
Dual Proof Generation
for Quantified Boolean Formulas

with a BDD-Based Solver

Randal E. Bryant and Marijn J. H. Heule

CADE, 2021

http://www.cs.cmu.edu/~bryant

1 / 33

http://www.cs.cmu.edu/~bryant


Automated Reasoning Programs

Formalized
Problem

Reasoning

Tool Outcome

Are The Results Trustworthy?

2 / 33



Automated Reasoning Programs

Formalized
Problem

Reasoning

Tool Outcome

Are The Results Trustworthy?

I No!

I Complex software with many optimizations

2 / 33



Proof-Generating Automated Reasoning Programs

Formalized
Problem

Reasoning

Tool

Proof

Outcome

Checker

Checkable Proofs

I Step-by-step proof in some logical framework

I Independently validated by proof checker
I Checker should operate in low-degree polynomial time

I Relative to tool

3 / 33



Proof-Generating QBF Solver

∃a ∀x ∃b .
(a ∨ b) ∧
(x ∨ b) ∧
(a ∨ x)

QBF

solver

True

Satisfaction Proof

False

Refutation Proof

Quantified Formulas
I Assume fully quantified

I no free variables

I No satisfying assignment
I Formula is either true or false

4 / 33



Handling False Formulas

∀x ∀z ∃a .
(x ∨ a) ∧
(z ∨ a) ∧
(z ∨ z)

Refutation

Checker

Solver
False

Refutation Proof

Refutation Proof

I Similar to proofs of unsatisfiability by SAT checker
I Steps leading to empty clause

I Add new clauses by resolution
I Eliminate universal variables

I Implemented by some, but not all QBF solvers

5 / 33



Handling True Formulas

∃a ∀x ∃b .
(a ∨ b) ∧
(x ∨ b) ∧
(a ∨ x)

Satisfaction

Checker

Solver
True

Satisfaction Proof

Satisfaction Proof

I No approach in widespread use
I Some do not give low-degree polynomial checker

I Prove negated formula false
I Show that replacing existential variables by Skolem functions

yields tautology

I Cube resolution
I Separate proof system based on DNF
I Derive empty cube, representing tautology

6 / 33



What We Really Want

∃a ∀x ∃b .
(a ∨ b) ∧
(x ∨ b) ∧
(a ∨ x)

Dual

Checker

Solver
True or False

Dual Proof

Dual Proof

I Unified framework for satisfaction and refutation proofs
I QBF solver can generate proof as it operates

I Before it determines whether formula is true or false

I Single checker can handle both cases
I Single logical framework

7 / 33



QRAT Proof System

I Heule, Seidl, Biere 2014

Clausal Proof System

I Developed to check correctness of QBF preprocessors

I Start with input clauses

I Proof rules to add and delete clauses

Refutation Proof

I Add clauses until generate empty clause

I Logical contradiction

Satisfaction Proof

I Add and delete clauses until have empty set of clauses

I Logical tautology

8 / 33



QRAT Logical Basis
Proof Structure

I Input formula ΦI

I Each clause addition or deletion step yields modified QBF

ΦI = Φ1,Φ2, . . . ,Φt

Refutation Proof
I Each step must be truth preserving: Φi → Φi+1

ΦI = Φ1 → Φ2 → · · · → Φt = ⊥
Satisfaction Proof

I Each step must be falsehood preserving: Φi ← Φi+1

ΦI = Φ1 ← Φ2 ← · · · ← Φt = >
Dual Proof

I Each step must be equivalence preserving: Φi ↔ Φi+1

ΦI = Φ1 ↔ Φ2 ↔ · · · ↔ Φt ∈ {⊥,>}
9 / 33



Symbolic Solving

∃a ∀x ∃b

 (a ∨ b) ∧
(x ∨ b) ∧
(a ∨ x)


Operations on Terms

I Conjunction

I Quantification

Quantifiers

I Process from inner to outer
I Existential

I Must have single term
containing variable

I Universal
I Can process terms

separately

a ∨ b x ∨ b a ∨ x

10 / 33



Symbolic Solving

∃a ∀x ∃b

 (a ∨ b) ∧
(x ∨ b) ∧
(a ∨ x)


Operations on Terms

I Conjunction

I Quantification

Quantifiers

I Process from inner to outer
I Existential

I Must have single term
containing variable

I Universal
I Can process terms

separately

∧

∃b

a ∨ b x ∨ b a ∨ x

ax ∨ ab ∨ xb

a ∨ x

10 / 33



Symbolic Solving

∃a ∀x ∃b

 (a ∨ b) ∧
(x ∨ b) ∧
(a ∨ x)


