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Abstract—In software engineering, requirements may be ac-
quired from stakeholders through elicitation methods, such
as interviews, observational studies, and focus groups. When
supporting acquisition from interviews, business analysts must
review transcripts to identify and document requirements. Goal
modeling is a popular technique for representing early stake-
holder requirements as it lends itself to various analyses, includ-
ing refinement to map high-level goals into software operations,
and conflict and obstacle analysis. In this paper, we describe
an approach to use textual entailment to reliably extract goals
from interview transcripts and to construct goal models. The
approach has been evaluated on 15 interview transcripts across 29
application domains. The findings show that GPT-4o can reliably
extract goals from interview transcripts, matching 62.0% of goals
acquired by humans from the same transcripts, and that GPT-4o
can trace goals to originating text in the transcript with 98.7%
accuracy. In addition, when evaluated by human annotators,
GPT-4o generates goal model refinement relationships among
extracted goals with 72.2% accuracy.

Index Terms—requirement, elicitation, interview, goal model-
ing

I. INTRODUCTION

Large language models (LLMs) can perform many natu-
ral language processing (NLP) tasks including text summa-
rization, translation, and question-answering with just a few
demonstrations and no fine-tuning. Beyond NLP, LLMs offer
new opportunities to re-engage hard domain-specific problems.
In software engineering, requirements elicitation is one such
problem, and a primary technique used to elicit requirements
is interviews, where business analysts meet stakeholders to
ask questions about the organization, the domain, and ex-
isting problems. After conducting an interview, the analyst
reviews the interview transcript and identifies requirements.
Interviewing is a “soft skill” that requires experience to be
proficient. Subjective information must often be interpreted,
different interviewees may respond differently to the same
question, and the effectiveness of an interview depends on the
appropriateness of the questions. Furthermore, analysts may
either miss requirements in the transcript or introduce require-
ments based on their own knowledge but not traceable back
to the transcript. In this paper, in order to support interviewer
eliciting states to be achieved, maintained, or avoided, we
describe an approach that applies textual entailment in LLMs
to not only extract requirements from interview transcripts but
to also identify cases where an interviewer may have missed

Fig. 1. Overview of Goal Model Construction Method

or introduced requirements. Specifically, we discuss a method
to extract requirements traceable to the source text, how the
LLM-extracted requirements compare to interviewer-extracted
requirements, and the accuracy of the refinement relationships
determined by the LLM.

The method overview is presented in Figure 1, in which
an interview transcript is used to (1) extract goals from
interviewer and stakeholder speech while maintaining trace-
ability to the originating phrases in the speech turns. Because
LLMs are non-deterministic when sampling tokens, the goal
extraction step is performed 10 times to increase the likelihood
that the extracted goals will represent any random sampling of
the model during this step. While repeated sampling increases
goal coverage for each transcript, it also yields duplicate goals.
Therefore, (2) the extracted goals are next grouped using
agglomerative clustering and cosine similarity. After this step,
we randomly sample one goal from each cluster to produce
the final list of extracted goals for each transcript. Lastly, (3)
the goal model, including refinement relationships, is inferred
over the extracted goals, as well as a few implied goals not
mentioned by the stakeholder, but inferred from hypothetical
refinement relationships that group similar goals into shared
categories.

We first review the relevant background in Section II. In
Section III we detail our overall approach, including how
we assembled the transcript dataset, how we prompt for goal
extraction, goal clustering, and how we generate goal models.
We discuss our evaluation in Section IV. Our results are



presented in Section V. In Section VI we review our findings
and go over specific examples. We discuss threats to validity in
Section VII. Finally, we conclude and consider future research
directions.

II. BACKGROUND & RELATED WORK

In this section, we now review related work.
Recently, large language models (LLMs) have reached

state-of-the-art performance for information extraction and
question-answering tasks. Unlike supervised fine-tuning, in
which models are specifically trained to predict a target from
an input, LLMs can be instruction-tuned [1] to follow human
instructions, which has exhibited added performance gains
on natural language benchmarks for reading comprehension,
machine translation, natural language inference, and closed-
book question answering [2].

