
 

Detecting Repurposing and Over-Collection  
in Multi-party Privacy Requirements Specifications 

 
Travis D. Breaux1, Daniel Smullen1, Hanan Hibshi1, 2 

Institute of Software Research, Carnegie Mellon University1 
Pittsburgh, Pennsylvania, United States 

College of Computing, King Abdul-Aziz University2 
Jeddah, Saudi Arabia 

{breaux,dsmullen,hhibshi}@cs.cmu.edu 

  
Abstract—Mobile and web applications increasingly leverage 
service-oriented architectures in which developers integrate 
third-party services into end user applications. This includes 
identity management, mapping and navigation, cloud storage, 
and advertising services, among others. While service reuse 
reduces development time, it introduces new privacy and security 
risks due to data repurposing and over-collection as data is 
shared among multiple parties who lack transparency into third-
party data practices. To address this challenge, we propose new 
techniques based on Description Logic (DL) for modeling multi-
party data flow requirements and verifying the purpose 
specification and collection and use limitation principles, which 
are prominent privacy properties found in international 
standards and guidelines. We evaluate our techniques in an 
empirical case study that examines the data practices of the Waze 
mobile application and three of their service providers: Facebook 
Login, Amazon Web Services (a cloud storage provider), and 
Flurry.com (a popular mobile analytics and advertising 
platform). The study results include detected conflicts and 
violations of the principles as well as two patterns for balancing 
privacy and data use flexibility in requirements specifications. 
Analysis of automation reasoning over the DL models show that 
reasoning over complex compositions of multi-party systems is 
feasible within exponential asymptotic timeframes proportional 
to the policy size, the number of expressed data, and orthogonal 
to the number of conflicts found. 

Index Terms—Data flow analysis, privacy principles, 
requirements validation. 

I. INTRODUCTION 
Increasingly, companies expose their information system 

features to outside developers for reuse and integration into 
third-party applications through Application Programmer 
Interfaces (APIs). Popular examples include the Google Maps 
API for navigation and routing services, and the Facebook 
Login and Google+ for identity management and social 
networking services. These services reduce development costs 
because outside developers can leverage stable third-party 
code. When these services are offered at low or no cost, small 
companies and end-user programmers can trial these services 
while developing cutting-edge application concepts, such as 
the Waze crowdsourcing traffic application that combines 
social networking with first-person traffic monitoring (e.g., 
reporting road hazards, speed traps, etc.) 

Increased integration has obvious benefits to developers 
and consumers alike; however, new privacy risks arise from 
increased information sharing across services. Information that 
users share with friends on Facebook, for example, can be 
exposed to anonymous Waze users, or third-party advertisers 
with whom the Facebook users have no direct business 
relationship. This includes receiving access to a user’s social 
network data or to a user’s travel itinerary. Despite increased 
E.U. and U.S. government regulations [7], to our knowledge 
software developers lack the tools needed to specify personal 
data requirements in a distributed system that align their 
practices with accepted privacy principles. 

Contributions: we present new techniques to formally 
model multi-party data flows requirements and align these 
models with three critical privacy principles: the purpose 
specification principle, which requires that the purposes for 
which data is collected should be explicitly stated; the 
collection limitation principle, which requires that collection 
of personal data should be limited, e.g., limited to that which 
will be used; and the use limitation principle, which requires 
that uses be limited to the purposes for which the data was 
originally collected (with exceptions for consent and legal 
compliance). These principles are represented in varying 
degrees across the U.S. Fair Information Practice Principles 
(FIPPs) and OECD Guidelines on the Protection of Privacy 
and Transborder Flows of Personal Data, and van der Sipe and 
Maalej note the impact of these principles on mobile 
applications, in particular [24]. Together, the principles reduce 
the risk of over-collection, which is the collection of more 
information than is needed, and repurposing, which is using or 
sharing data for purposes other than that for which data was 
collected.  Repurposing occurs at data collectors, who collect 
information from the data subject, or at data processors, who 
process personal information on behalf of data collectors. In 
composable systems, these principles are challenging to verify 
due to the transitive nature of data storage and processing 
across multiple parties. 

The remaining paper is organized as follows: we introduce 
a running example in Section II, the approach in Section III, 
our case study design in Section IV, with results in Section V, 
threats to validity in Section VI, related work in Section VII, 
and our discussion and summary in Section VIII. 
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II. RUNNING EXAMPLE 
We illustrate our approach in a running example based on 

the mobile application (app) Waze, which is a navigation app 
that uses crowdsourcing to report traffic, road hazards, speed 
traps, and other events. We revisit this example throughout the 
paper and within our case study design and results. 

Data requirements that govern the data flows seen in Fig. 1 
appear in platform developer polices, customer agreements, 
terms-of-use and terms-of-service agreements, and privacy 
policies. Because many of these documents are viewed as 
legal contracts, developers must align these requirements with 
their information systems. In the case of privacy policies, the 
policy also serves as a representation to the user about what 
the company does internally with user data. 

 
Fig. 1.  Data flows among the Waze mobile app and their third-party 

service providers; social network data is collected from Facebook Login and 
potentially shared with Flurry.com, while Waze user data is stored in the 

Amazon AWS cloud 

III. APPROACH 
We first review background, before introducing the new Eddy 
language extensions. 
A. Background on Privacy Specifications 

Our privacy specifications are based on the Eddy language 
[8], which has formal semantics expressed in Description 
Logic (DL) - a subset of first-order logic for expressing 
knowledge. A DL knowledge base KB is comprised of 
intensional knowledge, which consists of concepts and roles 
(terminology) in the TBox T, and extensional knowledge, 
which consists of properties, objects and individuals 
(assertions) in the ABox [3]. In this paper, we use the DL 
family ALC, which includes logical constructors for union, 
intersection, negation, and full existential qualifiers over roles. 
Concept satisfiability, concept subsumption and ABox 
consistency in ALC are PSPACE-complete [3]. 

Description Logic includes axioms for subsumption, 
disjointness, and equivalence with respect to a TBox. 
Subsumption describes individuals using generalities: we say a 
concept C subsumes a concept D, written 𝑇 ⊨ 𝐷 ⊑ 𝐶, if 
D𝔗 ⊆ C𝔗  for all interpretations 𝔗 that satisfy the TBox T. The 
concept C is disjoint from a concept D, written 𝑇 ⊨ 𝐷 ⊓ 𝐶 →
⊥, if D𝔗 ∩ C𝔗 =⊘  for all interpretations 𝔗 that satisfy the 
TBox T. Finally, the concept C is equivalent to a concept D, 
written 𝑇 ⊨ C ≡ D, if C𝔗 = D𝔗  for all interpretations 𝔗 that 
satisfy the TBox T. 

