section, we describe how to represent sets of
states implicitly with BDDs and develop a technique called branching parti-
tioning for expanding search nodes efficiently.

6.1 The BDD Representation

A BDD is a decision tree representation of a Boolean function on a set of
linearly ordered arguments. The tree is reduced by removing redundant tests
on argument variables and reusing structure. This transforms the tree into a
rooted directed acyclic graph and makes the representation canonical. BDDs
have several advantages: first, many functions encountered in practice (e.g.,
symmetric functions) have polynomial size, second, graphs of several BDDs
can be shared and efficiently manipulated in multi-rooted BDDs, third, with
the shared representation, equivalence and satisfiability tests on BDDs take
constant time, and finally, fourth, the 16 Boolean operations on two BDDs x
and y have time and space complexity O(|x||y|) [9]. A disadvantage of BDDs
is that there may be an exponential size difference depending on the ordering
of the variables. However, powerful heuristics exist for finding good variable
orderings [44]. For a detailed introduction to BDDs, we refer the reader to
Bryant’s original paper [9] and the books [44,58].

10 Notice that it follows from the optimality proof given in the appendix that
fSetA* and ghSetA* are complete.

13

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
G

s0

δf = 0

δf = 0

δf = 2

(0,1) (1,1)

(1,0)(0,0)h=2

h=1

h=1

h=0

δf = 0 δf = 3

Fig. 8. Boolean state encoding of the example search problem.

6.2 BDD-based State Space Exploration

BDDs were originally applied to digital circuit verification [1]. More relevant,
however, for the work presented in this article, they were later applied in
model checking using a range of techniques collectively coined symbolic model
checking [42]. During the last decade BDDs have successfully been applied
to verify very large transition systems. The essential computation applied in
symbolic model checking is an efficient reachability analysis where BDDs are
used to represent sets of states and the transition relation.

Search problems can be solved using the standard machinery developed in
symbolic model checking. Let D = 〈S, T , c〉 be a search domain. Since the
number of states S is finite, a vector of n Boolean variables �v ∈ B

n can be
used to represent the state space. In the remainder, let Z denote the set of
variables in �z. The variables V of �v are called state variables. A set of states
S can be represented by a characteristic function S(�v) on �v. Thus, a BDD can
represent any set of states. The main efficiency of the BDD representation is
that the cardinality of the represented set is not directly related to the size of
the BDD. For instance, the BDD of the constant function True has a single
node and can represent all states in the domain no matter how many there
are. In addition, the set operations union, intersection and complementation
simply translate into disjunction, conjunction, and negation on BDDs.

In a similar way, the transition relation T can be represented by a characteris-
tic function T (�v,�v ′). We refer to �v and �v ′ as current and next state variables,
respectively. To make this clear, two Boolean variables �v = (v0, v1) are used
in Figure 8 to represent the four states of our example problem. 11 The initial
state s0 and goal state G are represented by two BDDs for the expressions

11 Readers interested in studying the structure of BDD graphs representing sets of
states and transition relations are referred to the work by Edelkamp and Reffel
[21,16]. In this article, we consider BDDs an abstract data type for manipulating
Boolean functions and focus on explaining how implicit search can be performed by
manipulating these functions.

14

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
¬v0 ∧ ¬v1 and v0 ∧ v1, respectively. The transition relation is represented by
a BDD equal to the Boolean function

T (�v,�v ′) = ¬v0 ∧ ¬v1 ∧ v′
0 ∧ ¬v′

1 ∨ ¬v0 ∧ ¬v1 ∧ ¬v′
0 ∧ v′

1

∨ ¬v0 ∧ v1 ∧ v′
0 ∧ v′

1 ∨ v0 ∧ v1 ∧ v′
0 ∧ ¬v′

1

∨ v0 ∧ ¬v1 ∧ ¬v′
0 ∧ ¬v′

1.

The crucial idea in BDD-based or symbolic search is to stay at the BDD level
when finding the next states of a set of states. A set of next states can be
found by computing the image of a set of states S encoded in current state
variables

img(S) =
(
∃�v . S(�v) ∧ T (�v,�v ′)

)
[�v ′/�v].

The previous states of a set of states is called the preimage and are computed
in a similar fashion. The operation [�v ′/�v] is a regular variable substitution.
Existential quantification is used to abstract variables in an expression. Let vi

be one of the variables in the expression e(v0, . . . , vn), we then have

∃vi . e(v0, . . . , vn) = e(v0, . . . , vn)[vi/False] ∨ e(v0, . . . , vn)[vi/True].

Existentially quantifying a Boolean variable vector involves quantifying each
variable in turn.

To illustrate the image computation, consider the first step of a search from
s0 in the example problem. We have S(v0, v1) = ¬v0 ∧ ¬v1. Thus

img(S)= (∃(v0, v1) .¬v0 ∧ ¬v1 ∧ T (v0, v1, v
′
0, v

′
1))[(v

′
0, v

′
1)/(v0, v1)]

= (v′
0 ∧ ¬v′

1 ∨ ¬v′
0 ∧ v′

1)[(v
′
0, v

′
1)/(v0, v1)]

= v0 ∧ ¬v1 ∨ ¬v0 ∧ v1,

which as expected corresponds to state (1, 0) and (0, 1). It is straightforward
to implement uninformed or blind BDD-based search algorithms using the im-
age and preimage computations. The forward breadth-first search algorithm,
shown in Figure 9, computes the set of frontier states with the image compu-
tation. The set reached contains all explored states and is used to prune a new
frontier from previously visited states. A solution is constructed by traversing
the forward frontiers backward from a reached goal state to the initial state.
This computation always has much lower complexity than the forward search,
since the preimage computation in each iteration can be restricted to a BDD
representing a single state.

15

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
function Forward Breadth-First Search(s0(�v))
1 reached ← ∅; forwardFrontier0 ← s0; i ← 0
2 while forwardFrontier i ∧ G = ∅
3 i ← i + 1
4 forwardFrontier i ←img(forwardFrontier i−1) ∧ ¬reached
5 reached ← reached ∨ forwardFrontier i

6 if forwardFrontier i = False return failure
7 return extractSolution(forwardFrontier)

Fig. 9. BDD-based forward breadth-first search.

Backward breadth-first search can be implemented in a similar fashion using
the preimage to find the frontier states. The two algorithms are easily com-
bined into a bidirectional search algorithm. In each iteration, this algorithm
either computes the frontier states in forward or backward direction. If the set
of frontier states is empty the algorithm returns failure. If an overlap between
the frontier states and the reached states in the opposite direction is found
the algorithm extracts and returns a solution. Otherwise the search continues.
A good heuristic for deciding which direction to search in is simply to choose
the direction where the previous frontier took least time to compute. When
using this heuristic, bidirectional search has similar or better performance
than both forward and backward search, since it will transform into one of
these algorithms if the frontiers always are faster to compute in a particular
direction. 12

6.3 Partitioning

A common problem when computing the image and preimage is that the in-
termediate BDDs tend to be large compared to the BDD representing the
result. Another problem is that the transition relation may grow very large if
represented by a single BDD (a monolithic transition relation). In symbolic
model checking one of the most successful approaches to solve these problems
is transition relation partitioning [11]. The technique relies on the observa-
tion that a system often can be characterized as either asynchronous with
interleaved activity or synchronous with simultaneous activity. Consider the
system model shown in Figure 10. During each transition of the system, the
state variables V are updated. Assume that subsystem i determines the next
value of the state variables Y ′

i given the current value of the state variables
Xi and is characterized by the transition relation Pi(�xi, �y

′
i). If the system is

asynchronous, only a single of the m subsystems is active during a transition

12 Unless a first step in an inferior direction dominates the total search time. How-
ever, we have not experienced this in practice.

16

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
P1(�x1, �y

′
1)

P2(�x2, �y
′
2)

Pm(�xm, �y ′
m)

v′1

v′n

v1

v2

vn

v′2

State i State i + 1

Fig. 10. System model.

and only the next state variables of this subsystem change value. Otherwise,
if the system is synchronous, each subsystem is active during a transition. In
the asynchronous case, the total transition relation is given by

T (�v,�v ′) =
m∨

i=1

(
Pi(�xi, �y

′
i) ∧

∧

v′ �∈Y ′
i

(v′ ⇔ v)
)
.

To ease the presentation, assume that Yi for i = 1..m in the synchronous
case is a partitioning of the state variables. 13 The transition relation in the
synchronous case is then given by

T (�v,�v ′) =
m∧

i=1

Pi(�xi, �y
′
i).

Thus, the transition relation is either represented by a disjunctive partitioning
or a conjunctive partitioning of subrelations.

The main point about partitioning is that the complete transition relation
never needs to be computed since both the image and preimage computations
can be carried out directly on the subrelations. The asynchronous system
model fits to most search problems since these often are characterized by
changing a small subset of the state variables during each transition. The
image computation in the asynchronous case is

img(S) =
m∨

i=1

(
∃�yi . S(�v) ∧ Pi(�xi, �y

′
i)

)
[�y ′

i/�yi].

A similar approach can be used to simplify the preimage computation. No-
tice that we exploit that all variables except the ones modified by the active
subsystem are unchanged. Thus, no quantification over these variables is nec-
essary. This often has a substantial positive effect on the complexity of the

13 It is easy extend the approaches to the general case.

17

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
computation. The reason is that the complexity of quantification on BDDs
may be exponential in the number of quantified variables. In practice, it is
often an advantage to merge some of the subrelations [50] and combine the
quantification and disjunction operation to a single specialized BDD opera-
tion.

For the domain shown in Figure 8, we can merge the transitions into two
partitions P1 and P2 of a disjunctive partitioning, where P1 only modifies v0

and P2 only modifies v1. P1 consists of transitions (0, 0) → (1, 0), (0, 1) →
(1, 1), and (1, 0) → (0, 0), and P2 consists of transitions (0, 0) → (0, 1) and
(1, 1) → (1, 0)

P1((v0, v1), (v
′
0)) =¬v0 ∧ ¬v1 ∧ v′

0 ∨ ¬v0 ∧ v1 ∧ v′
0 ∨ v0 ∧ ¬v1 ∧ ¬v′

0,

P2((v0, v1), (v
′
1)) =¬v0 ∧ ¬v1 ∧ v′

1 ∨ v0 ∧ v1 ∧ ¬v′
1.

The synchronous system model fits to search problems where each transition is
due to simultaneous activity (e.g., centralized multi-agent planning [34]). The
image computation is more complicated in the conjunctive case due to the fact
that existential quantification does not distribute over conjunction. However,
a subrelation can be moved out of scope of an existential quantification if it
does not depend on any of the variables being quantified. This technique is
often referred to as early quantification. We get

img(S) =
(
∃�zm . (· · · (∃�z1 . S(�v) ∧ P1(�x1, �y

′
1)) · · ·) ∧ Pm(�xm, �y ′

m)
)
[�v ′/�v],

where Zi ∩ ⋃m
j=i+1 Xj = ∅ for 1 ≤ i < m and

⋃m
i=1 Zi = V . Again, a similar

approach can be used to simplify the preimage computation.

As an example, consider a system with two state variables v0 and v1 and two
concurrent activities P1(v0, v

′
0) = ¬v0 ∧v′

0 and P2(v1, v
′
1) = ¬v1 ∧v′

1. An image
computation using early quantification from the state S(�v) = ¬v0∧¬v1 would
then be

img(S)=
(
∃�v1 . (∃�v0 . S(�v) ∧ P1(v0, v

′
0)) ∧ P2(v1, v

′
1)

)
[�v ′/�v]

=
(
∃�v1 . (∃�v0 .¬v0 ∧ ¬v1 ∧ v′

0) ∧ P2(v1, v
′
1)

)
[�v ′/�v]

=
(
∃�v1 . (¬v1 ∧ v′

0) ∧ ¬v1 ∧ v′
1

)
[�v ′/�v]

= v0 ∧ v1.