There are a number of approaches that improve an LLM’s
reasoning abilities. Chain-of-Thought (CoT) is one approach,
where a sufficiently large language model generates a series
of intermediate reasoning steps, similar to one’s own thought
process [3]. Similarly, Program-Aided Language (PAL) mod-
els generate programs as intermediate reasoning steps, with the
final answer being offloaded to a runtime environment, such as
Python, for interpretation [4]. Plan-and-Solve Prompting (PSP)
is another reasoning approach, where the model devises a plan
of subtasks first, and carries out each subtask [5]. We adapt
these in our approach to generate and refine goals.

Goal-oriented requirements engineering uses goals for re-
quirements elicitation, negotiation, analysis, documentation,
and evolution [6]. In goal-oriented requirements engineering,
a goal model consists of a refinement graph illustrating how
higher-level goals to be achieved, maintained, or avoided by
the system are refined into lower-level goals and, conversely,
how lower-level goals contribute to higher-level goals [6]. A
goal is a prescriptive statement of intent that the system should
satisfy through the cooperation of agents. We describe how to
use textual entailment to reliably extract goals from interview
transcripts.

Recent research has investigated LLMs for requirements
elicitation. Atei et al. (2024) discuss an approach involving
LLMs to generate a diverse set of agents simulating users
with a wide variety of viewpoints for product design. These
agents are then interviewed with a preselected set of questions
to describe their product experience, after which an LLM is
used to analyze the interview transcripts to identify latent
needs [7]. Ferrari et al. (2024) discuss generating UML
sequence diagrams from requirements documents [8]. Chen
et al. (2023) discuss producing goal models in Goal-oriented
Requirement Language (GRL) for two case studies using GPT-
4 [9]. In a similar theme, Siddeshwar et al. (2024) presented
early research using LLMs to generate goal models in GRL
from user stories in existing literature [10], [11]. Görer et al.
(2023 and 2024) presented approaches utilizing LLMs to gen-
erate interview scripts to educate and train interviewers [12],
[13]. Wei at al. (2024) utilize LLMs to elicit sub-features
from AppStore application features [14]. To the best of our

knowledge, our approach is among the first to investigate using
textual entailment to extract and refine goals from interview
transcripts.

III. METHOD & APPROACH

The method shown in Figure 1 relies on recent advances
in textual entailment enabled by large language models
(LLMs) [15], including the use of code generation to rep-
resent mathematical structures [4], such as graphs, which are
otherwise difficult for text-to-text models to reason over [16].
In this method, we use a multi-modal model GPT-4o that is
pre-trained in audio, video, text, and code to map natural
language instructions and interview transcript excerpts into
code representations of goal models. For the experiments
reported in this paper, we use the OpenAI model gpt-4o-2024-
08-06 with temperature = 1.0, unless otherwise noted.

We now describe the transcript dataset, followed by each of
the steps in the method overview. The method evaluation is
described separately in Section IV.

A. Transcript Dataset

The open-ended interview transcript dataset consists of 34
transcripts recorded by student interviewers over a diverse
range of interview topics. We invited students who completed
a course assignment on requirements elicitation in a graduate-
level requirements engineering class to submit their assign-
ment for research purposes after the completion of the course.
The research protocol, including consent process, are actively
monitored by an Institutional Review Board (IRB) to protect
human subjects.

Prior to the assignment, students received training in re-
quirements elicitation and were assigned to interview another
student (the stakeholder) on a topic known to that stakeholder.
For training in requirements elicitation, all students attended
a one-hour lecture on interviewing and relevant informa-
tion processing theory from cognitive psychology, including
scripts [17], episodic memory and semantic memory [18] and
how people recall complex events [19]. In addition, students
watched two online videos, entitled “Tips for Requirements
Elicitation” and “Common Mistakes in Requirements Elicita-
tion Interviews” that were produced as part of an empirical
study in teaching requirements elicitation [20].