The universe of discourse consists of the set Req of 
requirements, Action of actions, Actor of actors, Datum of data 

types, and Purpose of data purposes. A specification is a DL 
knowledgebase KB that consists of multiple requirements. A 
requirement is a DL equivalence axiom 𝑟 ∈ 𝑅𝑒𝑞 that is 
comprised of the DL intersection of an action concept 
𝑎 ∈ 𝐴𝑐𝑡𝑖𝑜𝑛 and a role expression that consists of the DL 
intersection of roles ∃𝑅! ⊓ … ∃𝑅! ∈ 𝑅𝑜𝑙𝑒𝑠. We are primarily 
concerned with four roles in this paper: hasSource indicates 
the source actor from whom the data was collected; hasObject 
indicates the data on which an action is performed; 
hasPurpose indicates the purpose for which data is acted 
upon; and hasTarget indicates the recipient to whom data is 
transferred. For example, requirement 𝑝! for a 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ∈
𝐷𝑎𝑡𝑢𝑚, and purpose 𝑝𝑟𝑜𝑣𝑖𝑑𝑖𝑛𝑔_𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠 ∈ 𝑃𝑢𝑟𝑝𝑜𝑠𝑒 in the 
TBox T, such that it is true that: 

 

 (1) 𝑇 ⊨ 𝑝! ≡ 𝐶𝑂𝐿𝐿𝐸𝐶𝑇 ⊓ ∃ℎ𝑎𝑠𝑂𝑏𝑗𝑒𝑐𝑡. 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ⊓  
                            ∃ℎ𝑎𝑠𝑆𝑜𝑢𝑟𝑐𝑒.𝑤𝑎𝑧𝑒_𝑢𝑠𝑒𝑟 ⊓ 
                            ∃ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒. 𝑝𝑟𝑜𝑣𝑖𝑑𝑖𝑛𝑔_𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠 

 

Each requirement is contained in exactly one modality 
concept in the TBox T as follows: Permission contains all 
actions that an actor is permitted to perform; Obligation 
contains all actions that an actor is required to perform; and 
Prohibition contains all actions that an actor is prohibited from 
performing. We adapt the axioms of Deontic Logic [13], such 
that it is true that 𝑇 ⊨ 𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛 ⊑ 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛, wherein 
each required action is necessarily permitted. If the 
requirement 𝑝! is required such that 𝑇 ⊨ 𝑝! ⊑ 𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛, 
then 𝑇 ⊨ 𝑝! ⊑ 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛. We can now compare the 
interpretations of two requirements based on the role fillers to 
precisely infer conflicts. A conflict is defined as 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡 ≡
𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛   ⊓ 𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛. 

We define a data flow trace as a subset of requirements 
pairs 𝑟!, 𝑟! ∈ 𝑅𝑒𝑞  ×  𝑅𝑒𝑞 that map from a source action 𝑟! to 
a target action 𝑟!. We can trace permitted data collections 
(source action) to permitted data uses and data transfers (target 
actions) when the role values of the source and target actor, 
datum and purpose entail a shared interpretation. For each 
requirement written in the form 𝑟! ≡ 𝑎 ⊓ ∃𝑅!,!.𝐹!,! ⊓
∃𝑅!,!.𝐹!,! ⊓ …   ⊓ ∃𝑅!,!.𝐹!,! in the TBox 𝑇, such that 
𝑎 ∈ {𝐶𝑂𝐿𝐿𝐸𝐶𝑇,𝑇𝑅𝐴𝑁𝑆𝐹𝐸𝑅,𝑈𝑆𝐸} and 𝑅!,!…𝑅!,! ∈ 𝑅𝑜𝑙𝑒𝑠, 
we compare role fillers 𝐹!,!…𝐹!,! between the source and 
target actions to yield one of four exclusive Modes as follows 
for some 𝑗 ≠ 𝑘: 
• U: Underflow, occurs when the data source is subsumed by 

the target, if and only if, 𝑇 ⊨ 𝐹!,! ⊑ 𝐹!,! 
• O: Overflow, occurs when the data target is subsumed by 

the source, if and only if, 𝑇 ⊨ 𝐹!,! ⊑ 𝐹!,! 
• E: Exact flow, occurs when the data source and target are 

equivalent, if and only if, 𝑇 ⊨ 𝐹!,! ≡ 𝐹!,! 
• N: No flow, otherwise. 

Figure 2 presents an example trace from our study reported 
in Section 5, produced using the Eddy toolset. There, the 
Flurry (F) collection requirements FP17 and FP24 trace to the 
transfer requirement FP15; each requirement is represented as a 
node with arrows pointing in the direction of the inferred data 
flow. Nodes are annotated with the requirements expressed in 

Authentication 
Services 

Scalable Storage Services 

Facebook Login Waze Flurry.com 

Mobile Analytics  
&  

Advertising  
Services 

basic profile 
information,  

email address, 
age, list of  

friends, photo 

driving route,  
location, 
speed, 

device ids 

Data flow 
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Eddy’s syntax: “P” means permission, followed by the action 
verb and role values for hasObject, hasSource and 
hasPurpose. Requirement FP15 does not specify the source 
from whom the data was collected, which we therefore assume 
to mean “anyone.” Thus, the collection sources “end-user” and 
“application” are more specific than the transfer source 
“anyone,” which appear as underflows (red arrows). The 
datum “device-id” in FP15 is a subset of the data collected 
under FP17 and FP24, so the solid line arrow matching the datum 
is blue to show an overflow.  

 
Fig. 2.  Example data flow trace: solid lines represent data, dashed lines 
represent the data source, and dotted lines represent the purpose; these lines 
are marked ase overflows (blue), underflows (red); and exact flows (black) 

Below, the collection requirement p1 in formula (3) 
encodes requirement FP24 from Figure 2, and p2 in formula (4) 
encodes the transfer requirement for FP15. In formula (2), we 
show that device-id is subsumed by the broader set of data 
collected under FP24. Thus, the following are true: 

 

(2) 𝑇 ⊨ 𝑑𝑒𝑣𝑖𝑐𝑒_𝑖𝑑 ⊑ (𝑑𝑒𝑣𝑖𝑐𝑒_𝑖𝑑 ⊔ 𝑖𝑝_𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ⊔ 𝑎𝑝𝑖_𝑘𝑒𝑦) 
(3) 𝑇 ⊨ 𝑝! ≡ 𝐶𝑂𝐿𝐿𝐸𝐶𝑇 ⊓ ∃ℎ𝑎𝑠𝑂𝑏𝑗𝑒𝑐𝑡. (𝑑𝑒𝑣𝑖𝑐𝑒_𝑖𝑑 

⊔ 𝑖𝑝_𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ⊔ 𝑎𝑝𝑖_𝑘𝑒𝑦)  
⊓ ∃ℎ𝑎𝑠𝑆𝑜𝑢𝑟𝑐𝑒. 𝑒𝑛𝑑_𝑢𝑠𝑒𝑟   ⊓ ∃ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒.𝑃𝑢𝑟𝑝𝑜𝑠𝑒 

 (4) 𝑇 ⊨ 𝑝! ≡ 𝑇𝑅𝐴𝑁𝑆𝐹𝐸𝑅 ⊓ ∃ℎ𝑎𝑠𝑂𝑏𝑗𝑒𝑐𝑡.𝑑𝑒𝑣𝑖𝑐𝑒_𝑖𝑑 
⊓ ∃ℎ𝑎𝑠𝑆𝑜𝑢𝑟𝑐𝑒.𝐴𝑐𝑡𝑜𝑟   ⊓ ∃ℎ𝑎𝑠𝑇𝑎𝑟𝑔𝑒𝑡.𝐴𝑐𝑡𝑜𝑟  

⊓ ∃ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒.𝑃𝑢𝑟𝑝𝑜𝑠𝑒 
 

Based on the subsumption relation entailed in formula (2), we 
can map the trace (𝑝!, 𝑝!)⟶ (𝑂,𝑈,𝐸) onto the three Modes 
for the roles hasObject, hasSource and hasPurpose, 
respectively. In general, tracing data flows allows an analyst to 
visualize dependencies between collection, use and transfer 
requirements. In this paper, we extend this formalization to 
enable traces across multi-party specifications, which requires 
a shared lexicon to unify terminology across specifications. 