Operations on Terms

I Conjunction

I Quantification

Quantifiers

I Process from inner to outer
I Existential

I Must have single term
containing variable

I Universal
I Can process terms

separately

∀x

∧

∀x

∃b

a ∨ b x ∨ b a ∨ x

ax ∨ ab ∨ xb

a ∨ x

a a

10 / 33



Symbolic Solving

∃a ∀x ∃b

 (a ∨ b) ∧
(x ∨ b) ∧
(a ∨ x)


Operations on Terms

I Conjunction

I Quantification

Quantifiers

I Process from inner to outer
I Existential

I Must have single term
containing variable

I Universal
I Can process terms

separately

∧

∃a

∀x

∧

∀x

∃b

a ∨ b x ∨ b a ∨ x

ax ∨ ab ∨ xb

a ∨ x

a a

a

>

10 / 33



Proof Requirement

∀x ∀xm
∃a [a∧ a]

m

∃a

∧

∧

∃a ∀x ∃b [(ax ∨ ab ∨ xb)∧ (a ∨ x)]

∃a ∀x [(a ∨ x)∧ (a ∨ x)]

∃a ∀x ∃b [(a ∨ b)∧ (x ∨ b)∧ (a ∨ x)]

>

∃a [a]

m

m

∃bm

a ∨ b x ∨ b a ∨ x

ax ∨ ab ∨ xb

a ∨ x

a a

a

>

11 / 33



Reduced Ordered Binary Decision Diagrams (BDDs)

I Bryant 1986

Representation

I Canonical representation of set of
Boolean functions

I Compact for many useful cases

Algorithms
I Apply(f , g , op)

I Boolean operation op
I e.g., ∧, ∨

I Generates BDD representation of
f op g

I Restrict(f , x , c)
I c ∈ {0, 1}
I BDD representation of f |x=c

I Used to implement quantification

⊥ >

a a

b b b

cc

f1 f2 f3

12 / 33



Solving with BDDs

∀x ∀x

∃a

∧

∧

∃b

a ∨ b x ∨ b a ∨ x

ax ∨ ab ∨ xb

a ∨ b

a a

a

>

⊥

a a

b b

>

xx

13 / 33



Solving with BDDs

∀x ∀x

∃a

∧

∧

∃b

a ∨ b x ∨ b a ∨ x

ax ∨ ab ∨ xb

a ∨ b

a a

a

>

⊥

a a

b b

>

x xx

13 / 33



Solving with BDDs

∀x ∀x

∃a

∧

∧

∃b

a ∨ b x ∨ b a ∨ x

ax ∨ ab ∨ xb

a ∨ b

a a

a

>

a a

⊥ >

xx

13 / 33



Solving with BDDs

∀x ∀x

∃a

∧

∧

∃b

a ∨ b x ∨ b a ∨ x

ax ∨ ab ∨ xb

a ∨ b

a a

a

>

a

⊥ >

13 / 33



Solving with BDDs

∀x ∀x

∃a

∧

∧

∃b

a ∨ b x ∨ b a ∨ x

ax ∨ ab ∨ xb

a ∨ b

a a

a

>
a

⊥ >

13 / 33



Solving with BDDs

∀x ∀x

∃a

∧

∧

∃b

a ∨ b x ∨ b a ∨ x

ax ∨ ab ∨ xb

a ∨ b

a a

a

>
>

13 / 33



Solver/Prover Operation

Solver/

Prover

BDD

Nodes

Proof

Clauses

BDD
Operations

Add & delete

Clauses

Status

I BDD-Based Solver

I Clause operations only to support proof generation

14 / 33



Proof Rules

I Clause addition rules that are truth preserving

I Clause deletion rules that are falsehood preserving

I All covered by QRAT proof system

Resolution:

I Add or remove clauses that are implied by other clauses

Extension:

I Introduce new variable and set of clauses

I Abbreviation for Boolean formula over existing variables

Universal Reduction:

I Remove redundant universal variables from clauses

Existential Elimination:

I Remove all clauses containing some existential variable

I Similar to Davis-Putnam reduction

15 / 33



Extended Resolution for QBF

I Jussila, Sinz, Biere, Kröning, Wintersteiger 2007

Add extension variable e encoding e ↔ a ∧ x

I θ is set of defining clauses for e

I e existential and after any other variable in θ

Φ = ∃a ∀x ∃b ∀z ψ

θ e ∨ a ∨ x e ∨ a e ∨ x

Φ′ = ∃a ∀x ∃e ∃b ∀z (ψ ∪ θ)

I Subsequent clauses can use e to represent a ∧ x .

