Dual Proof Generation for Quantified Boolean Formulas with a BDD-Based Solver

Randal E. Bryant and Marijn J. H. Heule

Carnegie Mellon University

CADE, 2021

http://www.cs.cmu.edu/~bryant

Automated Reasoning Programs

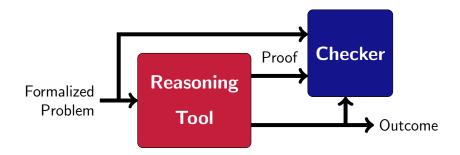
Are The Results Trustworthy?

Automated Reasoning Programs

Are The Results Trustworthy?

- ► No!
- Complex software with many optimizations

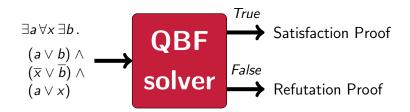
Proof-Generating Automated Reasoning Programs



Checkable Proofs

- Step-by-step proof in some logical framework
- Independently validated by proof checker
- Checker should operate in low-degree polynomial time
 - Relative to tool

Proof-Generating QBF Solver



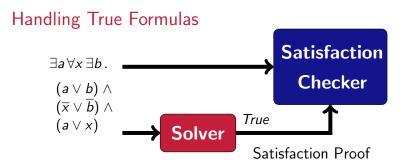
Quantified Formulas

- Assume fully quantified
 - no free variables
- No satisfying assignment
 - Formula is either true or false

Handling False Formulas $\forall x \forall z \exists a.$ $(x \lor a) \land$ $(\overline{z} \lor \overline{a}) \land$ $(z \lor z)$ Solver False Refutation Checker Refutation Checker Refutation Checker Refutation

Refutation Proof

- Similar to proofs of unsatisfiability by SAT checker
- Steps leading to empty clause
 - Add new clauses by resolution
 - Eliminate universal variables
- Implemented by some, but not all QBF solvers



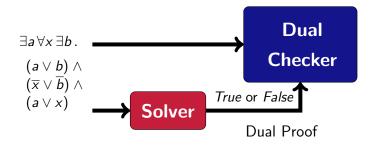
Satisfaction Proof

No approach in widespread use

Some do not give low-degree polynomial checker

- Prove negated formula false
- Show that replacing existential variables by Skolem functions yields tautology
- Cube resolution
 - Separate proof system based on DNF
 - Derive empty cube, representing tautology

What We Really Want



Dual Proof

- Unified framework for satisfaction and refutation proofs
- QBF solver can generate proof as it operates
 - Before it determines whether formula is true or false
- Single checker can handle both cases
 - Single logical framework

QRAT Proof System

Heule, Seidl, Biere 2014

Clausal Proof System

- Developed to check correctness of QBF preprocessors
- Start with input clauses
- Proof rules to add and delete clauses

Refutation Proof

- Add clauses until generate empty clause
- Logical contradiction

Satisfaction Proof

- Add and delete clauses until have empty set of clauses
- Logical tautology

QRAT Logical Basis

Proof Structure

- Input formula Φ₁
- Each clause addition or deletion step yields modified QBF

$$\Phi_I = \Phi_1, \Phi_2, \ldots, \Phi_t$$

Refutation Proof

• Each step must be *truth preserving*: $\Phi_i \rightarrow \Phi_{i+1}$

$$\Phi_I = \Phi_1 \to \Phi_2 \to \cdots \to \Phi_t = \bot$$

Satisfaction Proof

• Each step must be *falsehood preserving*: $\Phi_i \leftarrow \Phi_{i+1}$

$$\Phi_I = \Phi_1 \leftarrow \Phi_2 \leftarrow \cdots \leftarrow \Phi_t = \top$$

Dual Proof

• Each step must be *equivalence preserving*: $\Phi_i \leftrightarrow \Phi_{i+1}$

$$\Phi_{I} = \Phi_{1} \leftrightarrow \Phi_{2} \leftrightarrow \cdots \leftrightarrow \Phi_{t} \in \{\bot, \top\}$$

$$\exists a \forall x \exists b \begin{bmatrix} (a \lor b) \land \\ (\overline{x} \lor \overline{b}) \land \\ (a \lor x) \end{bmatrix} \qquad a \lor b \quad \overline{x} \lor \overline{b} \qquad a \lor x$$