B. New Extensions to Privacy Specifications 
We now present extensions to privacy specifications to 

trace data flows across parties and check a specification for 
compliance with the three privacy principles. 
1) Tracing Multi-party Data Flows. In multi-party data flows, 
we must trace from one actor’s transfer permissions to another 
actor’s collection permissions. For example, the Waze privacy 
policy describes permissions to collect and transfer personal 
information to and from social networks. However, Waze 
interoperates with multiple social networks, such as Facebook 
and Google+, who each provide this service to Waze. Each 3rd 
party has their own privacy policy that governs the flow of 
data to and from Waze. We formalize these relationships in a 
service map that assigns each party in the service relationship 
to one or more roles, and a dictionary that maps terminology 

from one specification to terminology in the other. Each 
specification can be written independently and thus developers 
need only align specifications based on their known service 
relationships, as opposed to the more difficult challenge of 
developing a universal ontology. To distinguish between 
actors and their specifications, we introduce the set Agent that 
contains unique identifiers for each actor in the domain of 
discourse. In addition, we introduce the mapping function 
𝑝𝑜𝑙𝑖𝑐𝑦 ∶ 𝐴𝑔𝑒𝑛𝑡⟶ 𝑆𝑝𝑒𝑐 that maps agent 𝑖𝑑 ∈ 𝐴𝑔𝑒𝑛𝑡 to their 
privacy requirements specifications in 𝑆𝑝𝑒𝑐. Below, we refer 
to agents 𝑎!, 𝑎! ∈ 𝐴𝑔𝑒𝑛𝑡 and their respective privacy 
specifications in TBoxes 𝑇! and 𝑇!. 

Definition 1. A service map describes a service 
relationship between exactly two agents 𝑎!, 𝑎! ∈ 𝐴𝑔𝑒𝑛𝑡. For 
each agent 𝑎!, the map M consists of one or more role pairs 
(𝑎! , 𝑟!) ∈ 𝐴𝑔𝑒𝑛𝑡  ×  𝐴𝑐𝑡𝑜𝑟 that maps a unique agent 𝑎! to one 
or more roles 𝑟! in the service relationship: for agent 𝑎!, the 
role 𝑟! is in TBox 𝑇! of the other agent. For example, the role 
pair (𝑎!, 𝑠𝑜𝑐𝑖𝑎𝑙_𝑛𝑒𝑡𝑤𝑜𝑟𝑘) maps the agent 𝑎! to the actor 
concept 𝑠𝑜𝑐𝑖𝑎𝑙_𝑛𝑒𝑡𝑤𝑜𝑟𝑘 ∈ 𝑇! which defines agent 𝑎!’s 
terminology. Each agent may have more than one role in a 
service relationship for some 𝑗 = 1… 𝑛, but each of these roles 
is defined in the other agent’s terminology. These roles are 
used to determine which transfer requirements to analyze 
based on the collecting agent’s role, and vice versa. 

Definition 2. Each service map contains a single 
dictionary D that maps terminology from one agent’s TBox 𝑇! 
to a second agent’s TBox 𝑇!. This mapping is used to compare 
actor, datum, and purpose descriptions in agent 𝑎!’s source 
actions to corresponding descriptions in agent 𝑎!’s target 
actions. The dictionary is expressed as a collection of axioms 
over concepts 𝑡!   𝜑  𝑡! wherein (𝑡! , 𝑡!) ∈ 𝐴𝑐𝑡𝑜𝑟  ×  𝐴𝑐𝑡𝑜𝑟, 
𝐷𝑎𝑡𝑢𝑚  ×  𝐷𝑎𝑡𝑢𝑚, 𝑃𝑢𝑟𝑝𝑜𝑠𝑒  ×  𝑃𝑢𝑟𝑝𝑜𝑠𝑒, and 𝑡! ∈ 𝑇!, 𝑡! ∈ 𝑇!, 
and 𝜑 is a DL equivalence operator (≡) or a subsumption 
operator (⊑,⊒). 

For example, Waze’s specification defines the concepts 
“unique device id” to refer to the mobile device identifier for 
Android or iOS devices, and “list of friends” refers to the list 
of contacts obtained from the Waze user’s social networking 
service. To align the concepts with “device id” and “end user 
information” used in the Flurry specification, we construct a 
new TBox 𝑇′ = 𝑇! ∪ 𝑇! ∪ 𝐷 such that (5) and (6) are true: 

(5) 𝑇′ ⊨ 𝑢𝑛𝑖𝑞𝑢𝑒_𝑑𝑒𝑣𝑖𝑐𝑒_𝑖𝑑 ≡ 𝑑𝑒𝑣𝑖𝑐𝑒_𝑖𝑑 
(6) 𝑇′ ⊨ 𝑙𝑖𝑠𝑡_𝑜𝑓_𝑓𝑟𝑖𝑒𝑛𝑑𝑠 ⊑ 𝑒𝑛𝑑_𝑢𝑠𝑒𝑟_𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 

Definition 3. A multi-party trace is a subset of 
requirements pairs 𝑟𝑒𝑞𝑡, 𝑟𝑒𝑞𝑐 ∈ 𝑅𝑒𝑞!×  𝑅𝑒𝑞! that map from 
a transfer requirement 𝑟𝑒𝑞𝑡 ∈ 𝑇! to a collection requirement 
𝑟𝑒𝑞𝑐 ∈ 𝑇!. For example, we may trace from permitted data 
transfers defined in first-party agent 𝑎!’s TBox 𝑇! to permitted 
data collections in the counterparty agent 𝑎!’s TBox 𝑇!. To 
find multi-party traces from a first-party agent 𝑎! to their 
counterparty 𝑎! with respect to a service map M, we must 
identify all data transfers from 𝑎! to data recipient roles that 
the counterparty 𝑎! is expected to fill. We first express the DL 
union of counterparty 𝑎! roles 𝑟𝑜𝑙𝑒𝑠! = 𝑟!,!⨆𝑟!,! … 𝑟!,! for 

FP15%

FP24%

P TRANSFER device-id  
FROM anyone FOR anything 

P COLLECT device-id, ip-address, … 
FROM end-user FOR anything 

hasSource 
hasPurpose 

hasObject 
Legend: 

Red: underflow 
Blue: overflow 

Black: exact flow 

FP17%

P COLLECT device-id, location, … 
FROM application FOR anything 
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all role pairs (𝑎!, 𝑟!,!),  … (𝑎!, 𝑟!,!) ∈  M. Next, we identify 
candidate transfer requirements 𝑟𝑒𝑞𝑡! ∈ 𝑅𝑒𝑞! where the 
recipient ℎ𝑎𝑠𝑇𝑎𝑟𝑔𝑒𝑡. 𝑟 in the transfer requirement is an actor 
in the union of counterparty roles 𝑟   ⊑ 𝑟𝑜𝑙𝑒𝑠!. The set 𝐶!"#$ 
contains these candidate transfer requirements that are written 
in the form 𝑟𝑒𝑞𝑡! ≡ 𝑇𝑅𝐴𝑁𝑆𝐹𝐸𝑅 ⊓ ∃ℎ𝑎𝑠𝑇𝑎𝑟𝑔𝑒𝑡. 𝑟 ⊓
∃𝑅!",!.𝐹!",! ⊓ …   ⊓ ∃𝑅!",!.𝐹!",! such that  𝑅!",!,… ,𝑅!",! ∈
𝑅𝑜𝑙𝑒𝑠!, 𝐹!",!,…𝐹!",! are fillers for those roles, and 𝑟 ⊑ 𝑟𝑜𝑙𝑒𝑠!. 
Conversely, we define the DL union of first-party roles 
𝑟𝑜𝑙𝑒𝑠! = 𝑟!,!⨆𝑟!,! … 𝑟!,! for all role pairs (𝑎!, 𝑟!,!),  … 
(𝑎!, 𝑟!,!) ∈  M. The set of candidate collection requirements 
𝐶!"#$ ⊆ 𝑅𝑒𝑞! consists of collection requirements written as 
𝑟𝑒𝑞𝑐! ≡ 𝐶𝑂𝐿𝐿𝐸𝐶𝑇 ⊓ ∃ℎ𝑎𝑠𝑆𝑜𝑢𝑟𝑐𝑒. 𝑠 ⊓ ∃𝑅!",!.𝐹!",! ⊓ …   ⊓
∃𝑅!",!.𝐹!",!, such that 𝑅!",!,… ,𝑅!",! ∈ 𝑅𝑜𝑙𝑒𝑠!, 𝐹!",!,…𝐹!",! 
are fillers for those roles, and 𝑠 ⊑ 𝑟𝑜𝑙𝑒𝑠!. 