The interview topics were selected using stratified sam-
pling. Before conducting the interviews, in a free-listing exer-
cise [21], each student submitted up to 20 different ways that
they use the Web, including any mobile applications that can
also be accessed from the desktop. This yielded 860 appli-
cation uses from 79 students that were then categorized into
65 unique topics. Next, each student was randomly assigned
one topic from their list, which yielded a topic assignment
distribution in which a topic with a higher frequency of
mentions across the student responses is more likely to be
assigned to a student. Using this assignment method, students
were assigned to a total of 29 out of 65 topics, as several topics
had one mention and thus would have a low probability of
assignment. When students were interviewed, they would be



Fig. 2. Distribution of Transcript Lengths in Speaker Turns

asked to describe their needs as users of a web application in
completing one or more tasks in their assigned topic to ensure
that interviewees have familiarity with the interview topic.
The stakeholder has the web application running on a screen
in front but does not share the screen with the interviewer:
The stakeholder narrates steps taken to perform various tasks
while using the application. The stakeholder narrates what is
on the screen, how information is organized on the screen,
what controls are available, and what controls the stakeholder
chooses to interact with and how. In addition, the stakeholder
describes the goals the stakeholder is trying to achieve by
performing these actions. The interviewer familiarity with the
topic was not controlled and allowed to vary.

Among the original 79 students enrolled in the course, 5
students dropped the course, and 34 students consented to
participate, yielding a response rate of 46%. Participants were
compensated with a $25 Amazon Gift Card for sharing their
coursework. Following the IRB-approved research protocol,
transcripts were de-identified by removing personally iden-
tifiable information prior to use for research purposes. No
other changes were made to the transcript text. As part of the
assignment, after the interview, the interviewer reviewed the
transcript, and identified and created lists of goals and actions
that the stakeholder described.

Figure 2 shows the distribution of speaker turns over the
34-transcript dataset. The distribution shows that about 80%
of transcripts were between 21-120 turns. The 29 transcript
topics cover a wide range of apps, including grocery ordering
and other online shopping, investing, job hunting, online
education, navigation, photos, podcasts, programming, travel
planning, video communications, instant messaging and e-
mail, question-answer forums, news, online games, weather,
social networking, and music and video streaming, among
others.

B. Goal Extraction

During an idealized requirements elicitation interview, one
might assume that an interviewer primarily raises questions
and confirms their understanding of stakeholder responses,
while the stakeholder responds to interviewer questions. More-

over, one might assume that requirements are generally uncov-
ered from stakeholder responses. However, in our experience,
interviews are more dynamic and collaborative: Interviewers
can pose hypothetical scenarios or introduce requirements di-
rectly as questions, while stakeholders may ask their own clar-
ification questions, after which the interviewer may respond
by revealing requirements-related details of their own that the
stakeholder may subsequently adopt or confirm. Therefore, to
capture requirements from interviews, one must recognize that
requirements can span multiple speaker turns and may not be
limited to stakeholder turns.

With the large context windows supported by commercial
LLMs (e.g., 128,000 tokens or about 96,000 words), one
approach could be to submit an entire transcript to the model.
One concern, however, is that transformer-based models ap-
pear to lose attention in the middle of large input contexts [22]
(see Section II), called a lead and/or trailing bias [23], which
could result in goals being missed in the extracted goal
list. Therefore, an alternate approach is to use an extraction
window that limits the number of speaker turns included in
the input context. Because a goal may trace back to more than
one speaker turn in the transcript history, an extraction window
should be incremented by a separate number of turns that is
less than the window length. This decision yields a moving
window, which may have the unwanted outcome of extracting
duplicate goals, because the goal-yielding speech overlaps
more than one window. Based on these two approaches, we
conducted a comparative evaluation of prompting using a
window of length equal to the whole transcript, versus a
moving window with length equal to four turns that moves
by increments of two turns.

Independent of the window size, goal extraction proceeds in
two steps: first to extract the goals and second to trace the ex-
tracted goals back to the transcript. Given the transcript excerpt
of window-length, GPT-4o is prompted to extract goals from
the excerpt using the prompt template and instruction shown
in Figure 3. The instruction quotes the goal definition from
van Lamsweerde’s Requirements Engineering textbook [6],
and requests that goals not reference specific products or
services to yield system-independent goals. We experimented
by replacing the italicized sentence in Figure 3 with “Do
not include references to applications, products or services
in the goal statement.” to test the effect of generalization on
the goal extraction and goal model generation quality. The
response format uses JavaScript Output Notation (JSON) to aid
in parsing the LLM response. We experimented with writing
goals in KAOS format, e.g., Achieve[EmailsFilteredByTags]
in which the goal type of achieve, maintain, or avoid is
explicit and the goal state is written in past tense. However,
due to the added effort required to shape the output through
demonstrations, we chose to postpone this translation to future
work.