Operations on Terms

- Conjunction
- Quantification

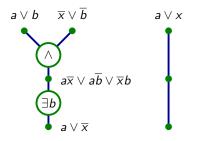
- Process from inner to outer
- Existential
 - Must have single term containing variable
- Universal
 - Can process terms separately

$$\exists a \forall x \exists b \left[\begin{array}{c} (a \lor b) \land \\ (\overline{x} \lor \overline{b}) \land \\ (a \lor x) \end{array} \right]$$

Operations on Terms

- Conjunction
- Quantification

- Process from inner to outer
- Existential
 - Must have single term containing variable
- Universal
 - Can process terms separately

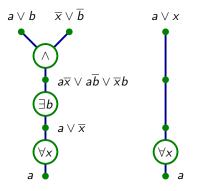


$$\exists a \forall x \exists b \left[\begin{array}{c} (a \lor b) \land \\ (\overline{x} \lor \overline{b}) \land \\ (a \lor x) \end{array} \right]$$

Operations on Terms

- Conjunction
- Quantification

- Process from inner to outer
- Existential
 - Must have single term containing variable
- Universal
 - Can process terms separately

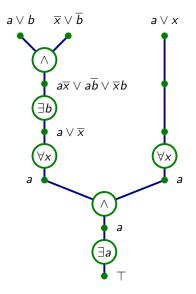


$$\exists a \,\forall x \,\exists b \left[\begin{array}{c} (a \lor b) \land \\ (\overline{x} \lor \overline{b}) \land \\ (a \lor x) \end{array} \right]$$

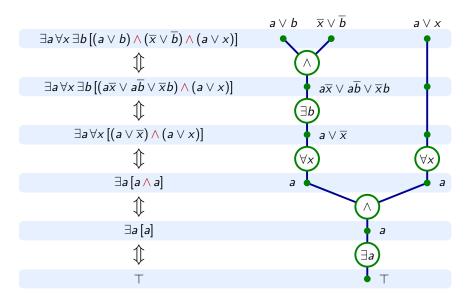
Operations on Terms

- Conjunction
- Quantification

- Process from inner to outer
- Existential
 - Must have single term containing variable
- Universal
 - Can process terms separately



Proof Requirement



Reduced Ordered Binary Decision Diagrams (BDDs)

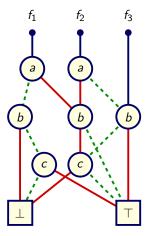
Bryant 1986

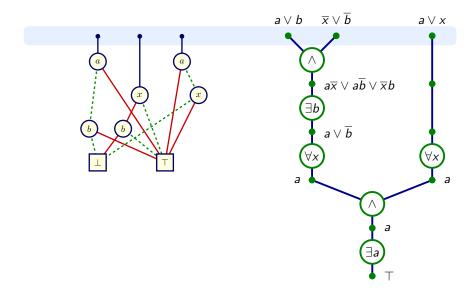
Representation

- Canonical representation of set of Boolean functions
- Compact for many useful cases

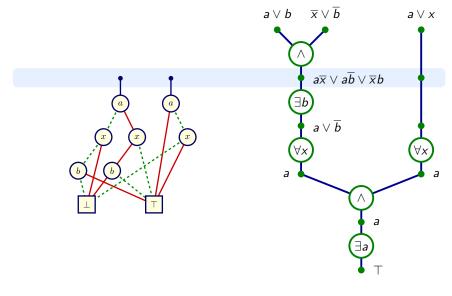
Algorithms

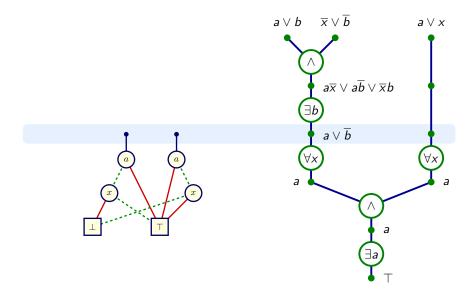
- Apply(f, g, op)
 - Boolean operation op
 - ▶ e.g., ∧, ∨
 - Generates BDD representation of f op g
- Restrict(f, x, c)
 - ▶ $c \in \{0, 1\}$
 - ▶ BDD representation of f|_{x=c}
 - Used to implement quantification