The candidate transfer requirements 𝐶!"#$ and collection 
requirements 𝐶!"#$ are only candidate members to multi-party 
traces, because the corresponding hasTarget and hasSource 
role fillers 𝑟 and 𝑠 are constrained by the corresponding agent 
roles in the service map. To identify the actual multi-party 
traces, however, we compare the remaining roles filers in 
candidate requirements pairs 𝑟𝑒𝑞𝑡! , 𝑟𝑒𝑞𝑐! ∈ 𝐶!  ×  𝐶! by 
constructing a new TBox 𝑇!! = 𝑇! ∪ 𝑇! ∪ 𝐷. We compare the 
corresponding fillers 𝐹!,!,…𝐹!,! and 𝐹!,!,…𝐹!,! from 
requirements 𝑟𝑒𝑞𝑡! , 𝑟𝑒𝑞𝑐!, such that roles 𝑅!,! = 𝑅!,!. For our 
study, we are particularly interested in the roles hasObject and 
hasPurpose, but other roles may be included to constrain these 
traces. These comparisons yield one of the four exclusive 
modes (underflow, overflow, exact flow or no flow) described 
in Section 3A. For example, if 𝑇′ ⊨ ℎ𝑎𝑠𝑂𝑏𝑗𝑒𝑐𝑡.𝐹!! ⊑
ℎ𝑎𝑠𝑂𝑏𝑗𝑒𝑐𝑡.𝐹!! for all interpretations 𝔗′ that satisfy the TBox 
𝑇′, then there is an underflow in the ℎ𝑎𝑠𝑂𝑏𝑗𝑒𝑐𝑡 role across 
requirements 𝑟𝑒𝑞𝑡! and 𝑟𝑒𝑞𝑐!. 

In Fig. 3, we present a multi-party trace from our case 
study. Within the Waze specification, the permitted collection 
WP6 was traced to the permitted transfer WP46; in particular, 
the Waze specification (and their privacy policy, for that 
matter) defines a Waze user’s unique mobile device identifier 
to be a kind of personal information. Because formula (5) 
defines an equivalence axiom between the concepts unique-
device-id and device-id, and Flurry is in the actor concept ad-
network, WP46 is traced to Flurry’s permitted collection FP1.  

 

Definition 2 defines multi-party traces from transfers to 
collections, which can be generalized for any source and target 
actions in a specification, such as from uses to transfers, etc. 
2) Verifying the Limitation Principle. The act of repurposing 
occurs when data that was collected for one purpose is used 
for a different purpose. Repurposing is a violation of the use 
limitation principle. The act of over-collection occurs when 
too much data is collected or when data is collected for more 
purposes than are needed. This is a violation of the collection 
limitation principle. We formalize these two principles into a 
general limitation principle; the purposes of all target 
permissions must be no greater than purposes for all source 
permissions with respect to the data of interest.  
 

 
Fig. 3.  Example multi-party data flow trace: solid lines represent data, 

dashed lines represent data sources, and dotted lines represent purposes; also 
shown are overflows (blue), underflows (red); and exact flows (black) 

Definition 4. The limitation principle is verified in a 
specification 𝐾𝐵 by first defining a set of limiting permissions 
𝐿! and a new TBox 𝑇′′ = 𝑇 ∪ 𝐿! for a conflict-free TBox 𝑇, 
and then proving that for all target permissions 𝑡 ∈ 𝑇! there 
exists a limiting permission 𝑙 ∈ 𝐿! such that 𝑇!! ⊨ 𝑡 ⊑ 𝑙 for all 
interpretations 𝔗′′ that satisfy the Tbox 𝑇!!. The limiting 
permissions 𝐿! are derived from the set of source permissions 
𝑆!  by copying each source permission and replacing the 
source action 𝑎! with the target action 𝑎!. We say the new 
TBox 𝑇!!  is 𝑡!-limited, if and only if, for any target permission 
𝑡 ∈ 𝑇!, there exists a limiting permission 𝑙 ∈ 𝐿! such that 
𝑇!! ⊨ 𝑡 ⊑ 𝑙; otherwise, the target permission 𝑡 violates the 𝑡!-
limitation principle, for some target action 
𝑡! ∈ {𝐶𝑂𝐿𝐿𝐸𝐶𝑇,𝑈𝑆𝐸,𝑇𝑅𝐴𝑁𝑆𝐹𝐸𝑅}. 

For example, we can define a TRANSFER-limitation 
principle, with the sets of permitted collections 𝑆! = 𝑠 𝑠 ∈
𝑅𝑒𝑞   ∧ 𝑇 ⊨ 𝑠 ⊑ 𝐶𝑂𝐿𝐿𝐸𝐶𝑇 ⊓ 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛} and transfers 
𝑇! = 𝑡 𝑡 ∈ 𝑅𝑒𝑞 ∧ 𝑇 ⊨ 𝑡 ⊑ 𝑇𝑅𝐴𝑁𝑆𝐹𝐸𝑅 ⊓ 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛}. The 
limiting permissions 𝐿! = 𝑙 𝑠 ∈ 𝑆! ∧ 𝑇 ⊨ 𝑠 ≡ 𝐶𝑂𝐿𝐿𝐸𝐶𝑇 ⊓
∃𝑅!.𝐹! ⊓ …   ⊓ ∃𝑅!.𝐹! → (𝑇′′ ⊨ 𝑙 ≡ 𝑇𝑅𝐴𝑁𝑆𝐹𝐸𝑅 ⊓
∃𝑅!.𝐹! ⊓ …   ⊓ ∃𝑅!.𝐹!)}. Consider the collection permission 
WP6 from Figure 3, which appears in formula (7), below. 

 

(7) 𝑇 ⊨ 𝑝! ≡ 𝐶𝑂𝐿𝐿𝐸𝐶𝑇 ⊓ ∃ℎ𝑎𝑠𝑂𝑏𝑗𝑒𝑐𝑡. 𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙_𝑖𝑛𝑓𝑜  
⊓ ∃ℎ𝑎𝑠𝑆𝑜𝑢𝑟𝑐𝑒.𝑤𝑎𝑧𝑒_𝑢𝑠𝑒𝑟  
⊓ ∃ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒. 𝑒𝑛ℎ𝑎𝑛𝑐𝑖𝑛𝑔_𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 

(8) 𝑇′′ ⊨ 𝑙! ≡ 𝑇𝑅𝐴𝑁𝑆𝐹𝐸𝑅 ⊓ ∃ℎ𝑎𝑠𝑂𝑏𝑗𝑒𝑐𝑡. 𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙_𝑖𝑛𝑓𝑜 
⊓ ∃ℎ𝑎𝑠𝑆𝑜𝑢𝑟𝑐𝑒.𝑤𝑎𝑧𝑒_𝑢𝑠𝑒𝑟   ⊓ ∃ℎ𝑎𝑠𝑇𝑎𝑟𝑔𝑒𝑡.𝐴𝑐𝑡𝑜𝑟  
⊓ ∃ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒. 𝑒𝑛ℎ𝑎𝑛𝑐𝑖𝑛𝑔_𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 