Second, we combine the transcript excerpt with the ex-
tracted goals in a second prompt (see Figure 4) to extract the
candidate source text from which the goals were plausibly
generated. The authors manually inspected every extracted



Read the following interview transcript excerpt and

respond with any goals that the speaker expresses. A

goal describes a prescriptive statement of intent that

the system should satisfy through the cooperating of its

agents. Write goals in general terms and do not include

references to applications, products or services in the

goal statement. Only write goals that can be traced to

specific phrases in the speech. Respond with the goals in

a JSON list of strings.

{transcript_excerpt}

Response:

Fig. 3. Prompt 1 to Extract Goals

source text and determined whether the matched text was
evidence of the given goal. We investigated other methods to
identify the source text, including semantic similarity metrics,
but we found that prompting GPT-4o was superior and yielded
a high tracing accuracy, which we report in Section V.

Read the following the goals in JSON format and identify

the substrings in the interview transcript excerpt from

which the goals were generated. Respond in JSON using the

format {"goal": "goal statement", "phrases": ["phrase1",

"phrase2"]}

{transcript_excerpt}

{generated_goals}

Response:

Fig. 4. Prompt 2 to Trace Extracted Goals to Speech

Finally, we use role-based prompting [24] using same
system message with Prompts #1 and #2: “You are a business
analyst collecting requirements for a software application.
Your job is to review interview transcripts between an inter-
viewer who is a business analyst and a stakeholder who is a
prospective user of the application. The interviewer will ask
the stakeholder questions to identify their requirements for the
application.”

Figure 5 presents an example output trace from Prompt #2
applied to an excerpt in Transcript #4 that traces the two goals:
(1) “Implement filtering by tags feature” (orange) and (2)
“Implement scheduling capability for sending emails” (blue).
The source text from the transcript is identified by brackets
with the color highlight added for presentation, herein. The
filtering goal illustrates a goal identified by the stakeholder in
response to a question. The scheduling goal illustrates how
a goal can be traced across multiple turns, e.g., interviewer
and stakeholder speech. In this example, the interviewer is re-
introducing a solution previously mentioned by the stakeholder
and requesting prioritization.

With the extracted goals per turn and source text, we
next discuss how we cluster the extracted goals to minimize
overlaps and remove duplicates.

Fig. 5. Example Traces for Goal Extraction

C. Goal Clustering

Large language models commonly use the softmax function
in the last layer of the underlying neural network to convert
a vector of real numbers into a probability distribution from
which tokens are sampled when generating a text sequence.
Temperature scaling [25] is a technique to “soften” the softmax
function: when temperature T → ∞ the uncertainty increases,
which can lead to different generations from the same input.
At T = 1, the original probabilities are recovered, whereas
at T → 0, the probability collapses to point mass, in which
case the model generates the same output. Repeated sampling
with temperature scaling can lead to non-deterministic output.
Because each token probability depends on previously gener-
ated tokens, repeated sampling can lead to generating different
outputs.

In our experience, the non-determinism in output leads to
variations in extracted goals: some goals are missed in one
generation, but captured in another generation. To address this
issue, we re-sample the goal extraction step multiple times.
However, repeated sampling can also lead to duplicate goals.
To resolve duplicates, we apply agglomerative clustering to
group goals from all samples by computing the Euclidean
distance between their text embeddings obtained using a
sentence transformer. Next, we randomly sample one goal
from each cluster, which are then carried forward into the
goal model construction step.

We use Python v3.11.11 and SciKit Learn v1.6.1 with
the AgglomerativeClustering class and parameters met-
ric=euclidean, linkage=ward, and distance threshold=1.5, in
addition to the paraphrase-MiniLM-L6-v2 sentence trans-
former model for clustering.

Below, we present four clusters consisting of goals extracted
by GPT-4o from Transcript #4. Clusters #1 and #2 illustrate
a mixed-goal cluster with goals that describe different stake-
holder needs under one topic, whereas clusters #3 and #4
are more typical and narrowly describe a single goal with
multiple paraphrases. As we discuss in Section VI, around
80% of clusters observed are single-goal clusters, and we
discuss method improvements in that section, such as mixed-
goal cluster sampling.