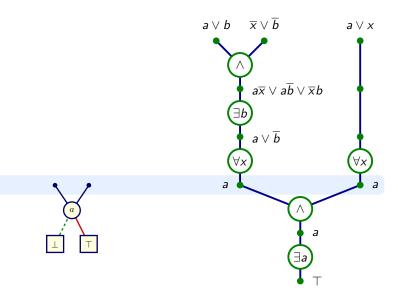


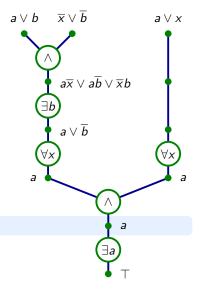


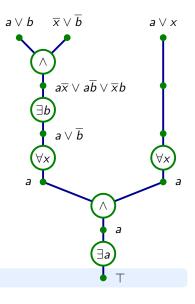
Solving with BDDs





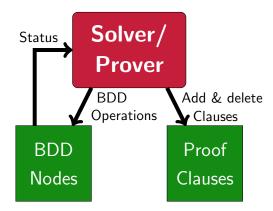






13 / 33

Solver/Prover Operation



- BDD-Based Solver
- Clause operations only to support proof generation

Proof Rules

- Clause addition rules that are truth preserving
- Clause deletion rules that are falsehood preserving
- All covered by QRAT proof system

Resolution:

Add or remove clauses that are implied by other clauses

Extension:

- Introduce new variable and set of clauses
- Abbreviation for Boolean formula over existing variables

Universal Reduction:

Remove redundant universal variables from clauses

Existential Elimination:

- Remove all clauses containing some existential variable
- Similar to Davis-Putnam reduction

Extended Resolution for QBF

Jussila, Sinz, Biere, Kröning, Wintersteiger 2007

Add extension variable e encoding $e \leftrightarrow a \wedge x$

- θ is set of *defining clauses* for *e*
- e existential and after any other variable in θ

$$\Phi = \exists a \forall x \exists b \forall z \psi$$

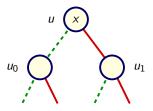
$$\theta \qquad e \lor \overline{a} \lor \overline{x} \qquad \overline{e} \lor a \qquad \overline{e} \lor x$$

$$\Phi' = \exists a \forall x \exists e \exists b \forall z \ (\psi \cup \theta)$$

Subsequent clauses can use *e* to represent $a \wedge x$.

Clausal Representation of BDD

- Sinz & Biere 2006
- Create extension variable for each nonleaf node in BDD
 - Notation: Same symbol for node and its extension variable



• Defining clauses encode constraint $u \leftrightarrow \mathsf{ITE}(x, u_1, u_0)$

Clause name	Formula	Clausal form
HD(u)	$x ightarrow (u ightarrow u_1)$	$\overline{x} \lor \overline{u} \lor u_1$
LD(u)	$\overline{x} ightarrow (u ightarrow u_0)$	$x \lor \overline{u} \lor u_0$
HU(u)	$x ightarrow (u_1 ightarrow u)$	$\overline{x} \vee \overline{u}_1 \vee u$
LU(u)	$\overline{x} ightarrow (u_0 ightarrow u)$	$x \vee \overline{u}_0 \vee u$

Proof-Generating Versions of BDD Algorithms

- Bryant & Heule TACAS 2021
- Algorithms generate both BDD nodes and extended resolution proofs
- ▶ *u*, *v*, *w*: Both BDD nodes and extension variables
- Proofs capture underlying logic of algorithms

Operation	Truth Preserving	Falsehood Preserving
$w = Apply(u, v, \wedge)$	$u \wedge v \rightarrow w$	w ightarrow u, w ightarrow v
$w = Apply(u, v, \lor)$	u ightarrow w, $v ightarrow w$	$w ightarrow (u \lor v)$
$w = \operatorname{Restrict}(u, x, 1)$	$x \rightarrow (u \rightarrow w)$	$x \rightarrow (w \rightarrow u)$
$w = \operatorname{Restrict}(u, x, 0)$	$\overline{x} \rightarrow (u \rightarrow w)$	$\overline{x} \rightarrow (w \rightarrow u)$

Overall Operation: Solver & Prover

Maintain set of active terms. Term *u* consists of:

- Root node u of BDD
- Unit clause with extension variable *u*.
- Set of defining clauses $\theta(u)$ for subgraph with root u.