Thus as expected, the image contains a single state where the value of both
state variables has been changed from False to True.

18

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
A large number of heuristics have been developed for choosing and arranging
partitions in the conjunctive case (e.g., [50,43]). The main idea is to avoid a
blow up of the intermediate BDDs of the image and preimage computation
by reducing the life span of variables. Assume that a variable is introduced
in the computation by partition i and that the variable is removed again by
the existential quantification associated with partition j. The life span of the
variable is then j − i.

6.4 The BDD-based BSFS Algorithm

The BSFS algorithm represents the states in each search node by a BDD.
This may lead to exponential space savings compared to the explicit state
representation used by the BFS algorithm. In addition, search nodes with
similar BDDs may share structure in the multi-rooted BDD representation.
This may further reduce the memory consumption substantially.

However, if we want an exponential space saving to translate into an exponen-
tial time saving, we also need an implicit approach for computing the expand
operation. The image computation can be applied to find all next states of a
set of states implicitly, but we need a way to partition the next states into
child nodes with the same cost estimates. The expand operation could be car-
ried out in two phases, where the first finds all the next states using the image
computation, and the second splits this set of states into child nodes [59]. A
more direct approach, however, is to split up the image computation such that
the two phases are combined into one. We call this a branching partitioning.

6.4.1 Disjunctive Branching Partitioning

For disjunctive partitioning the approach is straightforward. We simply ensure
that each partition contains transitions with the same cost estimate change.
The result is called a disjunctive branching partitioning .

Definition 4 (Disjunctive Branching Partitioning) A disjunctive branch-
ing partitioning is a disjunctive partitioning P1(�x1, �y

′
1), . . . , Pm(�xm, �y ′

m) where
each subrelation represents a set of transitions with the same cost estimate
change.

Notice, that there may exist several partitions with the same cost estimate
change. This makes it possible to optimize disjunctive branching partitionings
such that each partition only modifies a small set of next states variables.

So far, an unresolved problem is how to find the cost estimate change of each
transition efficiently. Since cost estimates are based on a heuristic function h,

19

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
this involves determining δh for each transition. It is intractable to compute
h(s) explicitly for each state since the number of states grows exponentially
with the number of state variables of the domain. In practice, however, it turns
out that δh of an action often is independent of which state it is applied in.
This is not a coincidence. Heuristics are relaxations that typically are based
on ignoring interactions between actions in the domain. Thus, the effect of
an action can often be associated with a particular δh value. In the worst
case, it may be necessary to encode the heuristic function symbolically with
a BDD h(�b, �v) where the vector of Boolean variables �b encodes the heuristic
value in binary of the state represented by �v. We can then compute δh(s, s′)
symbolically with

δh(�v,�v ′, �d) ≡ h(�b, �v) ∧ h(�b ′, �v ′) ∧ �d = �b ′ −�b,

where �d encodes the value of δh(s, s′) in binary. This computation avoids it-
erating over all states. In addition, it only needs to be carried out once prior
to search. For all of the heuristics studied in this article (including several
classical heuristics), it has not been necessary to perform this symbolic com-
putation. Instead, the δh value of each action has been independent or close
to independent of the state the action is applied in.

For the domain shown in Figure 8, a valid disjunctive branching partitioning
is

P1((v0, v1), (v0)) = ¬v0 ∧ ¬v1 ∧ v′
0 ∨ ¬v0 ∧ v1 ∧ v′

0 δf1 = 0,

P2((v0, v1), (v0)) = v0 ∧ ¬v1 ∧ ¬v′
0 δf2 = 2,

P3((v0, v1), (v1)) = ¬v0 ∧ ¬v1 ∧ v′
1 δf3 = 0,

P4((v0, v1), (v1)) = v0 ∧ v1 ∧ ¬v′
1 δf4 = 3.

Assume that P is a disjunctive branching partitioning where the cost estimate
change associated with subrelation i is δ�ei. Let imgi(S) denote the image of
the transitions in subrelation i

imgi(S) ≡
(
∃�yi . S(�v) ∧ Pi(�xi, �y

′
i)

)
[�y ′

i/�yi].

The StateSetExpand function in Figure 6 can then be implemented with
BDDs as shown in Figure 11. We assume that child [�e] = False if no entry
exists in child with key �e.

6.4.2 Conjunctive Branching Partitioning

An efficient implicit node expansion computation is also possible to define for a
conjunctive partitioning. Consider the synchronous composition of the m sub-

20

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
function DisjunctiveStateSetExpand(〈S(�v), �e〉)
1 child ← emptyMap
2 for i = 1 to |P|
4 �ec ← �e + δ�ei

5 child [�ec] ← child [�ec] ∨ imgi(S)
6 return makeNodes(child)

Fig. 11. The state set expand function for a disjunctive branching partitioning.

systems in Figure 10. Assume that the cost estimate change of a joint activity
equals the sum of cost estimate changes of each activity. We can then represent
a conjunctive branching partitioning as m disjunctive branching partitionings
where each disjunctive branching partitioning represents the subrelations of
the activities.

Definition 5 (Conjunctive Branching Partitioning) A conjunctive
branching partitioning P1, . . . , Pm is a set of disjunctive branching partition-
ings Pi(�xi, �y

′
i) = R1

i (�xi, �y
′
i), . . . , R

ri
i (�xi, �y

′
i) for 1 ≤ i ≤ m.

Since the subsystems are synchronous, we require that the sets of variables in
�y ′

1, . . . , �y
′
m form a partitioning of the state variables V ′. Assume that the cost

estimate change of Rj
i (�xi, �y

′
i) is δ�e j

i . As an example, Rj
i could represent action

transitions with cost estimate change δ�e j
i of agent i in a multi-agent system

consisting of m synchronized agents.

Further let

SubComp
j
i (φ) ≡ ∃�zi . φ(�v,�v ′) ∧ Rj

i (�xi, �y
′
i),

where φ represents an intermediate computation result. As for an ordinary
conjunctive image computation, we require Zi ∩

⋃m
j=i+1 Xi = ∅ for 1 ≤ i < m

and
⋃n

i=1 Zi = V . The conjunctive state-set expansion function is then defined
as shown in Figure 12. The outer loop of the function performs m iterations.
In iteration i, the next value of the variables �yi is computed. In the end, the
map layer i contains sets of next states of subsystem 1 to i with identical cost
estimates. We assume layer i[�e] = False if no entry exists in layer i with key �e.
In the worst case, the number of child nodes will grow exponentially with the
number of activities. However, in practice this blow-up of child nodes may be
avoided due to the merging of nodes with identical cost estimates during the
computation.

As an example consider computing ConjunctiveStateSetExpand(〈S, 5〉)
for some set of states S for a problem with a scalar cost estimate e and four
concurrent subsystems each with transitions either changing e with −1, 0, or
1. Thus δe1

i = −1, δe2
i = 0, and δe3

i = 1 for i = 1..4. Figure 13 shows the

21

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
function ConjunctiveStateSetExpand(〈S(�v), �e 〉)
1 layer 0 ← emptyMap
2 layer 0[�e] ← S
3 for i = 1 to m
4 layer i ← emptyMap
5 foreach entry 〈φ,�ei−1 〉 in layeri−1

6 for j = 1 to ri

7 �ei ← �ei−1 + δ�e j
i

8 layer i[�ei] ← layer i[�ei] ∨ SubComp
j
i (φ)

9 child ← layerm[�v ′/�v]
10 return MakeNodes(child)

Fig. 12. The StateSetExpand function for a conjunctive branching partitioning.

layer0

layer1

layer2

layer3

layer4
e

5 6 7 84321 9

Fig. 13. Entries in layeri of ConjunctiveStateSetExpand(〈S, 5〉) for a problem
with four concurrent subsystems each with transitions associated with cost estimate
changes {−1, 0, 1}.

entries in layer0, . . . , layer4. As depicted, the number of entries in the final
layer is 9. For the kind of activities considered in this example, the number of
child nodes only grows linearly with the number of concurrent activities.

7 Experimental Evaluation

Even though weighted A* and greedy best-first search are subsumed by the
state-set branching framework, the experimental evaluation in this article fo-
cuses on algorithms performing search similar to A*. There are several reasons
for this. First, we are interested in finding optimal or near optimal solutions,
and for greedy best-first search, the whole emphasis would be on the quality
of the heuristic function rather than the efficiency of the search approach. Sec-
ond, the behavior of A* has been extensively studied, and finally, we compare
with BDDA*. Readers interested in the performance of state-set branching
algorithms of weighted A* with other weight settings than w = 0.5 (see Equa-
tion 1) are referred to the work by Jensen et al. [30].

We have implemented a general search engine in C++ using the BuDDy BDD

22

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
ghSetA* : The ghSetA* algorithm with evaluation function f(n) =

g(n) + h(n).

fSetA* : The fSetA* algorithm with evaluation function f(n) =
g(n) + h(n).

Bidir : BDD-based blind breadth-first bidirectional search using
the heuristic for choosing search direction described in Sec-
tion 6.2.

A* : Ordinary A* with duplicate elimination, explicit state rep-
resentation, and evaluation function f(n) = g(n) + h(n). 15

BDDA* : The BDDA* algorithm as described in [21].

iBDDA* : An improved version of BDDA* described below.
Table 1
The six search algorithms compared in the experimental evaluation.

package 14 [38]. This package has two major parameters: 1) the number of
BDD-nodes allocated to represent the shared BDD (n), and 2) the number
of BDD nodes allocated to represent BDDs in the operator caches used to
implement dynamic programming (c). The input to the search engine is a
search problem defined in the STRIPS part of PDDL [41] or an extended
version of NADL [34] with action costs. The output of the search engine is a
solution found by one of the six search algorithms described in Table 1.

The ghSetA*, fSetA*, and Bidir search algorithms have been implemented
as described in this article. The ordinary A* algorithm manipulates and rep-
resents states explicitly. For FGk, DxV yMz , and the (N2 − 1)-puzzles, spe-
cialized algorithms with customized state representations have been developed
to minimize the space consumption. For planning problems states have been
encoded explicitly as sets of facts and actions have been represented in the
usual STRIPS fashion. All of the ordinary A* algorithms use the same strategy
as ghSetA* to eliminate duplicates. Thus, all states that already have been
visited previously with lower or equal g-costs are eliminated. The BDDA* al-
gorithm has been implemented as described in [21]. The algorithm presented
in this article is shown in Figure 14. It can only solve search problems in
domains with unit transition costs. The search frontier is represented by a
single BDD open(�f,�v). This BDD is the characteristic function of a set of
states paired with their f -cost. The state is encoded as usual by a Boolean
vector �v and the f -cost is encoded in binary by the Boolean vector �f . Similar
to fSetA*, BDDA* expands all states min(�v) with minimum f -cost (fmin)
in each iteration. The f -cost of the child states is computed by arithmetic

14 We also made experiments using the CUDD package [55], but did not obtain
significantly better results than with the BuDDy package.
15 For planning problems each state is represented by the set of true facts in the
state. Since a set of states for a fixed number of facts uses space linear in the size
of the set, we consider it an explicit state representation.