1: [‘Check emails daily’, ‘Search emails effectively’, ‘Filter
emails’, ‘Read unread emails and mark important ones’,
‘Simplify the process of reading multiple emails’, ‘Search
emails daily’, ‘Tag emails for later action’, ’Forward



important emails to others’, ‘Mark emails to revisit later’,
‘Unsending or editing sent emails instead of sending a
new one’, ‘Search for emails efficiently’, ‘Ensure im-
portant emails are not missed by checking the spam
folder’, ‘Keep inbox manageable by deleting unnecessary
emails’]

2: [‘Open the browser to access email’, ‘Upload multimedia
to the cloud and share links instead of attachments’]

3: [‘Book appointments’, ‘Book appointments’, ‘Book ap-
pointments’, ‘Book appointments’, ‘Book appointments’,
‘Book appointments with services like clinics’, ‘Schedule
appointments such as dental or clinic visits’]

4: [‘Get email from recruiters’, ‘Receive emails from re-
cruiters’, ‘Receive emails from recruiters daily’, ‘Get
emails from recruiters’, ‘Receive emails from recruiters’,
‘Check for new information from recruiters’, ‘Receive
emails from recruiters’, ‘Receive emails from recruiters’,
‘Receive emails from recruiters’, ‘Receive emails from
recruiters’, ‘Stay informed about job opportunities by
checking emails from recruiters’]

We next discuss how the randomly sampled goals are used
to generate goal models.

D. Goal Model Generation

One approach to build a goal model would be to query
a reliable goal modeler as to whether a refinement relation
r exists between two goals g1, g2 in the model M . Given
a set of n goals, there are n(n − 1)/2 possible refinement
relations between goals in a goal model represented by a
complete, directed acyclic goal graph. For example, a goal
model with 30 goals could have up to 435 refinement relations.
In our experience, goal models do not maximize the number
of refinement edges in the graph, in which case most inquiries
r(g1, g2) ∈ M will be untrue. As goal models increase in size,
this can become computationally expensive for little benefit.

Another approach inspired by how humans build goal
models is, given a randomly sorted list of goals L, iterate over
the goals gi ∈ L, choosing a goal g1 while looking for a second
goal g2 with maximal probability of a refinement relationship
r(g1, g2) ∈ M . As relations are discovered, attention shifts to
the goals remaining in the list without declared relations. In
addition, high-level goals, which can be observed by finding
goals in the goal graph without incoming edges, become
obvious starting points for finding where to define a new
relation. Under both approaches, it is possible that goals in the
goal list have a low probability of refinement relations with
any other goal, i.e., the goals are all relatively independent, for
example, they may be sibling goals or they may plausibly be
under different parent goals that are not present in the list. In
this case, the goal modeler may infer implied goals from the
goal list that describe latent high-level goals or purposes for
other goals in the list. To realize this approach, we designed
a prompt with the following four components based on prior
work in prompting design. The prompt instruction shown in
Figure 6 includes the following elements:

1) A code completion task to represent the goal graph in
Python based on a pre-defined Python class with member
variables and functions to leverage program-aided language
(PAL) model-based reasoning [4]. We chose this approach,
because many instruction-tuned models are bimodal, i.e., they
are trained on natural language text and code, and generating
graph-like structures in text produces syntax errors [16],
which requires additional effort to correct and which may
be uncorrectable, if the errors are ambiguous. In contrast,
Python is a language learned during pre-training that can be
compiled to check for syntax errors and the compiled code
and symbol table can be used for computing transformations
over the graph. In addition, PAL-based reasoning appears to be
better calibrated than Chain-of-Thought (CoT) reasoning [26].

2) Steps that guide the model in planning the code, before
generating a solution. This strategy is similar to chain-of-
thought (CoT) [2] and plan-and-solve prompting (PSP) [5],
which has shown improved performance on knowledge reason-
ing tasks. Within these steps, we instruct the model to generate
an overall app description and to enumerate the definitions of
each goal including what is and is not included in the meaning.
Similar to CoT and PSP, these two outputs provide context for
generating refinement relations.

3) Guidance for introducing and defining implied goals, be-
fore generating code that declares refinement relations between
the implied and explicit goals.

4) Guidance on how to format the output using enclosing
‘‘‘python and ‘‘‘ tags that can be matched to extract the
code. Because the generated code can include print statements
to standard output that may interfere with a later execution
environment, we include an instruction to prohibit generating
print statements.