(9) 𝑇 ⊨ 𝑝!" ≡ 𝑇𝑅𝐴𝑁𝑆𝐹𝐸𝑅 ⊓ ∃ℎ𝑎𝑠𝑂𝑏𝑗𝑒𝑐𝑡.𝑢𝑛𝑖𝑞𝑢𝑒_𝑑𝑒𝑣𝑖𝑐𝑒_𝑖𝑑 
⊓ ∃ℎ𝑎𝑠𝑆𝑜𝑢𝑟𝑐𝑒.𝐴𝑐𝑡𝑜𝑟   ⊓ ∃ℎ𝑎𝑠𝑇𝑎𝑟𝑔𝑒𝑡. 𝑎𝑑_𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑠  

⊓ ∃ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒.𝐴𝑛𝑦𝑡ℎ𝑖𝑛𝑔 
 

From formula (7), we derive the limiting permission 𝑙! in 
formula (8) by replacing the source action COLLECT with the 
target action TRANSFER and by completing the missing 
role/value pair for hasTarget. The transfer permission WP46 
from Figure 3 appears in formula (9), above. While we know 
that unique-device-id is a kind of personal-information in 
Waze’s specification, we cannot show that 𝑇!! ⊨ 𝑝!" ⊑ 𝑙!, 
because the transfer purpose in 𝑝!" exceeds the limiting 
purpose in 𝑙!, e.g., “any purpose” subsumes “enhancing 
service experience”. Assuming there is no other limiting 
permission that subsumes 𝑝!", this transfer permission violates 
the TRANSFER-limitation principle. 

hasObject 
hasSource 
hasPurpose 
Waze/Flurry system 
boundary 
 

FP1$

P COLLECT personal-information 
FROM waze-user FOR enhancing-service-
experience 

Legend: 
Blue: overflow 
Red: underflow 
Black: exact 
flow 

P COLLECT device-id, device-os, mac-
address 
FROM anyone FOR anything 

WP6$

P TRANSFER unique-device-id 
FROM anyone FOR anything TO ad-networks WP46$
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IV. CASE STUDY DESIGN 
We evaluated the Eddy language extensions for multi-

party tracing in an empirical case study [11, 25] using coding 
theory to increase construct and internal validity [19]. Coding 
is an interpretative, qualitative method in which multiple 
analysts assign codes from a coding frame to data. The coded 
data is statistically measured for agreement above chance, 
whereby sources of disagreement are used to disambiguate the 
coding frame. We examined the following five policies (the 
policies with asterisks were not formalized, explained below): 

• Waze Privacy Policy, modified 30 May 2013 
• Facebook API Developer Guidelines, revised 28 June 2013 
• Amazon AWS Customer Agreement*, updated 15 March 2012 
• Amazon AWS Privacy Policy*, acquired on 16 August 2013 
• Amazon Privacy Policy*, updated 6 April 2012 
• Flurry Privacy Policy, updated 9 July 2013 

We removed Amazon’s policies from the dataset because 
Amazon’s contract language does not clearly cover end user 
data in their cloud services. We discussed this “gap” with a 
legal expert, who read all three policies and suggested that the 
absence of a specific privacy policy for end user data in 
Amazon’s cloud services effectively allows Amazon to use the 
data as they wish within the confines of national or provincial 
laws. Therefore, we focused our analysis on Waze, Facebook 
and Flurry policies. 

We sought to answer three research questions within the 
limits of our formalization of the three selected policies: 
RQ1: What multi-party data flows exist across the selected 

policies? 
RQ2: Does data repurposing or over collection occur within 

any of the policies, or across policies?  
To answer these questions, we coded the three parties’ 

policies using the coding methodology adapted from Saldana 
[19]. Our coding method has five steps, illustrated in Fig. 4: 
(1) we identify the policy statements that are data 
requirements, which specifically describe actions performed 
by humans or software on data; (2) for each data requirement, 
we assign a statement-level code to indicate whether the 
statement is either a collection, use or transfer of information 
based on a verb, and we assign phrase-level codes to identify 
the actors, data types and purposes relevant to each role 
(object, source, target and purpose); and (3) if the statement 
contains a definition or elaboration of a phrase-level concept, 
we code this phrase as either: a refinement, wherein one 
concept is refined by a more specific concept; an abstraction, 
wherein a list of concepts is described by a more general 
concept; or an exclusion, wherein a concept is excluded from 
another concept (i.e., assumed to be disjoint with). After each 
statement is analyzed, the analyst maps the coded text into 
Eddy syntax (step 4), which is compiled into DL using an 
automated parser tool (step 5). 

In step 5, the parser reads the specification and compiles 
DL formulae. The terminology is compiled into equivalence, 
subsumption, and disjointness axioms (see formula A-B in 
Figure 5), and the requirements are compiled into 
requirements DL equivalence axioms (see formula C), 

subsumed by an appropriate modality (see formula D). In 
addition to the requirements specifications, we introduced 
service maps as an inter-lingua that maps concepts from one 
specification to another. Fig. 5 illustrates a service map from 
the case study between Waze and their advertising network, 
Flurry. 

 
Fig. 4.  Example policy statement coded as a data requirement 

For example, in Fig. 5, Waze is called a “customer” in 
Flurry’s specification, and Flurry is called an “ad-network” in 
Waze’s specification. Each actor can have more than one role. 
Lines 3-12 describe definitions wherein the first actor’s terms 
appear on the left-hand side of the definition operator (“<” 
means is subsumed by, “>” means subsumes, and “=” means 
is equivalent to) and the second actor’s terms appear on the 
right-hand side. Some mappings may appear obvious, such as 
“age” (see line 7), whereas other terms must be inferred using 
domain knowledge: e.g., in advertising, frequency data such as 
the number of ads clicked is also called aggregate data (see 
line 3). In practice, we envision that requirements analysts 
would develop these terminologies with consultation from 
their legal departments, or they may reuse industry-wide 
terminologies from standards organizations. Similar to 
software APIs, we expect service mappings to be maintained 
over time, and could become relatively stable for services that 
do not frequently evolve their data practices.  

1 NS1 http://localhost/waze-pp.owl customer 
2 NS2 http://localhost/flurry-pp.owl ad-networks 
3 D ads-clicked < aggregated-data 
4 D ads-clicked = clicks 
5 D ads-posted < aggregated-data 
6 D ads-viewed < aggregated-data 
7 D age = age 
8 D list-of-friends < end-user-data 
9 D location = location 
10 D personally-identifiable-information < end-user-data 
11 D profile-picture < end-user-data 
12 D unique-device-id = device-id 

Fig. 5.  Example service map from Waze to Flurry; lines 1-2 set the 
terminological namespace for the first and second actor, followed by datum 

(“D”) definitions for terms from the first actor (left side) that map to terms of 
the second actor (right side) 

For the three coded policies reported in this paper, we 
measured inter-rater reliability at between .791 and .921 using 
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Cohen’s Kappa. This is comparable to a separate study [8] 
using the same coding frame that yielded between .800 and 
.910 for Cohen’s Kappa and also used two independent raters.  