Initially:

- Generate term for each input clause
- Add unit clause for term; delete input clause

Operations:

- Replace two terms u and v with conjunction $w = u \wedge v$.
- Replace term u with $w = \exists x u$ or $w = \forall x u$

Effect:

- Compute new BDD root w
- Add unit clause w
- Delete unit clauses for argument u (and possibly v)

Required Capability #1

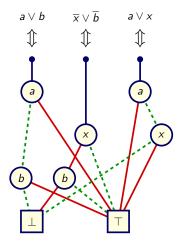
Generate and validate BDD representations of clauses

Given:

- C: Input clause
- *u*: Root node of its BDD representation
- $\theta(u)$: Defining clauses for subgraph with root u

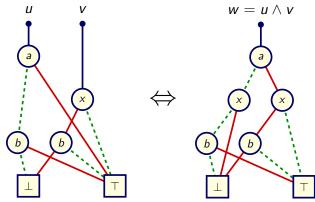
Generate Resolution Proofs:

- $C, \theta(u) \vdash u$
 - Assert unit clause for root
- $u, \theta(u) \vdash C$
 - Input clause can be deleted



Required Capability #2

Replace two BDDs by their conjunction

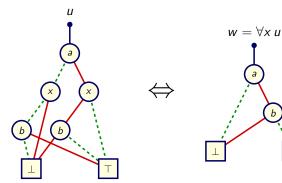


Proof Steps

- Have unit clauses u and v
- Combine with proof that $u \wedge v \rightarrow w$ to assert unit clause w
- ► Use proofs that w → u and w → v to justify deleting unit clauses u and v

Required Capability #3

Replace BDD by its universal quantification



Decompose

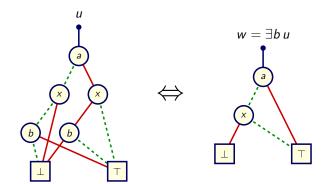
- Proofs:
- $u_1 = \text{Restrict}(u, x, 1)$
- $u_0 = \text{Restrict}(u, x, 0)$
- $w = Apply(u_1, u_0, \wedge)$

Assert unit clauses u₁ and u₀

- Resolution, universal reduction
- Delete unit clause u
- Conjunct u₀ and u₁ to get w

Required Capability #4

Replace BDD by its existential quantification



Decompose

- $u_1 = \text{Restrict}(u, b, 1)$
- $u_0 = \text{Restrict}(u, b, 0)$

•
$$w = \operatorname{Apply}(u_1, u_0, \vee)$$

Proofs (Tricky!):

- ► Assert unit clause w
 - Resolution, extension, and existential elimination
- Delete unit clause u

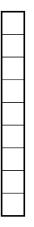
Overall Proof Structure

Representation at each step i

- Root nodes $T_i = \{u_1, u_2, ..., u_k\}.$
- Clauses for each root node u_j:
 - Unit clause u_j
 - Defining clauses $\theta(u_j)$

Possible outcomes

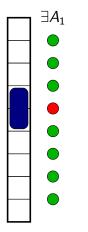
- Generate $u_j = \bot$
 - Creates empty clause
 - Refutation proof
- Reach step *i* with $T_i = \emptyset$.
 - Never add root node \top to set.
 - Clause set empty
 - Satisfaction proof



- Players alternate placing dominos
- First player who can't place domino loses
- At most $\lfloor N/2 \rfloor$ moves
- B wins for:

•
$$N \in \{0, 1, 15, 35\}$$

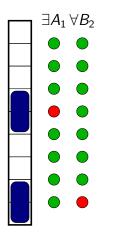
- ▶ $c \in \{5, 9, 21, 25, 29\}$
- OEIS Sequence A215721



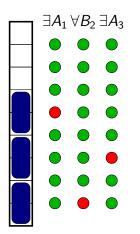
- Players alternate placing dominos
- First player who can't place domino loses
- At most $\lfloor N/2 \rfloor$ moves
- B wins for:

•
$$N \in \{0, 1, 15, 35\}$$

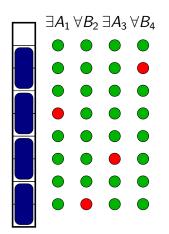
- ▶ c ∈ {5,9,21,25,29}
- OEIS Sequence A215721