5) A generic one-shot Python expression to demonstrate the
different ways to create refinement relations between goals and
to collect the implied goals. Demonstrations have been shown
to improve performance in early large language models [15].
Our preliminary experiments found that one only needs to
demonstrate specific function calls, whereas demonstrating
entire programs can lead the model to generate code that builds
on expressions from the demonstrations, which is incorrect.

6) A Goal class definition that includes member variables
and functions that the model may assign to or call. This portion
of the prompt serves as a code stub to be completed by the
model and introduces discipline about what shape the function
calls will take and what subsequent calls are most probably
given the restricted definition.

Within the prompt template, the {goal declarations}
slot is filled with declarations in the format: g4 = Goal("See

percentage of chapter read"). Prior to instantiating
the template, each goal is assigned a unique number once that
is then reused across prompts.

We used the following system message with Prompt #3:
“You are a business analyst building a goal model of stake-
holder goals for a software application. Goal models are
directed, acyclic graphs in which edges trace from high-
level goals to low-level goals through refinement relationships.



Read the following Python code that describes an initial

goal model and complete the code using the following

function calls. Before completing the code, perform the

following steps: 1) read all of the goals and describe

what the software application is and does; 2) for each

goal, describe what the goal means in the context of the

application description, including what is and is not

intended by the goal description; 3) identify up to two

or three *implied* goals that were not included in the

original goal list and that add missing context to the

original goals; 4) extend the code by adding your implied

goals; and 5) complete the code by reviewing all of

the goals and deciding which goals are refined by other

goals. Implied goals include high-level goals that group

related refinements together, and explain what actions

the low-level goals seek to achieve. For each implied

goal that you create, add the goal to the list of implied

goals. Include your justification for each function call

in comments. Do not write code to print the goals. When

responding, include the python code between the start

‘‘‘python and end ‘‘‘ tags.

1. X.is_refined_by.append(Y) - when the goal X is

satisfied by the goal Y and has the refinement goal

Y

2. Y.is_refinement_of(X) - when the goal Y satisfies the

goal X and is a refinement of goal X

3. implied_goals.append(X) - to collect the implied goals

that you created

class Goal:

def __init__(self, text):

self.text = text

self.is_refined_by = []

def is_refinement_of(self, goal):

goal.is_refined_by.append(self)

implied_goals = []

{goal declarations}

Fig. 6. Prompt 3 to Generate Goal Model

High-level goals describe what states stakeholders want to
achieve, maintain or avoid in the system. Low-level goals
describe *how* the system will satisfy high-level goals, tend
to be more specific and describe how the system will operate.
High-level goals describe *why* the system aims to satisfy
low-level goals, tend to be more generic and describe what
the stakeholder aims to accomplish independent of a specific
software application.”

For each goal-set extracted from a transcript, we generate 10
goal models using repeated sampling and Prompt #3. During
each generation, if a model does not compile or the model
contains cycles, we re-generate that goal model. We evaluate
the generated goal models using the method described in
Section IV.

Figures 7 and 8 illustrate excerpts from the GPT-4o output
of Prompt #3, in which Chain-of-Thought (CoT) is routinely
produced in response to the planning instruction and as part of

the comments to code. Figure 9 shows one of the goal graphs
from the excerpt of Prompt #3. The generated CoT serves to
ground the task in domain-relevant vocabulary and should not
be interpreted as an explanation, sound justification, or source
of validity or evaluation.

**1. Software Application Description:** The software

application appears to be an email management software

designed to assist users in managing their emails

effectively. It focuses on organizing incoming emails,

summarizing information, scheduling communication, and

notification management...

**2. Goals Context:**

- **g0:** "Receive emails from recruiters" implies that

the user wants to manage job-related communications

effectively. It does not necessarily cover email handling

beyond the receipt of emails from recruiters.

- **g1:** "Receive notifications from the school"

suggests a focus on educational communications. It does

not cover reading or taking actions on these emails...

**3. Implied Goals:**

- "Organize and classify incoming emails": This group

offers a high-level goal for sorting and prioritizing

emails, which aligns with several goals like g7 and g11.

- "Enhance email productivity and engagement": Provides

context for g6, g9, and g10 by encompassing actions and

tools to improve email communication.