V. CASE STUDY RESULTS 
We now discuss our case study results. The first and third 

authors separately coded the Waze, Flurry and Facebook 
policies in three sessions. The average coding times required 
135, 88 and 138 minutes, respectively. We coded 26-36% of 
the three policies, because large portions did not describe data 
actions covered by the coding frame. We computed Cohen’s 
Kappa for all three policies and found inter-rater reliability to 
be .791, .921 and .925, which is a high degree of agreement 
above chance and includes agreement about which statements 
were excluded. Table I presents the total number of statements 
(Total Stmts) and number of data requirements (Req’ts), which 
are divided into the number of permissions (P), obligations 
(O), prohibitions (R),  collections (C), uses (U) and transfers 
(T). Between 92-95% of Waze and Flurry privacy policies 
describe permissions; however, the Facebook policy contains 
more prohibitions (> 50%). This is because the Facebook 
policy regulates practices of connecting apps, such as Waze, 
and that includes which practices are not allowed. 

TABLE I. OVERVIEW OF PRIVACY SPECIFICATION COMPOSITION 

Policy Total 
Stmts 

Data 
Req’ts 

Modality Action 
P O R C U T 

Waze 150 65 60 0 5 13 18 34 
Flurry 155 44 42 0 2 15 6 23 
Facebook 136 55 24 1 30 13 24 18 

 

Table II presents the number of definitions that were 
recorded explicitly from coding the policies (Expl.), and those 
that were later inferred to align terminology within 
specifications (Infer.). Inferences are needed because policy 
authors change terminology across adjacent sentences. All 
terms were explicitly stated in the policies, and only the 
formal relationships were inferred (e.g., “personal 
information” was inferred to be equivalent to “personal 
details”). Table II reports definitions by the number of 
subsumption (S), disjointness (D), and equivalence (E) axioms 
over actors (A), datum (D) and purposes (P).  

TABLE II. NUMBER AND TYPES OF DEFINITIONS, EXPLICIT AND INFERRED 

Policy 
Definitions Axioms Concepts 

Expl. Infer. S D E A D P 
Waze 41 37 70 2 6 13 46 19 
Flurry 45 37 64 4 18 19 93 31 
Facebook 45 8 50 0 3 12 73 28 

 

 

Table III presents the number of alignments obtained by the 
coders, who created the service maps (described in Section 
3B). Both coders created the service maps separately and then 
compared their results to reach consensus. 

TABLE III. NUMBER AND TYPES OF MAPPINGS IN SERVICE MAPS 

Service Map Alignments Axioms Concepts 
S E A D P 

Waze-Facebook 519 498 21 14 432 73 
Waze-Flurry 318 295 23 44 193 81 

 

We now discuss the conflicts, multi-party data flow traces and 
limitation principle violations that we detected in our study. 
A. Potential Conflicts within Each Policy 

Automated analysis detected potential conflicts within the 
Waze and Flurry privacy specifications that we classified into 
three categories: ambiguous specifications conflicts arising 
when the original policy statement lacks information that may 
have prevented the conflict, e.g., not stating a data transfer 
purpose implies “any purpose” that exceeds allowable transfer 
purposes; electable permissions conflicts that conflict with 
prohibitions in the policy prior to election, e.g., a policy may 
prohibit a particular collection, unless the user consents to the 
collection; and direct conflicts among practices that are 
unelectable and complete with respect to the a conflicting role 
specification. Developers should consider electable 
permissions conflicts as a source of potential conflict: if the 
system treats all data as elected for the permitted practice, this 
would be a violation of their policy. We now discuss conflicts 
due to ambiguous specifications and direct conflicts. 

The automated analysis discovered 13 conflicts in Waze’s 
policy that included eight ambiguous specification conflicts, 
three electable permission conflicts, and two direct conflicts. 
Waze’s specification includes a prohibition (WR1) that 
prevents transferring personally identifiable information (PII) 
to third parties for marketing purposes; this conflicts with 
permissions, (such as WP45) below, that allow transfers to 
partners and service providers for unspecified purposes. This 
ambiguous specification conflict can be removed by 
modifying the purpose to explicitly exclude marketing 
purposes (see WX45, below, where the disjoint operator “\” is 
read “anything except for marketing purposes”).  

 

WR1: R TRANSFER PII TO third-party FOR marketing-purposes 

WP45: P TRANSFER PII TO partners, service-providers 

Wx45: P TRANSFER PII TO partners, service-providers  
FOR anything \ marketing-purposes 

These direct conflicts arise because Waze’s specification 
prohibits transferring personal information to Waze users 
when the user is anonymous (see WR0 below), while a separate 
permission allows posting user-uploaded information, along 
with other personal information, to be seen by Waze users (see 
WP13). Among WR0 and WP13, there is a shared interpretation 
in the hasObject role value personal-information that excludes 
driving-speed and time-joined-service that is both prohibited 
by WR0 and permitted by WP13. Because this is a direct 
conflict, the specification author needs to carefully consider 
the impact of mitigating the conflict. Removing the 
prohibition may permit unintended data sharing, while remove 
the permission may break services that depend on this data 
flow. Alternatively, the purposes are unrestricted; thus, the 
author could introduce a specific class of purposes that are 
prohibited, while preserving a class of permitted purposes. If 
these two classes are logically disjoint, then the conflict would 
be eliminated.  

 

WR0: R TRANSFER personal-information \ driving-speed, time-
joined-service TO waze-user 

WP13: P TRANSFER uploaded-information, personal-information 
TO waze-user 
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In the Flurry policy, the automated analysis discovered 
nine conflicts: eight conflicts due to ambiguous specifications 
and one direct conflict. The direct conflict results from Flurry 
permitting the transfer of Waze users’ unique device id to 
advertisers who want to confirm conversion1 via the Flurry ad 
network (see FP27), despite transferring PII to non-affiliates 
being prohibited. Advertisers who buy ad space through 
Flurry, and who are not owned by Flurry’s parent company, 
are not affiliate companies under Flurry’s privacy policy. 

 
FR0: R TRANSFER PII to non-affiliated-companies 

FP27: P TRANSFER device-id TO advertisers FOR confirming-
conversion-via-flurry-network 

B. Tracing Multi-party Data Flows 
Based on Waze and Flurry’s specifications and service 

maps, the automated analysis found 416 total traces within and 
across both policies, of which 73 traces were multi-party 
traces from Waze transfers to Flurry collections. This includes 
permissions and prohibitions; if a prohibition is paired with a 
permission, then this trace indicates a data supply or demand 
that is not reciprocated by the counterparty. Fig. 6 presents a 
subset of 12 from 416 traces, four of which are multi-party 
traces that cross the vertical dividing line between Waze’s 
practices on the left and Flurry’s practices on the right side.  

 

 
Fig. 6.  Example multi-party data flow trace from Waze’s privacy policy to 

Flurry’s privacy policy: arrows point in the direction of flows, tracing Waze 
user data (blue), user location (orange) and users’ unique device identifier 

(red) to Flurry as third-party advertisers  

Demonstrated in the flow trace seen in Fig. 6, if a user 
connects to Waze via Facebook Login, the user’s social 
network information, including their contact information, 
profile photo, list of friends, age, etc., may be transferred to 
third parties to support Waze services (see WP19 and WP20). 
This includes Flurry.com, who specifically collects ad requests 
that include end user data at Waze’s discretion (called 
customer key/value pairs, see FP20). This end user data is 

                                                             
1 In advertising, a conversion occurs when a consumer observes an ad and 
proceeds to make a purchase from the featured seller, including a purchase of 
the advertised product. Conversion may be measured by linking the ad-
observation event to the consumer’s location at the seller’s store or to a known 
purchase in the consumer’s purchase history. 

combined with the user’s location and unique device 
identifier, all potentially sent to advertising partners (see FP13). 
In addition, the Waze user’s device id and location (collected 
and transferred via WP6 and WP46, respectively) are sent to 
applicable publishers that participate in Flurry’s AppCircle 
mobile app advertising service (see FP1 and FP13). This 
uniquely identifying information is collected under the general 
purpose of “enhancing personal experience,” and broadly re-
purposed for any purpose by Waze and Flurry. If a Waze 
developer had not intended the user’s social network 
information (including their list of friends) to be used for 
advertising purposes, they could state that intent in their 
privacy specification and rerun our analysis to detect a conflict 
with Flurry’s policy which permits this data to be shared with 
advertisers. 
C. Verifying the Three Privacy Principles 

We checked the Waze and Flurry specifications for 
compliance with the purpose specification principle, 
collection-, and use-limitation principles. The purpose 
specification principle requires companies to declare their data 
use purposes at the time of collection. Thus, collection 
requirements should all include stated purposes. The use and 
collection limitation principles aim to avoid repurposing and 
over-collection, which are two threats to privacy. 