23

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
function BDDA*(s0(�v))

1 open(�f,�v) ← h(�f,�v) ∧ s0(�v)
2 while (open = ∅)
3 (fmin ,min(�v), open ′(�f,�v)) ←goLeft(open)
4 if (∃�v . (min(�v) ∧ G(�v)) return fmin

5 open ′′(�f ′, �v ′) ← ∃�v .min(�v) ∧ T (�v,�v ′)∧
6 ∃�e . h(�e, �v) ∧ ∃�e ′ . h(�e ′, �v ′) ∧ (�f ′ = fmin + �e ′ − �e + 1)

7 open(�f,�v) ← open ′(�f,�v) ∨ open ′′(�f ′, �v ′)[�f ′ \ �f,�v ′ \ �v]

Fig. 14. The BDDA* algorithm.

operations at the BDD level (line 5 and 6). The change in h-cost is found by
applying a symbolic encoding of the heuristic function to the child and parent
state. BDDA* is able to find optimal solutions, but the algorithm only returns
the path cost of such solutions. In our implementation, we therefore added a
function for tracing a solution backward. In the domains we have investigated,
this extraction function has low complexity, as did those for ghSetA* and
fSetA*. Our implementation of BDDA* shows that it often can be improved
by: (1) defining a computation of open ′′ using a disjunctive partitioned tran-
sition relation instead of monolithic transition relation as in line 5 and 6, (2)
precomputing the arithmetic operation at the end of line 6 for each possible
f -cost, (3) interleaving the BDD variables of �f , �e, and �e ′ to improve the arith-
metic BDD operations, and (4) moving this block of variables to the middle of
the BDD variable ordering to reduce the average distance to dependent state
variables. All of these improvements except the last have been considered to
some degree in later versions of BDDA* [16]. The last improvement, however,
is actually antagonistic to the recommendation of the BDDA* inventors who
locate the �f variables at the beginning of the variable ordering to simplify the
goLeft operation. However, we get up to a factor of two speed up with the
above modification. The improved algorithm is called iBDDA*.

In order to factor out differences due to state encodings and BDD compu-
tations, all BDD-based algorithms use the same bit vector representation of
states, the same variable ordering of the state variables, and similar space al-
location and cache sizes of the BDD package. This is necessary since a dissim-
ilarity in just one of the above mentioned properties may cause an exponential
performance difference. All algorithms share as many subcomputations as pos-
sible, but redundant or unnecessary computations are never carried out for a
particular instantiation of an algorithm. The performance parameters of the
search engine are shown in Table 2. Time is measured in seconds. The time
ttotal −trel −tsearch is spent on allocating memory for the BDD package, parsing
the problem description and in case of PDDL problems analyzing the prob-
lem in order to make a compact Boolean state encoding (the domain analysis
method is explained in Section 7.4). For all domains, the size of the state space

24

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
ttotal : The total elapsed CPU time of the search engine.

trel : Time to generate the transition relation. For BDDA* and
iBDDA*, this also includes building the symbolic represen-
tation of the heuristic function and f -formulas.

tsearch : Time to search for and extract a solution.

|sol | : Solution length.

|expand | : For Bidir this is the average size of the BDDs representing
the search frontier. For fSetA* and ghSetA*, it is the
average size of BDDs of search nodes being expanded. For
BDDA* and iBDDA*, it is the average size of open ′′.

|Q|max : Maximal number of nodes on the frontier queue.

|T | : Sum of number of nodes of BDDs representing the parti-
tioned transition relation.

it : Number of iterations of the algorithm.
Table 2
The performance parameters of the search engine.

is given as the number of possible assignments to the Boolean state variables
used to represent the domain. All experiments except the ones on the Pipes
World and Free Cell domain are carried out on a Linux 2.4 PC with a 500
MHz Pentium III CPU, 512 KB L2 cache, and 512 MB RAM. Experiments
on the Pipes World and Free Cell domain has been carried out on a Linux
Linux 2.6 PC with a 3.20GHz Intel Xeon CPU, 1024KB L2 cache, and 3GB
RAM. Time out and out of memory are indicated by Time and Mem. Time
out changes between the experiments. The algorithms are considered out of
memory when they start page faulting to the hard drive.

Our experiments cover a wide range of search domains and heuristics. The
first domain FGk uses the minimum Hamming distance as heuristic function.
It has been artificially designed to demonstrate that ghSetA* may have expo-
nentially better performance than single-state A*. Next, we consider another
artificial domain called the DxV yMz puzzle again using the minimum Ham-
ming distance as heuristic function. The purpose of this domain is to show
the scalability of state-set branching as a function of the dependency between
objects in the domain. In particular, it demonstrates how the u parameter of
ghSetA* can be used to focus the search on a subset of optimal paths when
there is an abundance of these. We then turn to studying several well-known
search domains including the (N2-1)-puzzles and STRIPS [22] planning prob-
lems from the international planning competitions 1998-2004. We start by
examining the 24 and 35-puzzles using the usual sum of Manhattan distances
as heuristic function. The planning domains include Blocks World, Logistics,
Gripper, Zeno Travel, Pipes World, and Free Cell. The experiments on plan-
ning domains are interesting since they consider a backward search guided by
an approximation to the HSPr heuristic [8]. In the final experiment, we show

25

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
an example of state-set branching using a conjunctive branching partitioning.
We study a range of channel routing problems from VLSI design produced
from two circuits of the ISCAS-85 benchmarks [57] using a specialized heuris-
tic function.

7.1 FGk

This problem is a modification of Barret and Weld’s D1S1 problem [4]. The
problem is easiest to describe in STRIPS. Thus, a state is a set of facts and
actions are fact triples defining sets of transitions. In a given state S, an action
defined by 〈pre, add , del〉 is applicable if pre ⊆ S, and the resulting state is
S ′ = (S ∪ add) \ del . The actions are

A1
1 A1

i , i = 2, . . . , n A2
i , i = 1, . . . , n

pre : {F ∗} pre : {F ∗, Gi−1} pre : {}
add : {G1} add : {Gi} add : {Fi}
del : {} del : {} del : {F ∗}.

Each action is assumed to have unit cost. The initial state is {F ∗} and the
goal state is {Gi|k < i ≤ n}. Action A1

i produces Gi given that Gi−1 and F ∗

belong to the current state. In each state, however, the actions A2
1, . . . ,A

2
n are

also applicable and they consume F ∗. Thus, if one of these actions is applied
no further A1

i actions can be applied. This means that the only solution is
A1

1, . . . ,A
1
n. The purpose of the A2

i actions is to make the decision of which
action to apply in each state non-trivial. Without guidance the average number
of states that must be visited in order to find a solution grows exponentially
with the search depth.

This domain has been artificially designed to demonstrate the advantage of
using BDDs to implicitly represent sets of states as done by ghSetA* com-
pared to representing states explicitly as done by the ordinary single-state A*
algorithm.

A state is represented by a vector of Boolean state variables

(G1, . . . , Gn, F1, . . . , Fn, F ∗).

Hence, in the initial state F ∗ is true, while all the other state variables are
false. In a goal state, the state variables Gk+1, . . . , Gn are true while all other
state variables may have arbitrary truth value. The heuristic value h(s) of
a state s is the minimum Hamming distance to a goal states. That is the
number of goal state variables (Gk+1, . . . , Gn) that are false in the state s.
Since the heuristic function gives no information to guide the search on the
first k steps, we may expect the complexity of the ordinary A* algorithm to
grow exponentially with k.

26

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
ot

al
 C

P
U

 ti
m

e
(lo

g
sc

al
e)

Number of unguided steps (k)

ghSetA*
A*

Fig. 15. Total CPU time of the FGk problems.

In this experiment, we only compare the total CPU time and number of it-
erations of ghSetA* and single-state A*. The FGk problems are defined in
NADL. A specialized poly-time BDD operation for splitting NADL actions into
transitions with the same cost estimate change is used for ghSetA* in the
preprocessing phase. No upper bound (u = ∞) is used by ghSetA* and no
upper limit of the branching partitions is applied. For the FGk problems con-
sidered, n equals 16. This corresponds to 33 bits in the BDD encoding of the
domain. The parameters of the BDD package are hand tuned in each exper-
iment for best performance. Time out is 600 seconds. The results are shown
in Figure 15. The performance of A* degrades quickly with the number of
unguided steps. A* gets lost expanding an exponentially growing set of states.
The ghSetA* algorithm is hardly affected by the lack of guidance. An analy-
sis of the unguided frontier layers shows that these form expressions that can
be represented by symmetric functions. Since these functions can be repre-
sented by polynomial sized BDDs, ghSetA* is able to perform an ordinary
BDD-based blind forward search on the unguided frontier layers using only
polynomial time. Thus, the performance difference between A* and ghSetA*
grows exponentially.

7.2 DxV yMz

The DxV yMz domain is an artificial puzzle domain where the dependency
between objects in the domain can be adjusted without changing the number
of bits in the state encoding. The domain has the minimum Hamming distance
as an admissible heuristic. It consists of a set of sliding tokens that can be

27

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

5

0

1

2

3

4

Fig. 16. The initial state of D3V 3M6.

moved between the corner positions of hypercubes. In any state, a corner
position can be occupied by at most one token. Each action moves a single
token to an empty adjacent corner. The dimension of the hypercubes is y.
That is, the hypercubes are described by y Boolean variables. For y = 3 the
hypercubes are regular three dimensional cubes with 8 corners. Each corner
is associated with a particular assignment of the y Boolean variables. We
enumerate the corners according to the value encoded in binary of the Boolean
variables. Hence, an action simply flips the value of one of these Boolean
variables. There are z tokens of which x are moving on the same hypercube.
The remaining z−x tokens are moving on individual hypercubes. This means
that there is a total of z−x+1 hypercubes. Tokens on individual hypercubes
do not interact with other tokens. Thus, the x parameter can be used to adjust
the dependency between tokens without changing the number of bits in the
state encoding.

The tokens are numbered. Initially, each token is located at a corner position
with the same number. There are 2y corners on each hypercube. The goal is to
move a token with number n to the corner with number 2y−n−1. Each action
is assumed to have unit cost. Figure 16 shows the initial state of D3V 3M6.

When x = z all tokens are moving on the same cube. If further x = 2y − 1
all corners of the cube except one will be occupied making it a permutation
problem similar to the 8-puzzle. The key idea about this problem is that the
x parameter allows the dependency of tokens to be adjusted linearly without
changing the number of bits used to encode a state. In addition, it demon-
strates how the u parameter of the ghSetA* algorithm can be used to focus
the search when there is an abundance of optimal paths to explore. For the
BDD-based algorithms, the DxV 4M15 problems are defined in NADL. Again
a specialized poly-time BDD operation for splitting NADL actions into transi-
tions with the same cost estimate change is applied by ghSetA* and fSetA*.
For all problems, the number of bits in the BDD encoding is 60. For ghSetA*
the upper bound for node merging is 200 (u = 200). All BDD-based algo-
rithms except BDDA* utilize a disjunctive partitioning with an upper bound
on the BDDs representing a partition of 5000. Time out is 500 seconds. For all
problems, the BDD-based algorithms use 2.3 seconds on initializing the BDD
package (n = 8000000 and c = 700000). 16 The results are shown in Table 3.

16 Notice that we choose to allocate a large number of nodes even for the small

28

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10 11

T
ot

al
 C

P
U

 ti
m

e
(lo

g
sc

al
e)

Number of sliders on the same cube (x)

ghSetA*
fSetA*

BDDA*
iBDDA*

A*
BiDir

Fig. 17. Total CPU time of the DxV 4M15 problems.

Figure 17 shows a graph of the total CPU time for the algorithms.