16 / 33



Clausal Representation of BDD

I Sinz & Biere 2006
I Create extension variable for each nonleaf node in BDD

I Notation: Same symbol for node and its extension variable

xu

u0 u1

I Defining clauses encode constraint u ↔ ITE(x , u1, u0)

Clause name Formula Clausal form

HD(u) x → (u → u1) x ∨ u ∨ u1
LD(u) x → (u → u0) x ∨ u ∨ u0
HU(u) x → (u1 → u) x ∨ u1 ∨ u
LU(u) x → (u0 → u) x ∨ u0 ∨ u

17 / 33



Proof-Generating Versions of BDD Algorithms

I Bryant & Heule TACAS 2021

I Algorithms generate both BDD nodes and extended resolution
proofs

I u, v , w : Both BDD nodes and extension variables

I Proofs capture underlying logic of algorithms

Operation Truth Preserving Falsehood Preserving

w = Apply(u, v ,∧) u ∧ v → w w → u, w → v
w = Apply(u, v ,∨) u → w , v → w w → (u ∨ v)
w = Restrict(u, x , 1) x → (u → w) x → (w → u)
w = Restrict(u, x , 0) x → (u → w) x → (w → u)

18 / 33



Overall Operation: Solver & Prover
Maintain set of active terms. Term u consists of:

I Root node u of BDD

I Unit clause with extension variable u.

I Set of defining clauses θ(u) for subgraph with root u.

Initially:

I Generate term for each input clause

I Add unit clause for term; delete input clause

Operations:

I Replace two terms u and v with conjunction w = u ∧ v .

I Replace term u with w = ∃x u or w = ∀x u
Effect:

I Compute new BDD root w

I Add unit clause w

I Delete unit clauses for argument u (and possibly v)
19 / 33



Required Capability #1

Generate and validate BDD representations of clauses

Given:

C : Input clause

u: Root node of its BDD represen-
tation

θ(u): Defining clauses for subgraph
with root u

Generate Resolution Proofs:

I C , θ(u) ` u
I Assert unit clause for root

I u, θ(u) ` C
I Input clause can be deleted

m

⊥

mm

a

x

a

b b

>

a ∨ xx ∨ ba ∨ b

x

20 / 33



Required Capability #2
Replace two BDDs by their conjunction

⊥

a

b b

>

x

u v

⇔

⊥

a

b b

>

xx

w = u ∧ v

Proof Steps

I Have unit clauses u and v
I Combine with proof that u ∧ v → w to assert unit clause w
I Use proofs that w → u and w → v to justify deleting unit

clauses u and v
21 / 33



Required Capability #3
Replace BDD by its universal quantification

⊥

a

b b

>

xx

u

⇔ a

>⊥

b

w = ∀x u

Decompose

I u1 = Restrict(u, x , 1)

I u0 = Restrict(u, x , 0)

I w = Apply(u1, u0,∧)

Proofs:
I Assert unit clauses u1 and u0

I Resolution, universal reduction

I Delete unit clause u

I Conjunct u0 and u1 to get w
22 / 33



Required Capability #4
Replace BDD by its existential quantification

⊥

a

b b

>

xx

u

⇔ a

x

⊥ >

w = ∃b u

Decompose

I u1 = Restrict(u, b, 1)

I u0 = Restrict(u, b, 0)

I w = Apply(u1, u0,∨)

Proofs (Tricky!):
I Assert unit clause w

I Resolution, extension, and
existential elimination

I Delete unit clause u
23 / 33



Overall Proof Structure

Representation at each step i

I Root nodes Ti = {u1, u2, . . . , uk}.
I Clauses for each root node uj :

I Unit clause uj
I Defining clauses θ(uj)

Possible outcomes
I Generate uj = ⊥

I Creates empty clause
I Refutation proof

I Reach step i with Ti = ∅.
I Never add root node > to set.
I Clause set empty
I Satisfaction proof

24 / 33



QBF Benchmark Problem: Linear Domino Game

Board with 1× N squares

II Players alternate placing
dominos

I First player who can’t place
domino loses

I At most bN/2c moves
I B wins for:

I N ∈ {0, 1, 15, 35}
I 34i + c

I i ≥ 0
I c ∈ {5, 9, 21, 25, 29}

I OEIS Sequence A215721

25 / 33



QBF Benchmark Problem: Linear Domino Game

∃A1
Board with 1× N squares

I Players alternate placing
dominos

I First player who can’t place
domino loses

I At most bN/2c moves
I B wins for:

I N ∈ {0, 1, 15, 35}
I 34i + c

I i ≥ 0
I c ∈ {5, 9, 21, 25, 29}

I OEIS Sequence A215721

25 / 33



QBF Benchmark Problem: Linear Domino Game

∃A1 ∀B2
Board with 1× N squares

I Players alternate placing
dominos

I First player who can’t place
domino loses

I At most bN/2c moves
I B wins for:

I N ∈ {0, 1, 15, 35}
I 34i + c

I i ≥ 0
I c ∈ {5, 9, 21, 25, 29}

I OEIS Sequence A215721

25 / 33



QBF Benchmark Problem: Linear Domino Game

∃A1 ∀B2 ∃A3
Board with 1× N squares

I Players alternate placing
dominos

I First player who can’t place
domino loses

I At most bN/2c moves
I B wins for:

I N ∈ {0, 1, 15, 35}
I 34i + c

I i ≥ 0
I c ∈ {5, 9, 21, 25, 29}

I OEIS Sequence A215721

25 / 33



QBF Benchmark Problem: Linear Domino Game

∃A1 ∀B2 ∃A3 ∀B4
Board with 1× N squares

I Players alternate placing
dominos

I First player who can’t place
domino loses

I At most bN/2c moves
I B wins for:

I N ∈ {0, 1, 15, 35}
I 34i + c

I i ≥ 0
I c ∈ {5, 9, 21, 25, 29}

I OEIS Sequence A215721

25 / 33



Linear Domino Game Encoding

∃A1∀B2∃A3∀B4∃T1∃T2∃T3∃T4

Tseitin Variables

I Track state of board
after each step

I Conventionally at
innermost
quantification level

Clauses (A as winner)

I Each move legal

I Move when possible

I Game consists of odd number of moves

26 / 33



Moving Tseitin Variables

∃A1∃T1∀B2∃T2∃A3∃T3∀B4∃T4

Moving Tseitin Variables

I Right after their defining input variables

I Avoids quantifying them out at beginning of symbolic
evaluation

27 / 33



BDD Variable Ordering

∃A1∃T1∀B2∃T2∃A3∃T3∀B4∃T4

Ordering

I Major ordering by position on board

I As variables quantified out, those encoding each position
adjacent in ordering

28 / 33



Benchmarking Existing QBF Solvers

0 5 10 15 20 25 30 35 40

1,800

3,600

5,400

7,200

N

se
co

n
d

s

Linear Domino Solution Times

DepQBF: True
DepQBF: False
GhostQ: True
GhostQ: False

I Solve problems without proof generation

I Encode both true and false instances of problem

I Very fast until point at which times out (7200 seconds)

29 / 33



PGBDDQ with Dual-Proof Generation

0 5 10 15 20 25 30 35 40

1,800

3,600

5,400

7,200

N

se
co

n
d

s
Linear Domino Solution Times

DepQBF: True
DepQBF: False
GhostQ: True
GhostQ: False
PGBDDQ: True
PGBDDQ: False

I Maintains polynomial scaling (Trend: N4.8)

I Problem scales as O(N2) variables and O(N3) clauses

30 / 33



Dual Proof Checking Performance

0 5 10 15 20 25 30 35 40

1,800

3,600

5,400

7,200

N

se
co

n
d

s
QRAT-Trim: True
QRAT-Trim: False
QProof: True
QProof: False

I QRAT-Trim: Existing QRAT checker
I Must search for justifications

I QProof: Checker for limited set of proof rules
I Proof contains detailed justification of each step
I Checking time ≈ solving time

31 / 33



Optimizing for Single Proof Type

0 5 10 15 20 25 30 35 40 45 50

1,800

3,600

5,400

7,200

N

se
co

n
d

s

Linear Domino Solution Times

Dual True
Dual False
Satisfaction
Refutation

I Additional optimizations when only generating satisfaction or
refutation proof

I Checking times also decrease

32 / 33



Conclusions and Observations

Unified proof system for true and false formulas

I Start generating proof before have determined outcome

I Single proof checker

More automation required

I Identify and move Tseitin variables

I Determine elimination ordering within quantifier block

I Determine BDD variable ordering

Applications beyond QBF solving
I Equivalence-preserving transformation from one QBF to

another
I Provably correct

33 / 33