Table IV presents the ratio of missing purposes to total 
actions for collections, uses, and transfers that we 
automatically identified in the coded specifications. These 
missing purposes are ambiguities in the policies, which are 
preserved by the analyst when writing the policy statement 
using the Eddy language. The missing purposes are logically 
inferred to mean “any purpose” in the formal specification, 
which can lead to violations of limitation principles. In Table 
IV, collection and transfer statements were more likely 
(>50%) to omit purposes, whereas usage statements were less 
likely (<10%) to omit purposes. 

TABLE IV. THE RATIO OF MISSING PURPOSES TO TOTAL ACTION TYPE FOR 
COLLECTIONS (C), USES (U) AND TRANSFERS (T) 

Policy Missing Purposes 
Collections Uses Transfers 

Waze 6/13 (46%) 1/18 (5%) 23/30 (76%) 
Flurry 11/15 (73%) 0/6 (0%) 13/22 (59%) 
Facebook 4/8 (50%) 1/10 (10%) 5/7 (71%) 

 

The repurposing analysis examined Waze’s data practices 
regarding three categories of user data: location, driving route, 
and personal information. The high frequency of missing 
purposes for collections and transfers reduces the risk of 
repurposing, because collection and transfer purposes that are 
omitted are interpreted as unrestricted (i.e., for “any purpose”). 
That said, the analysis detected that the Waze user’s driving 
route was repurposed. The permitted collection WP4, below. 
constrains the collection of route from Waze users for the 
purpose of providing services, whereas the specification also 
permits the use (WP8) and transfer (WP7) of driving-route for 
any purpose. This repurposing from “providing services” to 
“any purpose” violates use- and transfer-limitation principles, 
and may be corrected by such purposes to be subsumed by 
collection purposes. 

WP20%WP19%

COLLECT information*  
FROM social-network 

TRANSFER PII  
FROM social-network 

FP1%

COLLECT  
device-id TRANSFER unique-device-id  

TO ad-networks 

COLLECT ad requests  
FROM customer  
FOR selling-inventory-through-
flurry-rtb-marketplace 

WP54%

TRANSFER location  
TO ad-companies 

WP26%

COLLECT location 

WP6% WP46%

Waze Collections & 
Transfers 

Flurry Collections & Transfers 

TRANSFER end-user-data 
TO advertising-partners 

TRANSFER device-id, location 
TO applicable-publisher 

FP20% FP13%

Legend: User’s social network information, including name, age, gender 
User’s mobile device location 
User’s mobile device unique identifier 

COLLECT personal info 
FROM waze-user  
FOR enhancing-personal-experience 

FP13%

172



 
 

Wp4: P COLLECT location, route FROM waze-user FOR providing-
services 

Wp7: P TRANSFER avatar, distance, driving-route,…, waze-rank 

Wp8: P USE avatar, distance, driving-route,…, waze-rank 

Recall that over-collection violates the collection limitation 
principle, because more information is collected than needed. 
We detect over collection by testing whether collection 
purposes are subsumed by use and transfer purposes. When 
specifications have a high frequency of unrestricted transfer 
purposes (as shown in Table IV), the risk of over collection is 
reduced, since developers can argue that broad collection 
purposes are needed to support broad transfer purposes, 
regardless of use. However, if we focus on use specifications 
and omit transfers from analysis, then we find over collection 
with respect to explicit uses. For example, WP10 and WP26, 
below, permit collection of location for any purpose, whereas 
the permitted use WP18 restricts usage to identifying attractions 
and shops, presumably for notifying the user. Because there 
are no other declared usage purposes for location, this can be 
reported as an over-collection in the absence of transfers. 

 
Wp10: P COLLECT location FROM third-party-service, waze-user 

Wp26: P COLLECT ads-clicked, ads-viewed, geographic-
location,…, web-pages-visited 

Wp18: P USE location, route-information FOR identifying-
attractions, identifying-shops 

Our analysis uncovered two privacy specification design 
patterns whereby specification authors can bypass the 
limitation principles, i.e., they can comply with the principles 
by writing policies that violate the general spirit of the 
principles. The first purpose hoisting pattern describes 
permitted actions with restricted purposes (e.g., using route 
information in WP18). These actions comply with purpose 
specification, and under the limitation principle serve to 
constrain any target actions. Next, the specification author 
describes the same permitted action with a broad purpose (e.g., 
WP8 - assuming driving-route is a kind of route-information). 
This last action subsumes the other purposes and thus “hoists” 
the information from a restricted to a more general purpose, 
and thus reduces the risk of limitation principle violations. 
Purpose hoisting allows a policy author to be both specific and 
flexible in specifying their access to data. 

The second unrestricted cross-flows pattern describes the 
source and target action purposes in general terms to offer 
greater design flexibility and potentially the least privacy. We 
identified instances of this pattern in Waze’s specification. For 
example, collections and transfers of personal information to 
and from social networks are unrestricted by purpose. 
Collection of Waze users’ location is unrestricted through 
transfers to other Waze users, non-Waze users and advertising 
companies. In this regard, Waze has considerable flexibility in 
how they share data with social networks, or how they use 
location. Such flexibility may benefit companies who evolve 
their business models, but it may introduce privacy risks. 
D. Tool Support for Scaling Multi-Party Compositions 

The Java-based Eddy language parser and compiler 
produce specifications expressed in Web Ontology Language 

(OWL) DL, which is then analyzed using a theorem prover. 
Prior simulations [10] concluded that the HermiT Reasoner 
v1.3.4 produces low-coefficient exponential asymptotic 
performance with respect to policy size and number of 
conflicts when analyzing single party policy specifications. 
This suggested some measure of scalability toward policy 
specifications involving multiple parties. We replicate and 
present these results and asymptotic characteristics in Fig. 7, 
in which policies have a fixed number of data elements, and 
increasing permission and prohibitions (up to 80).   

In our new analysis, we evaluate policies larger than those 
in our case study. The generated policies contain: 400 
statements (100 collection, use, and transfer permissions and 
100 collection prohibitions); a fixed number of actors and 
purposes (10 actors and 10 purposes, each with 10 children 
subsumed by their parent); and up to 100 data flows between 
parties. This policy configuration is more than double the size 
of policies seen in Section V. The data element count was 
varied from 1-52 in the first layer of each policy’s ontology, 
with 4 layers beneath based on our analysis of a combined 26-
policy ontology. Finally, we performed 20 repetitions per 
datum and averaged record times. Figure 8 presents the 
results, showing the exponential characteristics of the time 
complexity for the parsing and analysis. Even with the max 52 
data elements, the average time required for parsing and 
analysis was under 8 minutes (475 seconds). Tests were 
performed on commercial off-the-shelf hardware using 1st 
generation Intel i7 quad-core processors running at 2.9GHz 
with 6GB of RAM (all dedicated to the Java Virtual Machine), 
characteristic of a typical workstation from c. 2010. 