All solutions found are 34 steps long. For BDDA* and iBDDA* the size of
the BDD representing the heuristic function is 2014 and 1235, respectively.
Both the size of the monolithic and partitioned transition relation grows fast
with the dependency between tokens. The problem is that there is no effi-
cient way to model whether a position is occupied or not. The most efficient
algorithm is ghSetA*. The fSetA* algorithm has worse performance than
ghSetA* because it has to expand all states with minimum f -cost in each
iteration, whereas ghSetA* focus on a subset of them by having u = 200.
A subexperiment shows that ghSetA* has similar performance to fSetA*
when setting u = ∞. The impact of the u parameter is significant for this
problem since, even for fairly large values of x, it has an abundance of optimal
solutions. As can be seen for problem 10, however, the low value of u may
also lead to more search. BDDA* has much worse performance than fSetA*
even though it expands the exact same set of states in each iteration. As we
show in Section 7.6, the problem is that the complexity of the computation of
open ′′ grows fast with the size of the BDD representing the states to expand.
Surprisingly the performance of iBDDA* is worse than BDDA*. This is un-
usual, as the remaining experiments will show. The reason might be that only
a little space is saved by partitioning the transition relation in this domain.
This may cause the computation of open ′′ for iBDDA* to deteriorate because

problems. The reason is that we mainly care about the asymptotic performance of
the algorithms. Better results can be obtained on the small problems by adjusting
the number of nodes to the size of the problem (e.g., by doubling an initially small
number of nodes every time the BDD package runs out of free nodes).

29

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
Algorithm x ttotal trel tsearch |expand | |Q|max |T | it

ghSetA* 1 2.7 0.3 0.2 307.3 33 710 34
2 2.8 0.3 0.2 307.3 33 1472 34
3 3.1 0.4 0.3 671.0 33 4070 34
4 3.2 0.5 0.4 441.7 72 10292 34
5 3.1 0.4 0.4 194.8 120 20974 34
6 3.3 0.6 0.4 139.9 212 45978 34
7 3.9 1.0 0.5 128.4 322 104358 34
8 4.9 1.9 0.6 115.9 438 232278 34
9 8.1 5.0 0.8 132.0 557 705956 34

10 29.5 14.3 12.8 146.1 5103 1970406 373
11 46.9 43.8 0.8 107.3 336 5537402 34
12 Mem

fSetA* 1 2.7 0.3 0.2 307.3 1 710 34
2 2.8 0.3 0.2 307.3 1 1472 34
3 3.1 0.4 0.4 671.0 1 4070 34
4 3.3 0.4 0.6 671.0 1 10292 34
5 5.1 0.5 2.3 1778.6 1 20974 34
6 9.6 0.6 6.6 2976.5 1 45978 34
7 37.5 1.0 34.2 9046.7 1 104358 34
8 63.4 2.0 59.1 9046.7 1 232278 34
9 408.3 4.9 401.1 24175.4 1 705956 34

10 Time

BDDA* 1 3.6 0.5 0.4 314.3 355 34
2 3.9 0.5 0.6 314.3 772 34
3 4.6 0.6 1.3 678.0 2128 34
4 5.5 0.8 2.0 678.0 6484 34
5 10.2 1.3 6.2 1785.6 20050 34
6 56.4 3.4 50.4 2983.5 64959 34
7 214.8 10.8 201.1 9053.7 234757 34
8 312.1 52.7 256.1 9053.7 998346 34
9 Time

iBDDA* 1 4.0 0.4 0.8 307.3 355 34
2 4.2 0.4 1.1 307.3 772 34
3 5.1 0.5 1.9 671.0 2128 34
4 6.2 0.4 3.0 671.0 6791 34
5 33.7 0.4 30.4 1778.6 25298 34
6 117.6 0.5 113.9 2976.5 84559 34
7 Time

A* 1 1.1 1884 34
2 1.1 1882 34
3 1.0 1770 34
4 1.0 1750 34
5 0.9 1626 34
6 Time

Bidir 1 2.7 0.2 0.1 568.5 355 34
2 2.7 0.2 0.2 630.8 772 34
3 3.2 0.3 0.7 2305.1 2128 34
4 5.2 0.2 2.6 3131.1 5159 34
5 278.9 0.2 276.4 30445.0 10610 34
6 Time

Table 3
Results of the DxV 4M15 problems.

it must iterate through all the partitions. A* performs well when f(n) is a
perfect or near perfect discriminator, but it soon gets lost in keeping track of
the fast growing number of states on optimal paths. It times out in a single
step going from about one second to more than 500 seconds. The problem
for Bidir is the usual for blind BDD-based search algorithms applied to hard
combinatorial problems: the BDDs representing the search frontiers blow up.

30

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

2221 23 24

Fig. 18. Goal state of the 24-puzzle.

7.3 The 24 and 35-puzzle

We have further analyzed “non-artificial” domains. We aim at using domains
that embed a search with a potential significant large number of search states.
We turned to investigating the (N2 − 1)-puzzles, in particular the 24-puzzle
(n = 5) and the 35-puzzle (n = 6). The domain consists of an n × n board
with n2 − 1 numbered tiles and a blank space. A tile adjacent to the blank
space can slide into the space. The task is to reach the goal configuration as
shown for the 24-puzzle in Figure 18. For our experiments, the initial state is
generated by performing r random moves from the goal state. 17 We assume
unit cost transitions and use the well-known sum of Manhattan distances of
the tiles to their goal position as heuristic function. This heuristic function is
admissible. For ghSetA* and fSetA* a disjunctive branching partitioning
is easy to compute since δh of an action changing the position of a single tile
is independent of the position of the other tiles. The two algorithms have no
upper bound on the size of BDDs in the frontier nodes (u = ∞). For the BDD-
based algorithms, the problems are defined in NADL and the best results are
obtained when having no limit on the partition size. Thus, BDDA*, iBDDA*,
and Bidir use a monolithic transition relation. The number bits in the BDD
encoding of the 24-puzzle is 125. The results of this experiment are shown in
Table 4. For all 24-puzzle problems, the BDD-based algorithms spend 3.6 sec-
onds on initializing the BDD package (n = 15000000 and c = 500000). Time
out is 10000 seconds. For BDDA* and iBDDA* the size of the BDD repre-
senting the heuristic function is 33522 and 18424, respectively. For ghSetA*
and fSetA* the size of the transition relations is 70582, while the size of the
transition relation for BDDA* and iBDDA* is 66673. Thus a small amount
of space was saved by using a monolithic transition relation representation.
However, ghSetA* and fSetA* have better performance than BDDA* and
iBDDA* mostly due to the their more efficient node expansion computation.
Interestingly, both BDDA* and iBDDA* spend significant time computing the
heuristic function in this domain. The ghSetA* and fSetA* algorithms also

17 In each of these steps choosing the move back to the previous state is illegal.

31

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
Algorithm r ttotal trel tsearch |sol | |expand | |Q|max it

ghSetA* 140 28.8 22.1 2.7 26 187.5 23 93
160 30.0 22.2 3.8 28 213.2 24 175
180 31.4 22.2 5.3 32 270.2 28 253
200 43.7 21.9 14.9 36 786.2 31 575
220 36.3 22.2 10.1 36 411.1 31 490
240 199.3 22.0 173.2 50 2055.5 44 1543
260 5673.7 23.9 5644.5 56 10641.2 48 2576
280 Mem
300 4772.7 20.9 4743.97 60 9761.3 53 2705
320 Mem

fSetA* 140 29.7 21.0 4.7 26 669.9 1 42
160 32.2 20.9 7.4 28 1051.6 1 57
180 34.3 21.0 9.5 32 1207.0 1 69
200 50.1 21.0 25.3 36 5276.0 1 93
220 41.8 21.0 17.0 36 3117.6 1 88
240 205.2 21.0 180.5 50 18243.3 1 156
260 Mem

BDDA* 140 98.5 83.0 11.3 26 676.9 42
160 114.7 83.2 27.4 28 1058.6 57
180 129.8 82.9 42.7 32 1214.0 69
200 425.0 83.1 337.1 36 5283.0 93
220 267.7 82.8 180.6 36 3124.6 88
240 4120.1 83.1 4032.8 50 18250.3 156
260 Time

iBDDA* 140 79.8 66.7 5.9 26 669.9 42
160 85.3 65.7 11.8 28 1051.6 57
180 93.6 65.7 20.0 32 1207.0 69
200 314.6 65.8 240.9 36 5276.0 93
220 156.9 65.6 83.5 36 3117.6 88
240 2150.3 65.9 2076.6 50 18243.3 156
260 Mem

A* 140 0.1 26 300 221
160 0.9 28 725 546
180 0.6 32 1470 1106
200 7.4 36 15927 12539
220 2.3 36 5228 4147
240 87.1 50 159231 133418
260 Mem

Bidir 140 68.1 36.6 27.9 26 34365.2 26
160 96.0 36.8 55.6 28 55388.4 28
180 214.7 36.8 174.3 32 106166.0 32
200 1286.0 36.8 1245.6 36 359488.0 36
220 3168.8 36.8 3128.4 36 421307.0 36
240 Mem

Table 4
Results of the 24-puzzle problems.

scale better than A* and Bidir. A* has good performance because it does not
have the substantial overhead of computing the transition relation and find-
ing actions to apply. However, due to the explicit representation of states, it
runs out of memory for solution depths above approximately 50. For Bidir,
the problem is the usual: the BDDs representing the search frontiers blow up.
Figure 19 shows a graph of the total CPU time of the 24 and 35-puzzle. Again
time out is 10000 seconds.

32

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

 0.1

 1

 10

 100

 1000

 10000

 140 160 180 200 220 240 260 280 300

T
ot

al
 C

P
U

 ti
m

e
(lo

g
sc

al
e)

Number of random steps from the goal state

24-puzzle

ghSetA*
fSetA*

BDDA*
iBDDA*

A*
BiDir

0.01

0.1

1

10

100

1000

10000

120 140 160 180 200 220 240 260

T
ot

al
 C

P
U

 ti
m

e
(lo

g
sc

al
e)

Number of random steps from the goal state

35-puzzle

ghSetA*
fSetA*

BDDA*
iBDDA*

A*
BiDir

Fig. 19. Total CPU time for the 24 and 35-puzzle problems.

7.4 Planning Domains

In this section, we consider six planning problems from the STRIPS track of
the international planning competitions 1998-2004. The problems are defined
in the STRIPS part of PDDL. An optimal solution is a solution with minimal
length, so we assume unit cost actions. A Boolean representation of a STRIPS
domain is trivial if using a single Boolean state variable for each fact. This
encoding, however, is normally very inefficient due to its redundant represen-
tation of static facts and facts that are mutually exclusive or unreachable. In
order to generate a more compact encoding, we analyze the STRIPS problem

33

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
in a three step process.

(1) Find static facts by subtracting the facts mentioned in the add and delete
sets of actions from the facts in the initial state.

(2) Approximate the set of reachable facts from the initial state by perform-
ing a relaxed reachability analysis, ignoring the delete set of the actions.

(3) Find sets of single-valued predicates [25] via inductive proofs on the reach-
able facts.

If a set of predicates are mutual exclusive when restricting a particular ar-
gument in each of them to the same object then the set of predicates is said
to be single-valued. Consider for instance a domain where packages can be
either inside a truck in(P, T) or at locations at(P, L). Then in and at at are
single-valued with respect to the first argument. The reachability analysis in
step 2 is implemented based an approach described in the work by Edelkamp
and Helmert [20]. It is fast for the problems considered in this article (for most
problems less than 0.04 seconds). The algorithm proceeds in a breadth-first
manner such that each fact f can be assigned a depth d(f) where it is reached.
Similar to the MIPS planning system [16], we use this measure to approximate
the HSPr heuristic [8]. HSPr is an efficient but non-admissible heuristic for
backward search. For a state given by a set of facts S, the approximation to
HSPr is given by

h(S) =
∑
f∈S

d(f)

A branching partitioning for this heuristic is efficient to generate given that
each action (pre, add , del) leading from S to S ′ = (S ∪ add) \ del satisfies

del ⊆ pre and add ∩ pre = ∅.