- Players alternate placing dominos
- First player who can't place domino loses
- At most $\lfloor N/2 \rfloor$ moves
- B wins for:
 - ▶ $N \in \{0, 1, 15, 35\}$
 - ► 34*i* + *c*
 - ▶ *i* ≥ 0
 - ▶ $c \in \{5, 9, 21, 25, 29\}$
- OEIS Sequence A215721

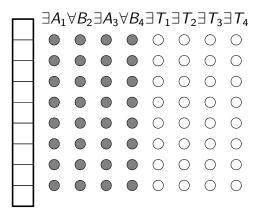


- Players alternate placing dominos
- First player who can't place domino loses
- At most $\lfloor N/2 \rfloor$ moves
- B wins for:
 - ▶ $N \in \{0, 1, 15, 35\}$
 - ► 34*i* + *c*
 - ▶ i ≥ 0
 - ▶ $c \in \{5, 9, 21, 25, 29\}$
- OEIS Sequence A215721



- Players alternate placing dominos
- First player who can't place domino loses
- At most $\lfloor N/2 \rfloor$ moves
- B wins for:
 - ▶ $N \in \{0, 1, 15, 35\}$
 - ► 34*i* + *c*
 - ▶ *i* ≥ 0
 - ▶ $c \in \{5, 9, 21, 25, 29\}$
- OEIS Sequence A215721

Linear Domino Game Encoding



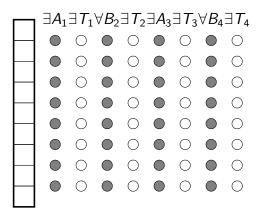
Tseitin Variables

- Track state of board after each step
- Conventionally at innermost quantification level

Clauses (A as winner)

- Each move legal
- Move when possible
- Game consists of odd number of moves

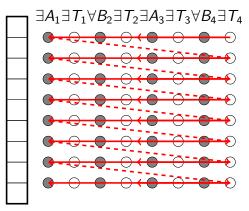
Moving Tseitin Variables



Moving Tseitin Variables

- Right after their defining input variables
- Avoids quantifying them out at beginning of symbolic evaluation

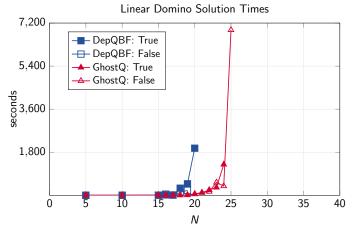
BDD Variable Ordering



Ordering

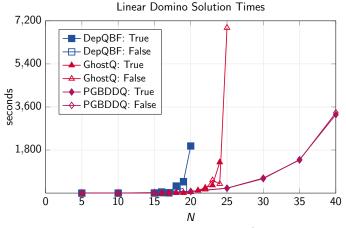
- Major ordering by position on board
- As variables quantified out, those encoding each position adjacent in ordering

Benchmarking Existing QBF Solvers



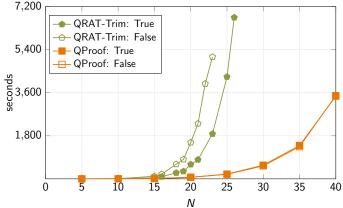
- Solve problems without proof generation
- Encode both true and false instances of problem
- Very fast until point at which times out (7200 seconds)

PGBDDQ with Dual-Proof Generation



- Maintains polynomial scaling (Trend: N^{4.8})
- Problem scales as $O(N^2)$ variables and $O(N^3)$ clauses

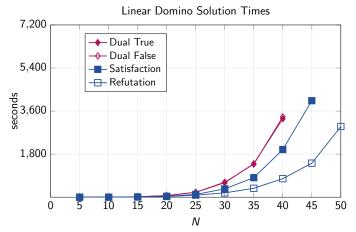
Dual Proof Checking Performance



QRAT-Trim: Existing QRAT checker

- Must search for justifications
- QProof: Checker for limited set of proof rules
 - Proof contains detailed justification of each step
 - Checking time \approx solving time

Optimizing for Single Proof Type



- Additional optimizations when only generating satisfaction or refutation proof
- Checking times also decrease

Conclusions and Observations

Unified proof system for true and false formulas

- Start generating proof before have determined outcome
- Single proof checker

More automation required

- Identify and move Tseitin variables
- Determine elimination ordering within quantifier block
- Determine BDD variable ordering

Applications beyond QBF solving

- Equivalence-preserving transformation from one QBF to another
 - Provably correct