 
Fig. 7.  Logarithmic plot of the number of policy statements versus average 

20-run automated analysis time (seconds) for conflict detection.   

 
Fig. 8.  Logarithmic plot of the number of top-level datum entities in policy 
versus average 20-run automated analysis time (seconds) for flow tracing.   

We made the Eddy source code, API documentation and an 
online demo available to the public.2 

                                                             
2 http://cmu-relab.github.io/eddy 
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VI. THREATS TO VALIDITY 
We designed our case study evaluation to reduce threats to 

validity. Construct validity concerns whether measures 
actually measure the construct of interest [25]. We chose 
privacy policies as a data source from which to develop and 
evaluate our approach. To increase construct validity, we use 
multiple coders to achieve high agreement (Cohen’s Kappa 
between .791 and .921) regarding the encoding of the privacy 
policies in Eddy. However, we know that policies summarize 
numerous data flows across systems as evidenced by the 
magnitude of results in prior information flow analysis studies, 
and developers may have a more nuanced view of their data 
practices due to their familiarity with the system 
implementation and architecture. 

Internal validity refers to whether the conclusions drawn 
from the data are valid [25]. To reduce threats to internal 
validity, we extensively documented our encoding method, 
employed research notebooks, and replicated steps 1-3 of our 
method in a prior study [8] and the study presented herein. 

External validity refers to the extent to which the results of 
this study can be generalized to other situations [25]. We 
examined only three policies that contain data requirements. In 
addition, the data actions in our language may not be complete 
with respect to developers needs to express their requirements. 
Also, our experience shows companies use different policy 
formats and levels of detail in their data practice descriptions, 
and this can affect the dimensionality of the policies and 
service maps. To reduce this threat, we evaluated our approach 
in a simulation with policies twice the size of our case study. 

VII. RELATED WORK 
As the volume of sensitive personal information available 

to software developers increases, privacy will receive more 
attention in software engineering research. Spiekermann and 
Cranor framed privacy as either privacy-by-policy, which 
concerns using activities such as privacy notice and consumer 
consent to improve privacy, or privacy-by-architecture, which 
focuses on data minimization and activities within the control 
of software [20]. We now review related work in software 
requirements engineering, including findings to characterize 
privacy requirements and methods to surface privacy threats 
and their mitigations. 

Requirements engineering research has demonstrated that 
policies and regulations are rich sources of privacy 
requirements. Using grounded analysis, Antón et al. 
discovered a taxonomy of requirements in privacy policies, 
including dichotomous categories for types of privacy 
protections and vulnerabilities [2]. Subsequent work by 
Breaux et al. has led to formalizing privacy policy goals to 
detect conflicts [6]. Based on the earlier work by Wan and 
Singh [23], Young and Antón extracted policy commitments 
from privacy policies and terms-of-use agreements to find data 
collection and use requirements [26]. In addition to different 
company policies, Breaux and Antón mined U.S. health 
privacy law to discover 300 data access requirements and new 
techniques for requirements prioritizing with exceptions [5]. 
We extended this early work [5, 6] herein to trace data flows. 

Early work to model privacy in requirements includes Liu 
et al., who extended the i* framework to reason about 
attackers and malicious intent [15]. More recently, Omoronyia 
et al. describe a method to model adaptive privacy that 
incorporates user context and use histories to detect emerging 
privacy threats [17]. They show how to compute the utility of 
disclosure by comparing the threat severity with the disclosure 
benefit. Tun et al. introduce privacy arguments based on 
selective disclosure or norms to analyze user privacy 
preferences for mobile apps that can change based on context 
[21]. The arguments are formalized in Event Calculus to 
reason about satisfaction. Salas and Krishnan show how to 
generate privacy requirements test cases from models [18]. 

In security research, privacy models exist to reason about 
data access, such as the HIPAA Privacy Rule [4, 17] and 
Privacy Act [12]. Barth et al. encoded regulations as messages 
passed between actors using norms (e.g., permitted and 
prohibited actions) [4], which is similar to Aucher et al. [1]. 
Hanson et al. introduce data purpose algebra to calculate the 
set of restrictions under which data may be used [12], which is 
similar to the use limitation principle. May encoded privacy 
regulations in Promela and used the Spin model checker to 
identify potential conflicts [16]. This prior work includes the 
use of Temporal Logics to reason about pre- and post-
conditions on access, but they do not include the concept 
hierarchies needed to reason about data and purpose 
specifications. The Web Ontology Language (OWL) is used to 
express policies as permissions, obligations and prohibitions, 
including concept hierarchies [8, 14]. The full OWL, which 
these approaches use, is undecidable.3 Work by Uszok et al. 
[22], however, uses an unpublished algorithm to identify 
conflicts; an approach that may be decidable, but is difficult to 
reproduce. Recently, Breaux and Rao extended this prior work 
by reducing conflict detection in privacy requirements to 
Description Logic (DL) satisfiability, which is decidable and 
PSPACE-complete for the ALC family of DL [9]. 

VIII. DISCUSSION AND SUMMARY 
In this paper, we present extensions to the privacy 

requirements specification language, called Eddy, to model 
multi-party data flows and to verify the purpose specification 
and collection and use limitation principles. We 
operationalized these principles as a general limitation 
principle that can be used to restrict the actionable purposes 
from one action to another (e.g., collect-use, use-collect, 
collect-transfer, etc.) The principles are intended to provide 
strong, well-known guarantees that systems minimize personal 
information use and disclosure with respect to stated collection 
purposes, which supports engineering privacy [20]. To our 
knowledge, our formalization is the first to comprehensively 
enforce these principles in data flow specifications. In 
addition, we identified several challenges for future work. 
First, the Eddy language is aimed at supporting developers 
who want to check for conflicts between permitted and 
prohibited data practices, while detailing the exact logical 
interpretation that leads to the conflict. As shown in our case 

                                                             
3 http://www.w3.org/TR/owl-ref/ 
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study results, refining the requirements specification and 
removing ambiguity can remove some conflicts and violations 
of the limitation principles. Based on these results, we 
envision proof assistants that help analysts walk through 
potential conflicts and suggest alternative strategies for de-
conflicting specifications. Automated suggestions may include 
further restricting permissions, or relaxing prohibitions. 

The Eddy language is designed so that developers can 
independently state their design intent up to the boundaries of 
their system (i.e., what information they collect, use and 
transfer), while maintaining limited knowledge of the specific 
practices of their third-party service providers. The multi-party 
data flow tracing that we introduce in this paper aims to 
support developers who subsequently check whether third 
party uses conform to use limitations. We recognize the 
challenge of proving properties over third-party specifications 
while third parties protect their specifications as trade secrets, 
e.g., concealing the names of their service providers and 
specific internal business purposes. However, they could use a 
trusted third party to perform these checks. 

We envision scenarios wherein developers realize new 
opportunities to use data in support of developing new system 
features. Through multi-party data flow traces, developers 
could identify data sources available in their system context or 
from third-party services and then, check whether existing 
usage purposes permit their envisioned data use. If the 
purposes do not allow such uses, developers could request that 
specifications be altered to support such requests. This may 
include allowing some users to elect to participate in the new 
feature (i.e., opt-in). By aligning the formal privacy 
specifications proposed herein with system feature 
exploration, we envision controlled personalization wherein 
user privacy preferences are not violated en masse, but are 
selectively relaxed for users who are willing to participate by 
coordinating developer design intent with user preferences. 

Finally, we are studying crowdsourcing as a means to scale 
applications of the Eddy language to privacy policies [9]. 
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