These requirements are natural and satisfied by all the planning domains con-
sidered in this article. Due to the constraints, we get

δh =h(S ′) − h(S)

=h(add \ S) − h(del)

=
∑

f∈add\S
d(f) −

∑
f∈del

d(f).

Thus, each action is partitioned in up to 2|add| sets of transitions with different
δh-cost.

34

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
The HSPr heuristic is applied in a backward search rather than a regression
search. 18 This affects computing the h-cost of a goal state. Consider a plan-
ning problem with k facts {f1, . . . , fk} and goal description G = (f1) . In a
regression search, G represents a single state with h(G) = d(f1). In a back-
ward search, on the other hand, G represents 2k−1 states that in principle
each may have different h-cost. To avoid this problem, we have extended the
goal descriptions of the planning problems so they correspond to single states.
This may increase the solution length of the problems. In addition, it makes
the backward exploration more similar to forward exploration in that it only
considers valid states. Thus, by extending the goal description we also avoid
a common deterioration of BDD-based search when applied backward due to
an exploration of an unstructured space consisting of a mixture of valid and
invalid states.

Since the HSPr heuristic for most states in many of the studied domains
either under- or overestimates the true distance to the initial state, we have
manually scaled it to be as accurate as possible. The reason for this is to give a
comparison with the optimal Bidir algorithm that is as fair as possible. If the
heuristic overestimates, the A* algorithms may be fast but give poor solutions.
If the heuristic underestimates, the A* algorithms may give optimal solutions
but be overly slow. However, despite of these adjustments the complexity
difference between suboptimal and optimal search makes a direct comparison
between Bidir and the A* algorithms impossible when using an inadmissible
heuristic like HSPr.

7.4.1 Blocks World

The Blocks World is a classical planning domain. It consists of a set of cubic
blocks sitting on a table. A robot arm can stack and unstack blocks from
some initial configuration to a goal configuration. The problems, we consider,
are from the untyped STRIPS track of the AIPS 2000 planning competition.
The number of bits in the BDD encoding is in the range [17, 80]. The HSPr
heuristic is scaled by a factor of 0.4. The ghSetA* and fSetA* algorithms
have no upper bound on the size of BDDs of the nodes on the frontier (u = ∞).
For all BDD-based algorithms, the partition limit is 5000. For each problem,
these algorithms spend about 2.5 seconds on initializing the BDD package
(n = 8000000 and c = 800000). Time out is 500 seconds in all experiments.
The results are shown in Table 5. The top graph of Figure 20 shows the total
CPU time of the algorithms. For BDDA* and iBDDA* the size of the BDD
representing the heuristic function is in the range of [8, 1908] and [8, 1000],
respectively. The ghSetA* and fSetA* algorithms have significantly better
performance than all other algorithms. As usual BDDA* and iBDDA* suffer

18 Using BDDs for regression search is an interesting direction for future work.

35

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
Algorithm p ttotal trel tsearch |sol | |expand | |Q|max it |T |

ghSetA* 4 2.6 0.0 0.0 6 19.5 1 6 706
5 2.7 0.1 0.1 12 33.4 11 31 1346
6 2.6 0.1 0.1 12 57.7 9 30 2608
7 3.1 0.2 0.4 20 53.8 48 152 4685
8 4.1 0.3 1.3 18 540.4 12 72 7475
9 17.0 0.4 14.1 32 331.8 94 991 8717

10 116.2 0.6 113.1 38 744.9 111 2309 11392
11 133.5 0.7 130.2 32 1404.9 91 1200 16122
12 14.8 1.0 11.2 34 410.3 120 557 18734
13 Time
14 112.1 1.7 107.8 38 1067.8 125 1061 30707
15 Time

fSetA* 4 2.5 0.0 0.0 6 29.8 1 6 706
5 2.7 0.1 0.1 12 68.7 4 23 1346
6 2.7 0.1 0.1 12 126.8 2 20 2608
7 3.2 0.2 0.5 20 121.9 8 92 4685
8 3.9 0.3 1.1 18 1328.8 2 35 7475
9 30.0 0.4 27.1 32 935.5 10 610 8717

10 217.0 0.6 213.8 38 2594.4 12 1098 11392
11 259.8 0.8 256.4 32 4756.0 9 671 16122
12 39.2 1.0 35.7 34 817.0 13 860 18734
13 Time
14 274.3 1.7 270.0 38 1555.1 13 1462 30707
15 Time

BDDA* 4 3.3 0.0 0.1 6 37.8 6 706
5 3.6 0.2 0.2 12 76.7 23 1365
6 3.6 0.2 0.2 12 134.8 20 2334
7 4.9 0.5 1.2 20 129.9 92 4669
8 6.0 0.5 2.2 18 1336.8 35 6959
9 100.8 1.1 96.5 32 943.5 610 9923

10 Time

iBDDA* 4 2.7 0.0 0.0 6 29.8 6 706
5 2.8 0.1 0.1 12 68.7 23 1365
6 2.9 0.1 0.1 12 126.8 20 2334
7 3.7 0.3 0.7 20 121.9 92 4669
8 6.2 0.4 3.2 18 1328.8 35 7123
9 113.7 0.6 110.3 32 935.5 610 10361

10 Time

A* 4 0.0 0.0 6 8 15
5 0.2 0.2 12 62 70
6 0.4 0.4 12 115 102
7 1.3 1.2 20 287 287
8 31.9 31.6 18 7787 5252
9 233.9 232.9 32 38221 31831

10 Time

Bidir 4 2.6 0.0 0.0 6 124.5 6 706
5 2.6 0.1 0.0 12 228.3 12 1423
6 2.7 0.1 0.1 12 438.8 12 2567
7 3.6 0.2 0.8 20 1931.3 20 5263
8 9.7 0.3 6.8 18 11181.8 18 8157
9 146.8 0.4 143.9 30 75040.9 30 11443

10 Time

Table 5
Results of the Blocks World problems.

from an inefficient expansion computation while the frontier BDDs blow up
for Bidir. The general A* algorithm for STRIPS planning problems is less
domain-tuned than the previous A* implementations. In particular, it must
check the precondition of all actions in each iteration in order to find the ones
that are applicable. This, in addition to the explicit state representation, may
explain the poor performance of A*.

36

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
7.4.2 Gripper

The Gripper problems are from the first round of the STRIPS track of the
AIPS 1998 planning competition. The domain consists of a robot with two
grippers which can move between two rooms connected by a door. Initially, a
number of balls are located in the first room, and the goal is to move them
to the other room. The number of bits in the BDD encoding is in the range
[12, 88]. The ghSetA* and fSetA* algorithms have no upper bound on the
size of BDDs in the frontier nodes (u = ∞). For all BDD-based algorithms
no partition limit is used, and they spend about 0.8 seconds on initializing
the BDD package (n = 2000000 and c = 400000). All algorithms generate
optimal solutions. The results are shown in Table 6. The bottom graph of
Figure 20 shows the total CPU time of the algorithms. Interestingly Bidir is
the fastest algorithm in this domain since the BDDs representing the search
frontier only grows moderately during the search. The ghSetA* and fSetA*
algorithms, however, have almost as good performance. BDDA* and iBDDA*
has particularly bad performance in this domain. The problem is that the
BDDs of frontier nodes grow quite large for the harder problems.

7.4.3 Logistics

The Logistics domain considers moving packages with trucks between loca-
tions in the same city and with airplanes between cities. The problems con-
sidered are from the STRIPS track of the AIPS 2000 planning competition.
The number of bits in the BDD encoding is in the range [21, 86]. The gh-

SetA* and fSetA* algorithms have no upper bound on the size of BDDs in
the frontier nodes (u = ∞). For all BDD-based algorithms a partition limit
of 5000 is used and they spend about 2.0 seconds on initializing the BDD
package (n = 8000000 and c = 400000). Due to systematic under estimation,
the HSPr heuristic is scaled with a factor of 1.5. The top graph of Figure 21
shows the total CPU time of the algorithms. Only ghSetA* and fSetA*
are able to solve large instances of this problem. The BDD encoding based
single-valued predicates is particularly efficient in this domain. Moreover, the
HSPr heuristic is quite strong which gives the A* algorithms an edge over
Bidir.

7.4.4 Zeno Travel

Zeno Travel is from the STRIPS track of the AIPS 2002 planning competition.
It involves transporting people around in planes, using different modes of
movement: fuel-efficient and wasteful. The number of bits in the BDD encoding
is in the range [9, 165]. The ghSetA* and fSetA* algorithms have no upper
bound on the size of BDDs in the frontier nodes (u = ∞). For all BDD-based

37

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
Algorithm p ttotal trel tsearch |expand | |Q|max it |T |

ghSetA* 2 0.9 0.1 0.02 68.8 5 21 594
4 1.0 0.1 0.08 168.9 6 43 1002
6 1.3 0.2 0.27 314.9 6 65 1410
8 1.5 0.3 0.34 504.8 6 87 1818

10 1.8 0.4 0.54 738.1 6 109 2226
12 2.3 0.5 0.88 1014.7 6 131 2634
14 3.0 0.7 1.33 1334.5 6 153 3042
16 3.6 0.9 1.78 1697.5 6 175 3450
18 4.5 1.1 2.46 2103.7 6 197 3858
20 5.7 1.4 3.37 2553.1 6 219 4266

fSetA* 2 1.0 0.1 0.1 95.4 1 17 594
4 1.0 0.1 0.1 231.2 1 29 1002
6 1.2 0.2 0.2 423.9 1 41 1410
8 1.6 0.3 0.3 673.4 1 53 1818

10 2.0 0.4 0.6 979.9 1 65 2226
12 2.5 0.6 1.0 1343.3 1 77 2634
14 3.1 0.8 1.4 1763.5 1 89 3042
16 3.7 0.9 1.9 2240.7 1 101 3450
18 5.0 1.2 2.9 2774.7 1 113 3858
20 5.7 1.5 3.2 3365.6 1 125 4266

BDDA* 2 1.8 0.1 0.2 103.4 17 323
4 2.4 0.2 0.6 239.2 29 539
6 3.4 0.3 1.5 431.9 41 755
8 6.1 0.6 4.0 681.4 53 971

10 16.9 0.9 14.4 987.9 65 1187
12 40.7 1.2 37.9 1351.3 77 1403
14 81.7 1.6 78.5 1771.5 89 1619
16 149.3 2.2 145.4 2248.7 101 1835
18 240.4 3.1 235.5 2782.7 113 2051
20 391.1 3.9 385.5 3373.6 125 2267

iBDDA* 2 1.2 0.1 0.1 95.4 17 323
4 1.6 0.1 0.4 231.2 29 539
6 2.3 0.3 1.0 423.9 41 755
8 3.6 0.4 2.2 673.4 53 971

10 6.2 0.6 4.5 979.9 65 1187
12 12.2 0.9 9.2 1343.3 77 1403
14 23.5 1.1 21.3 1763.5 89 1619
16 44.8 1.6 42.1 2240.7 101 1835
18 76.1 2.2 72.4 2774.7 113 2051
20 120.9 2.7 116.7 3365.6 125 2267

A* 2 3.9 3.9 698 1286
4 422.9 422.3 26434 85468
6 Time

Bidir* 2 0.9 0.1 0.0 125.4 17 323
4 1.0 0.1 0.1 290.9 29 539
6 1.2 0.2 0.1 589.7 41 755
8 1.4 0.3 0.3 958.2 53 971

10 1.7 0.4 0.5 1404.3 65 1187
12 2.2 0.5 0.8 1611.0 77 1403
14 2.6 0.7 1.0 2025.6 89 1619
16 3.2 0.9 1.3 3265.6 101 1835
18 3.8 1.2 1.7 4074.4 113 2051
20 4.5 1.5 2.1 4944.9 125 2267

Table 6
Results of the Gripper problems.

algorithms a partition limit of 4000 is used. About 2.7 seconds are spent on
initializing the BDD package (n = 10000000 and c = 700000). The bottom
graph of Figure 21 shows the total CPU time of the algorithms. The results are
fairly similar to the results of the Logistics problems except that the advantage
of ghSetA* and fSetA* is less significant.

38

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

 0.01

 0.1

 1

 10

 100

 1000

 4 5 6 7 8 9 10 11 12 13 14

T
ot

al
 C

P
U

 ti
m

e
(lo

g
sc

al
e)

Problem

Blocks World

ghSetA*
fSetA*

BDDA*
iBDDA*

A*
BiDir

0.1

1

10

100

1000

0 2 4 6 8 10 12 14 16 18 20

T
ot

al
 C

P
U

 ti
m

e
(lo

g
sc

al
e)

Problem

Gripper

ghSetA*
fSetA*

BDDA*
iBDDA*

A*
BiDir

Fig. 20. Total CPU time for the Blocks World and Gripper problems.

7.4.5 Pipes World

The task in the Pipes World domain is to transport oil derivative products
through a pipeline system. Since adding a product to a pipeline affects all the
products in the pipeline, the structure of the domain is quite different from
the structure of the Logistics and Zeno Travel domain. If a pipe can hold more
than one product, two actions are used to model a state change of a pipeline.
The first adds the product to the sender end of the pipe, while the second
removes the product that is pushed out at the receiver end of the pipe. The
problems, we consider, are from the typed STRIPS track of the International
Planning Competition 2004. The problems have been changed manually to

39

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

 0.1

 1

 10

 100

 1000

 4 5 6 7 8 9 10 11 12 13 14 15

T
ot

al
 C

P
U

 ti
m

e
(lo

g
sc

al
e)

Problem

Logistics

ghSetA*
fSetA*

BDDA*
iBDDA*

A*
BiDir

 0.01

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10 11

T
ot

al
 C

P
U

 ti
m

e
(lo

g
sc

al
e)

Problem

Zeno Travel

ghSetA*
fSetA*

BDDA*
iBDDA*

A*
BiDir

Fig. 21. Total CPU time for the Logistics and Zeno Travel problems.

an untyped version. The number of bits in the BDD encoding is in the range
[62, 118]. The HSPr heuristic is scaled by a factor of 0.7 due to systematic over
estimation. For ghSetA* no upper bound on the size of BDDs of the nodes
on the frontier is used (u = ∞). For all BDD-based algorithms, the partition
limit is 10000 for small problems and 20000 for large problems. The number of
nodes allocated by the BDD package (n) is in the range [2M, 107M] and the
cache size (c) is adjusted to approximately 10% of the number of nodes. Time
out is 3600 seconds in all experiments. The results are shown in Table 7. 19

19 The |Q|max data have not been gathered for A* in the Pipes World and Free Cell
domain. Moreover due to time limitations, we have not investigated the performance

40

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

 0.1

 1

 10

 100

 1000

 10000

 4 5 6 7 8 9 10

T
ot

al
 C

P
U

 ti
m

e
(lo

g
sc

al
e)

Problem

Pipes World

ghSetA*
BDDA*
iBDDA*

A*
BiDir

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6

T
ot

al
 C

P
U

 ti
m

e
(lo

g
sc

al
e)

Problem

Free Cell

ghSetA*
BDDA*
iBDDA*

A*
BiDir

Fig. 22. Total CPU time for the Pipes World and Free Cell problems.

The top graph of Figure 22 shows the total CPU time of the algorithms. For
BDDA* and iBDDA* the size of the BDD representing the heuristic function
is in the range [2244, 18577] and [988, 9743], respectively. The performance
of ghSetA* and Bidir is fairly similar while the performance of BDDA*,
iBDDA*, and A* is substantially lower. Looking closer at the results of gh-

SetA*, A*, and Bidir, we observe that ghSetA* and A* use considerably
longer time on problem 10 compared with problem 9, while the opposite is
true for Bidir. Since Bidir and ghSetA* represent states in the same way,
the results indicate that ghSetA* traverse a larger fraction of the state space

of fSetA* on these domains.

41

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
Algorithm p ttotal trel tsearch |sol | |expand | |Q|max it |T |

ghSetA* 4 2.0 1.2 0.2 8 185.9 31 13 38123
5 4.5 2.2 1.2 13 389.1 61 92 57992
6 4.8 1.6 1.7 20 334.6 60 245 47297
7 7.9 2.8 3.0 16 457.9 56 203 74988
8 14.7 4.8 0.4 14 171.1 54 63 116758
9 79.9 9.0 61.2 21 1356.3 111 680 195345

10 168.3 3.5 161.1 30 741.2 127 4427 85022

BDDA* 4 3.3 1.7 0.5 8 204.3 14 21020
5 11.3 3.1 6.6 13 599.3 65 31406
6 17.9 2.9 13.2 20 414.2 457 25166
7 50.3 5.3 42.6 16 683.6 394 40395
8 24.2 9.0 5.4 14 453.7 54 60901
9 Time

10 Time

iBDDA* 4 2.4 1.1 0.3 8 198.1 14 39536
5 7.3 1.9 3.4 13 593.3 65 62578
6 7.5 1.7 3.8 20 406.2 457 37335
7 13.8 3.1 7.5 16 675.6 394 61568
8 17.5 4.8 1.2 14 448.8 54 80153
9 1136.0 8.2 1112.9 21 2105.8 4384 164901

10 2696.8 3.7 2687.8 30 902.0 52010 69929

A* 4 0.3 8 69
5 6.0 13 1259
6 17.8 20 4278
7 13.7 16 2651
8 1.1 14 139
9 207.7 21 20881

10 555.5 30 104221

Bidir 4 2.0 1.0 0.2 8 2646.9 8 39512
5 7.0 1.8 3.8 13 12146.5 13 61000
6 4.7 1.5 1.7 20 7236.4 20 37299
7 7.0 2.6 2.2 16 10860.6 16 61001
8 14.8 3.7 1.6 14 9841.6 14 71708
9 166.3 6.5 149.7 21 260428.0 21 138504

10 39.5 3.1 32.7 30 48667.4 30 68261

Table 7
Results of the Pipes World problems.

than Bidir on problem 10. Thus, the HSPr heuristic seems to be somewhat
weak on this domain sometimes guiding the exploration in the right direction
(problem 9) and sometimes not (problem 10). Interestingly, the performance
of A* is better than ghSetA* on problem 8. An inspection of Table 7 shows
that both algorithms spend little time on search on this problem, but that
ghSetA* spends considerable time constructing the BDD representation of
the transition relation. Thus, this is an example of a situation where the search
problem is too small for BDD-based search to pay off.

7.4.6 Free Cell

The Free Cell domain is a solitaire game shipped with Windows. The cards
are distributed face up in 8 columns. The goal is to arrange the cards in order
in four home cells. In addition to the home cells, there are four free cells. A
legal action is to move a card from the bottom of a column or a free cell to a

42

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
Algorithm p ttotal trel tsearch |sol | |expand | |Q|max it |T |

ghSetA* 1 1.1 0.7 0.1 8 221.3 24 19 13192
2 9.5 3.8 4.5 14 418.5 52 210 30048
3 16.7 8.5 5.5 18 416.7 61 193 62651
4 302.8 12.9 282.1 29 1116.5 126 1816 127854
5 176.9 34.8 133.2 30 1046.1 147 885 215259
6 Mem

BDDA* 1 2.8 1.2 0.8 8 518.8 16 3735
2 70.1 5.9 62.2 14 3022.7 60 8933
3 110.4 15.6 91.0 18 1871.9 125 17153
4 Mem
5 Mem
6 Mem

iBDDA* 1 1.6 0.7 0.3 8 510.8 16 3735
2 30.2 3.6 23.9 14 3014.7 60 8933
3 51.3 5.7 32.1 18 1863.9 125 26009
4 Mem
5 Mem
6 Mem

A* 1 0.5 0.4 8 138
2 14.7 14.5 14 2193
3 11.2 11.0 18 1254
4 431.3 422.9 29 37655
5 214.1 212.7 30 12190
6 939.2 926.9 35 35920

Bidir 1 1.1 0.7 0.1 8 1687.1 8 3735
2 7.7 3.6 2.8 14 22252.1 14 8933
3 39.7 5.6 31.1 18 92794.4 18 25136
4 418.7 7.7 402.4 26 389276.0 26 58746
5 Mem
6 Mem

Table 8
Results of the Free Cell problems.

home cell holding the predecessor with matching suit, an empty free cell, an
empty column, or the bottom of a column holding one of the two successors
with opposite color. The problems, we consider, are from the untyped STRIPS
track of the International Planning Competition 2002. The number of bits in
the BDD encoding is in the range [58, 199]. The HSPr heuristic is scaled by a
factor of 0.6 due to systematic over estimation. The ghSetA* algorithm has
no upper bound on the size of BDDs of the nodes on the frontier (u = ∞).
For all BDD-based algorithms, the partition limit is 10000 for small problems
and 20000 for large problems. The number of nodes allocated by the BDD
package (n) is in the range [2M, 107M] and the cache size (c) is adjusted to
approximately 10% of the number of nodes. Time out is 3600 seconds in all
experiments. The results are shown in Table 8. The top graph of Figure 22
shows the total CPU time of the algorithms. For BDDA* and iBDDA* the size
of the BDD representing the heuristic function is in the range of [553, 4427] and
[366, 2060], respectively. Again, we observe that BDDA* and iBDDA* have
substantially lower performance than ghSetA*. In this domain, however, A*
outperforms ghSetA*. The reason for this is that the Boolean encoding of the
domain is very weak. The domain does not contain any single-valued predicates
which forces each grounded predicate to be represented by a Boolean variable.

43

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

21 3 4 5
1

2
3

Columns
Tracks

Fig. 23. A solution to a channel routing problem with 5 columns, 3 tracks, and 2
nets (labeled I and II). The pins are numbered according to what net they belong.

Thus, a more sophisticated planning domain analysis than the one used in this
experimental evaluation is necessary. Whether an efficient Boolean encoding
exists for this domain is out of the scope of this article. It may be observed,
however, that by not deleting the home predicate of the top card of a home
cell when moving a new card to the cell, the predicates on, incell, bottomcol,
and home become single-valued in the first argument. The encoding of the
on predicate is similar to the one used in the Blocks World. The reduction,
however, is not as efficient as in the Blocks World. In the Blocks World, a
block can be on any other block, but in Free Cell, a card can be on at most
three other cards: the one it is on initially and the two successors with opposite
color. For problem 6, the number of bits in the BDD encoding is only reduced
from 199 to 125, and the performance of the BDD-based algorithms is not
improved significantly.

7.5 Channel Routing

Channel routing is a fundamental subtask in the layout process of VLSI-design.
It is an NP-complete problem which makes exact solutions hard to produce.
Channel routing considers connecting pins in the small gaps or channels be-
tween the cells of a chip. In its classical formulation two layers are used for the
wires: one where wires go horizontal (tracks) and one where wires go vertical
(columns). In order to change direction, a connection must be made between
the two layers. These connections are called vias. Pins are at the top and
bottom of the channel. A set of pins that must be connected is called a net.
The problem is to connect the pins optimally according to some cost function.
The cost function studied here equals the total number of vias used in the
routing. Figure 23 shows an example of an optimal solution to a small chan-
nel routing problem. The cost of the solution is 4. One way to apply search
to solve a channel routing problem is to route the nets from left to right. A
state in this search is a column paired with a routing of the nets on the left
side of that column. A transition of the search is a routing of live nets over a
single column. A* can be used in the usual way to find optimal solutions. An
admissible heuristic function for our cost function is the sum of the cost of
routing all remaining nets optimally ignoring interactions with other nets. We

44

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
have implemented a specialized search engine to solve channel routing prob-
lems with ghSetA* [31]. The important point about this application is that
ghSetA* utilizes a conjunctive branching partitioning instead of a disjunc-
tive branching partitioning as in all other experiments reported in this article.
This is possible since a transition can be regarded as the joint result of routing
each net in turn.

The performance of ghSetA* is evaluated using problems produced from two
ISCAS-85 circuits [57]. For each of these problems the parameters of the BDD
package are hand tuned for best performance. There is no upper bound on the
size of BDDs in frontier nodes (u = ∞) and no limit on the size of the par-
titions. Time out is 600 seconds. Table 9 shows the results. The performance
of ghSetA* is similar to previous applications of BDDs to channel routing
[54,57]. However, in contrast to previous approaches, ghSetA* is able to find
optimal solutions.

7.6 Additional Comparative Experiments

The major challenge for BDDA* is that the arithmetic computations at the
BDD level scales poorly with the size of the BDD representing the set of states
to expand (line 5 and 6 in Figure 14). This hypothesis can be empirically
verified by measuring the CPU time used by fSetA* and iBDDA* to expand
a set of states. Recall that both fSetA* and iBDDA* expand the exact same
set of states in each iteration. Any performance difference is therefore solely
caused by their expansion techniques. The results are shown in Figure 24.
The reported CPU time is the average of the 15-puzzle with 50, 100, and

Circuit c − t − n ttotal trel tsearch |Q|max it

Add 38-3-10 0.2 0.1 0.2 1 40
47-5-27 0.8 0.7 0.1 24 46
41-3-12 0.2 0.1 0.1 1 42
46-7-20 5.0 3.5 1.5 56 89
25-4-6 0.1 0.0 0.1 1 30

C432 83-4-33 0.4 0.2 0.2 0 93
89-11-58 Mem
101-9-57 286.1 61.5 206.6 135 113
99-8-58 34.0 13.5 20.5 59 448

97-10-63 295.0 99.7 195.3 129 109
101-7-53 15.7 11.5 4.2 90 101
95-9-48 223.8 58.9 164.9 59 399

95-10-48 Time
84-5-23 3.2 0.7 2.5 0 92

Table 9
Results of the ISCAS-85 channel routing problems. A problem, c − t − n, is identi-
fied by its number of columns (c), tracks (t), and nets (n).

45

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
200 random steps, Logistics problem 4 to 9, Blocks World problem 4 to 9,
Gripper problem 1 to 20, and DxV 4M15 with x varying from 1 to 6. For
very small frontier BDDs, iBDDA* is slightly faster than fSetA*. This is
probably because small frontier BDDs mainly are generated by easy problems
where a monolithic transition relation used by iBDDA* is more efficient than
the partitioned transition relation used by fSetA*. However, for large frontier
BDDs, iBDDA* needs much more expansion time than fSetA*.

7.7 State-Set Branching versus Single-State Heuristic Search

Heuristic search is trivial if the heuristic function is very informative. In this
case, state-set branching may have worse performance than single-state heuris-
tic search due to the overhead of computing the transition relation. We have
seen an example of this in problem 8 of the Pipes World. Moreover, if we
use an inefficient Boolean encoding of a domain, the performance of state-set
branching may deteriorate and become worse than single-state heuristic search
as we have seen for the Free Cell domain. When neither of these issues are
present, however, state-set branching has outperformed single-state heuristic
search in our experiments.

In order to control the experimental setting and in particular use the same
heuristics for all algorithms, we have handcoded our single-state A* implemen-
tations. Thus, we are not using state-of-the-art implementations of single-state
A* and our experiments do not show that state-set branching can outperform
state-of-the-art implementations of single-state A*. Only a direct comparison

 0.001

 0.01

 0.1

 1

 10

(3200,6400](1600,3200](800,1600](400,800](200,400](100,200](0,100]

A
ve

ra
ge

 e
xp

an
si

on
 ti

m
e

Size of BDD to expand

fSetA*
iBDDA*

Fig. 24. Node expansion times of fSetA* and BDDA*.

46

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
can verify this.

On the other hand, specialized versions of single-state A* that take advan-
tage of the domain structure have been developed for FGk, DxV yMz , and the
(N2 − 1)-puzzles. The state representation used by single-state A* in these
domains is at the same level of sophistication as the node representation used
by the BuDDy package. For that reason, we consider the comparison in these
domains quite fair. For the planning domains, on the other hand, the general
representation of states as sets of facts may be improved by using representa-
tion techniques from the planning community that we are not aware of. This
may reduce the memory consumption of single-state A* by a factor. However,
no matter which explicit state representation is used, the space consumption
of a set of states will be linear in the size of the set.

Another issue when comparing state-set branching and single-state heuristic
search is whether the heuristic function can be chosen as freely for state-set
branching as for single-state heuristic search. As described earlier, all of the
heuristics applied in our experimental evaluation can be represented compactly
by a branching partitioning. This is probably the case for most additive heuris-
tics like the sum of Manhattan distances and HSPr. It is less clear, however,
that compact branching partitionings exist for sophisticated heuristics that
may have a combinatorial nature or may cover many special cases in an irreg-
ular way. Indeed in a recent study, a disjunctive branching partitioning of the
max-pair heuristic [28] turned out to be prohibitively large in some domains
[32]. We believe that the reason for this is the artificial and combinatorial
nature of the max-pair heuristic. The size of the branching partitioning could
be dramatically reduced, however, by making it a function of the h-cost of the
search node to expand. Developing this kind of representation techniques for
complex heuristics is an intersting direction for future work.

7.8 State-Set Branching versus Blind BDD-based Search

Blind BDD-based search has been successfully applied in symbolic model
checking and circuit verification. It has been shown that many problems en-
countered in practice are tractable when using BDDs [58]. The classical search
problems studied in AI, however, seems to be harder and have longer solutions
than the problems considered in formal verification. When applying blind
BDD-based search to these problems, the BDDs used to represent the search
frontier often grow exponentially. The experimental evaluation of state-set
branching shows that this problem can be substantially reduced when effi-
ciently splitting the search frontier according to a heuristic evaluation of the
states.

47

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
7.9 State-Set Branching versus BDDA*

State-set branching implementations of A* such as ghSetA* and fSetA*
are fundamentally different from BDDA*. BDDA* imitates the usual explicit
application of the heuristic function via a symbolic computation. It would be
reasonable to expect that the symbolic representation of practical heuristic
functions often is very large. However, this is seldom the case for the heuristic
functions studied in this article. The major challenge for BDDA* is that the
arithmetic computations at the BDD level scales poorly with the size of the
BDD representing the set of states to expand (line 5 and 6 in Figure 14).
Another limitation of BDDA* is the inflexibility of BDD-based arithmetic. It
makes it hard to extend BDDA* efficiently to general evaluation functions and
arbitrary transitions costs.

8 Conclusion

In this article, we have presented a framework called state-set branching for
integrating symbolic and heuristic search. The key component of the frame-
work is a new BDD technique called branching partitioning that allows sets of
states to be expanded implicitly and sorted according to cost estimates in one
step. State-set branching is a general framework. It applies to any heuristic
function, any search node evaluation function, and any transition cost func-
tion defined over a finite domain. An extensive experimental evaluation of
state-set branching proves it to be a powerful approach. Except for one case
with a weak Boolean encoding, state-set branching outperforms single-state
heuristic search. In addition, it can improve the complexity of single-state
search exponentially and for several of the best-known AI search problems,
it is often orders of magnitude faster than single-state heuristic search, blind
BDD-based search, and the most efficient current BDD-based A* implemen-
tation, BDDA*.

It is an important direction for future work to develop techniques for rep-
resenting branching partitionings compactly for sophisticated heuristics that
may have a combinatorial nature or may cover many special cases in an irregu-
lar way. Other directions for future work include applying state-set branching
to regression search and linear space heuristic search algorithms such as IDA*.

48

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
Appendix

Lemma 6 The search structure build by the BSFS algorithm is a DAG where
every node 〈S ′, �e′〉 different from a root node 〈{s0}, �e0〉 has a set of predecessor
nodes. For each state s′ ∈ S ′ in such a node, there exists a predecessor 〈S,�e〉
with a state s ∈ S such that T (s, s′) and �e′ = �e + δ�e(s, s′).

PROOF. By induction on the number of loop iterations. We get that the
search structure after the first iteration is a DAG consisting of a root node
〈{s0}, �e0〉. For the inductive step, assume that the search structure is a DAG
with the desired properties after n iterations of the loop (see Figure 5). If the
algorithm in the next iteration terminates in line 3 or 5, the search structure
is unchanged and therefore a DAG with the required format. Assume that the
algorithm does not terminate and that 〈S,�e〉 is the node removed from the top
of frontier . The node is expanded by forming child nodes with the stateSe-

tExpand function in line 6. According to the definition of this function, any
state s′ ∈ S ′ in a child node 〈S ′, �e′〉 has some state s ∈ S in 〈S,�e〉 such that
T (s, s′) and �e′ = �e + δ�e(s, s′). Thus 〈S,�e〉 is a valid predecessor for all states
in the child nodes. Furthermore, since all child nodes are new nodes, no cycles
are created in the search structure which therefore remains a DAG. If a child
node is merged with an old node when enqueued on frontier the resulting
search structure is still a DAG because all nodes on frontier are unexpanded
and therefore have no successor nodes that can cause cycles. In addition, each
state in the resulting node obviously has the required predecessor nodes. �

Lemma 7 For each state s′ ∈ S ′ of a node 〈S ′, �e′〉 in a finite search structure
of the BSFS algorithm there exists a path π = s0, . . . , sn in D such that sn = s′

and �e = �e0 +
∑n−1

i=0 δ�e(si, si+1).

PROOF. We will construct π by tracing the edges backwards in the search
structure. Let b0 = s′. According to Lemma 6 there exists a predecessor
〈S,�e〉 to 〈S ′, �e′〉 such that for some state b1 ∈ S we have T (b1, b0) and
�e′ = �e + δ�e(b1, b0). Continuing the backward traversal from b1 must even-
tually terminate since the search structure is finite and acyclic. Moreover,
the traversal will terminate at the root node because this is the only node
without predecessors. Assume that the backward traversal terminates after n
iterations. Then π = bn, . . . , b1. �

Theorem 8 The BSFS algorithm is sound.

PROOF. Assume that the algorithm returns a path π = s0, . . . , sn with
cost estimates �e. Since sn ∈ G it follows from Lemma 7 and the definition

49

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
of extractSolution that π is a solution to the search problem associated
with cost estimates �e. �

Lemma 9 Assume fSetA* and ghSetA* apply an admissible heuristic and
π = s0, . . . , sn is an optimal solution, then at any time before fSetA* and
ghSetA* terminates there exists a frontier node 〈S,�e〉 with a state si ∈ S
such that �e ≤ C∗ and s0, . . . , si is the search path associated with si.

PROOF. A node 〈S,�e〉 containing si with associated search path s0, . . . , si

must be on the frontier since a node containing s0 was initially inserted on the
frontier and fSetA* and ghSetA* terminates if a node containing the goal
state sn is removed from the frontier. We have �e = cost(s0, . . . , si)+h(si). The
path s0, . . . , si is a prefix of an optimal solution, thus cost(s0, . . . , si) must be
the minimum cost of reaching si. Since the heuristic function is admissible, we
have h(si) ≤ h∗(si) which gives �e ≤ C∗. �

Theorem 10 Given an admissible heuristic function fSetA* and ghSetA*
are optimal.

PROOF. Suppose fSetA* or ghSetA* terminates with a solution derived
from a frontier node with �e > C∗. Since the node was at the top of the frontier
queue, we have

C∗ < f(n) ∀n ∈ frontier .

However, this contradicts Lemma 9 that states that any optimal path has a
node on the frontier any time prior to termination with �e ≤ C∗. �

Acknowledgements

We thank Robert Punkunus for initial work on efficient Boolean encoding of
PDDL domains. We also wish to thank Kolja Sulimma for providing channel
routing benchmark problems. Finally, we thank our anonymous reviewers for
their valuable comments and suggestions.

References

[1] S. B. Akers. Binary decision diagrams. IEEE Transactions on Computers,
c-27(6):509–516, 1978.

50

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
[2] F. Bacchus. AIPS-00 planning competition: The Fifth International Conference

on Artificial Intelligence Planning and Scheduling Systems. AI Magazine,
22(3):47–56, 2001.

[3] R. Bahar, E. Frohm, C. Gaona, E Hachtel, A Macii, A. Pardo, and
F. Somenzi. Algebraic decision diagrams and their applications. In IEEE/ACM
International Conference on CAD, pages 188–191, 1993.

[4] A. Barrett and D. S. Weld. Partial-order planning: Evaluating possible efficiency
gains. Artificial Intelligence, 67(1):71–112, 1994.

[5] P. Bertoli, A. Cimatti, and M. Roveri. Conditional planning under partial
observability as heuristic-symbolic search in belief space. In Proceedings of the
6th European Conference on Planning (ECP-01), pages 379–384, 2001.

[6] P. Bertoli and M. Pistore. Planning with extended goals and partial
observability. In Proceedings of the 14th International Conference on Automated
Planning and Scheduling (ICAPS-04), pages 270–278, 2004.

[7] R. Bloem, K. Ravi, and F. Somenzi. Symbolic guided search for CTL model
checking. In Proceedings of the 37th Design Automation Conference (DAC-00),
pages 29–34. ACM, 2000.

[8] B. Bonet and H. Geffner. Planning as heuristic search: New results. In
Proceedings of the 5th European Conference on Planning (ECP-99), pages 360–
372. Springer, 1999.

[9] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, 8:677–691, 1986.

[10] D. Bryce and D. E. Smith. Planning graph heuristics for belief space search.
Journal of Artificial Intelligence Research, 26:35–99, 2006.

[11] J.R. Burch, E.M. Clarke, and D.E. Long. Symbolic model checking with
partitioned transition relations. In International Conference on Very Large
Scale Integration, pages 49–58. North-Holland, 1991.

[12] A. Cimatti, E. Giunchiglia, F. Giunchiglia, and P. Traverso. Planning via model
checking: A decision procedure for AR. In Proceedings of the 4th European
Conference on Planning (ECP-97), pages 130–142. Springer, 1997.

[13] A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, Strong, and Strong
Cyclic Planning via Symbolic Model Checking. Artificial Intelligence, 147(1-2),
2003.

[14] A. Cimatti and M. Roveri. Conformant planning via symbolic model checking.
Journal of Artificial Intelligence Research, 13:305–338, 2000.

[15] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[16] S. Edelkamp. Directed symbolic exploration in AI-planning. In AAAI Spring
Symposium on Model-Based Validation of Intelligence, pages 84–92, 2001.

51

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
[17] S. Edelkamp. Symbolic exploration in two-player games: Preliminary results.

In Proceedings of the Sixth International Conference on AI Planning and
Scheduling (AIPS-02) Workshop on Model Checking, 2002.

[18] S. Edelkamp. Symbolic pattern databases in heuristic search planning.
In Proceedings of the Sixth International Conference on AI Planning and
Scheduling (AIPS-02), pages 274–283, 2002.

[19] S. Edelkamp. External symbolic heuristic search with pattern databases. In
Proceedings of the 15th International Conference on AI Planning and Scheduling
(ICAPS-05), pages 51–60, 2005.

[20] S. Edelkamp and M. Helmert. Exhibiting knowledge in planning problems to
minimize state encoding length. In Proceedings of the 6th European Conference
on Planning (ECP-99), pages 135–147, 1999.

[21] S. Edelkamp and F. Reffel. OBDDs in heuristic search. In Proceedings of the
22nd Annual German Conference on Advances in Artificial Intelligence (KI-
98), pages 81–92. Springer, 1998.

[22] R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2:189–208, 1971.

[23] M. P. Fourman. Propositional planning. In Proceedings of the AIPS-00
Workshop on Model-Theoretic Approaches to Planning, pages 10–17, 2000.

[24] M. Fox and D. Long. PDDL2.1: An extension to PDDL for expressing temporal
planning domains. Journal of Artificial Intelligence Research (JAIR), 20:61–
124, 2003.

[25] A. Gerevini and L. Schubert. Inferring state constraints for domain-independent
planning. In Proceedings of the 15th National Conference on Artificial
Intelligence (AAAI-98), pages 905–912, 1998.

[26] E. Hansen, R. Zhou, and Z. Feng. Symbolic heuristic search using decision
diagrams. In Symposium on Abstraction, Reformulation and Approximation
SARA-02, 2002.

[27] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for heuristic
determination of minimum path cost. IEEE Transactions on SSC, 100(4), 1968.

[28] P. Haslum and H. Geffner. Admissible heuristics for optimal planning.
In Proceedings of the 5th International Conference on Artificial Intelligence
Planning System (AIPS-00), pages 140–149. AAAI Press, 2000.

[29] J. Hoffmann and S. Edelkamp. The deterministic part of IPC-4: An overview.
Journal of Artificial Intelligence Research (JAIR), 24:519–579, 2005.

[30] R. M. Jensen, R. E. Bryant, and M. M. Veloso. SetA*: An efficient BDD-
based heuristic search algorithm. In Proceedings of 18th National Conference
on Artificial Intelligence (AAAI-02), pages 668–673, 2002.

52

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
[31] R. M. Jensen, R. E. Bryant, and M. M. Veloso. SetA* applied to channel routing.

Technical report, Computer Science Department, Carnegie Mellon University,
2002. CMU-CS-02-172.

[32] R. M. Jensen, E. A. Hansen, S. Richards, and R. Zhou. Memory-efficient
symbolic heuristic search. In In proceedings of the 16th International Conference
on Automated Planning and Scheduling (ICAPS-06), pages 304–313, 2006.

[33] R. M. Jensen and M. M. Veloso. OBDD-based deterministic planning using
the UMOP planning framework. In Proceedings of the AIPS-00 Workshop on
Model-Theoretic Approaches to Planning, pages 26–31, 2000.

[34] R. M. Jensen and M. M. Veloso. OBDD-based universal planning for
synchronized agents in non-deterministic domains. Journal of Artificial
Intelligence Research, 13:189–226, 2000.

[35] R. M. Jensen, M. M. Veloso, and M. Bowling. Optimistic and strong cyclic
adversarial planning. In Proceedings of the 6th European Conference on
Planning (ECP-01), pages 265–276, 2001.

[36] R. M. Jensen, M. M. Veloso, and R. E. Bryant. Fault tolerant planning: Toward
probabilistic uncertainty models in symbolic non-deterministic planning. In
Proceedings of the 14th International Conference on Automated Planning and
Scheduling (ICAPS-04), pages 335–344, 2004.

[37] U. Kuter, D. Nau, M. Pistore, and P. Traverso. A hierarchical task-network
planner based on symbolic model checking. In Proceedings of the 15th
International Conference on Automated Planning and Scheduling ICAPS-05,
pages 300–309, 2005.

[38] J. Lind-Nielsen. BuDDy - A Binary Decision Diagram Package. Technical
Report IT-TR: 1999-028, Institute of Information Technology, Technical
University of Denmark, 1999. http://sourceforge.net/projects/buddy.

[39] D. Long and M. Fox. The AIPS-02 planning competition. http://
planning.cis.strath.ac.uk/competition/, 2002.

[40] D. Long, H. A. Kautz, B. Selman, B. Bonet, H. Geffner, J. Koehler, M. Brenner,
J. Hoffmann, F. Rittinger, C. R. Anderson, D. S. Weld, D. E. Smith, and M. Fox.
The AIPS-98 planning competition. AI Magazine, 21(2):13–33, 2000.

[41] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso,
D. Weld, and D. Wilkins. PDDL – the planning domain definition language.
Technical report, Yale Center for Computational Vision and Control, 1998.

[42] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publ., 1993.

[43] C. Meinel and C. Stangier. A new partitioning scheme for improvement of
image computation. In Proceedings ASP-DAC‘2001, pages 97–102, 2001.

[44] C. Meinel and T. Theobald. Algorithms and Data Structures in VLSI Design.
Springer, 1998.

53

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
[45] A. Nymeyer and K. Qian. Heuristic search algorithms based on symbolic

data structures. In Proceedings of the 16th Australian Conference on Artificial
Intelligence, volume 2903 of Lecture Notes in Computer Science, pages 966–979.
Springer, 2003.

[46] J. Pearl. Heuristics : Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley, 1984.

[47] M. Pistore, R. Bettin, and P. Traverso. Symbolic techniques for planning with
extended goals in non-deterministic domains. In Proceedings of the 6th European
Conference on Planning (ECP-01), pages 253–264, 2001.

[48] I. Pohl. First results on the effect of error in heuristic search. Machine
Intelligence, 5:127–140, 1970.

[49] K. Qian and A. Nymeyer. Guided invariant model checking based on abstraction
and symbolic pattern databases. In Proceedings of the 10th International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS-04), pages 497–511, 2004.

[50] R. K. Ranjan, A. Aziz, R. K. Brayton, B. Plessier, and C. Pixley. Efficient BDD
algorithms for FSM synthesis and verification. In IEEE/ACM Proceedings of
the International Workshop on Logic Synthesis, 1995.

[51] F. Reffel and S. Edelkamp. Error detection with directed symbolic model
checking. In Proceedings of World Congress on Formal Methods (FM), pages
195–211. Springer, 1999.

[52] D. Sawitzki. Experimental studies of symbolic shortest-path algorithms. In
Proceedings of the 3rd International Workshop on Experimental and Efficient
Algorithms (WEA-04), pages 482–498, 2004.

[53] D. Sawitzki. A symbolic approach to the all-pairs shortest-paths problem. In
Proceedings of the 30th International Workshop on Graph-Theoretic Concepts
in Computer Science (WG-04), pages 154–168, 2004.

[54] F. Schmiedle, R. Drechsler, and B. Becker. Exact channel routing using symbolic
representation. In Proceedings of IEEE International Symposium on Circuits
and Systems (ISCAS-99), 1999.

[55] F. Somenzi. CUDD: Colorado University Decision Diagram Package.
ftp://vlsi .colorado.edu/pub/, 1996.

[56] H.-P. Störr. Planning in the fluent calculus using binary decision diagrams. AI
Magazine, pages 103–105, 2001.

[57] K. Sulimma and W. Kunz. An exact algorithm for solving difficult detailed
routing problems. In Proceedings of the 2001 International Symposium on
Physical Design, pages 198–203, 2001.

[58] I. Wegener. Branching Programs and Binary Decision Diagrams. Society for
Industrial and Applied Mathematics (SIAM), 2000.

54

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
[59] C. H. Yang and D. L. Dill. Validation with guided search of the state space. In

Proceedings of the 35th Design Automation Conference (DAC-98), pages 599–
604. ACM, 1998.

[60] J. Yuan, J. Shen, J. Abraham, and A. Aziz. Formal and informal verification.
In Conference on Computer Aided Verification (CAV-97), pages 376–387, 1997.

55