- "Ensure email accessibility": A broader context for g13

and g4, emphasizing access and status updates on incoming

emails.

Fig. 7. Example Goal Modeling Plan Generation for Prompt 3

IV. EVALUATION

We assess the accuracy and reliability of goal extraction and
goal generation.

A. Goal Extraction

RQ1: How well do extracted goals trace back to source text?

Traceability between extracted goals and source text in
the interview provides credibility and context to each goal.
To answer RQ1, we apply Prompt #2 (see Figure 4) to the
transcript to find all possible string candidates for the human-
and GPT-4o-extracted goals. The tracing prompt does not limit
the number of source phrases that support a goal, nor does it
distinguish between interviewer or stakeholder speech when
attributing a goal to a source phrase. Correctness is measured
by the first and second author manually verifying the trace
between the goal and source text. In Section V we report
the correctness as a ratio of correct traces to total traces, the
number of goals exclusively traced to interviewer speech and
stakeholder speech, the number of goals that trace to multiple
speaker turns and the average distance between speaker turns.



g0 = Goal("Receive emails from recruiters")

g1 = Goal("Receive notifications from the school")

g2 = Goal("Use email to book appointments")

g3 = Goal("Contact with friends")

g4 = Goal("Check emails daily")

g8 = Goal("Understand key points and summarize received

emails")

g9 = Goal("Summarize emails using an AI assistant")

g14 = Goal("Check email for important information daily")

# Implied Goals

g15 = Goal("Organize and classify incoming emails")

implied_goals.append(g15)

# Refinements

g8.is_refinement_of(g15) # Understanding key points and

summarizing are ways to organize.

g9.is_refinement_of(g8) # Summarizing using AI is a

refinement of understanding and summarizing.

g4.is_refined_by.append(g14) # Checking for important

information specifies the daily checking.

Fig. 8. Example Goal Model as Generated Code from Prompt 3

Fig. 9. One of the goal graphs from Generated Code from Prompt 3

We also report the distribution of phrase locations across the
transcript, normalized by transcript length. Large language
models have a documented leading and trailing bias that can
lead to low attention to information contained in the middle
of the context [22], [23]. The presence of this bias would be
represented by a higher frequency of goals being extracted
from the beginning and end of the transcript.

RQ2: How do LLM-extracted goals compare to human-
extracted goals?

We compare the interviewer-extracted and GPT-4o-extracted
goals in two steps. First, we label the goals in each set with
one of four category labels: high-level goal, which means the
goal describes a general state to be satisfied and has a low
probability of being a sub-goal; low-level goal, which means
the goal describes a specific state to be satisfied and has a
high probability of being a sub-goal; soft-goal, which means
the goal describes a quality to be minimized or maximized
by the system; and goal regress, which means the statement

describes a state outside of the system scope. Second, the
first and second authors label the LLM-extracted goals with
identifiers that uniquely identify human-extracted goals with
a close approximation of the same meaning. The authors
developed heuristics that they reused throughout the mapping
process to consistently address edge cases. Third, we use the
source text traces identified in response to RQ1 to detect goals
that derive from the same source texts. The reported findings
include the proportion of overlapping goals by each category,
and proportion of manually identified overlaps that also share
overlapping source phrases in the transcript.

B. Goal Model Generation

RQ3: What is the accuracy of refinement relationships in
LLM-generated models?

To answer RQ3, we extracted refinement relationships be-
tween a parent and child goal from the acyclic goal model
graph for all goal models generated by the model. We dis-
tinguish between those relationships declared in the generated
goal model, and any relationships that do not appear in the
model we call undeclared. First, we remove any cyclic graphs
to yield the graph set G and then compute the set of vertices
v and edges e for each graph (v, e) ∈ G, including the edges
in the transitive closure of e, which we obtain by the function
T (e). Next, we computed the undeclared edges by subtracting
the edges in the closure T (e) from the edges in the complete
graph C(v) for all vertices v. Finally, we sampled an equal
number of declared and undeclared edges from T (e) and
C(v) − T (e), respectively. The sampled edges were sorted
into random order in a labeling task, in which each author
independently labeled each edge as a true refinement relation,
if vertex p is refined by or refines vertex c in (p, c) ∈ e; or as
false refinement, if the vertex p is not refined by or does not
refine vertex c. The authors kept notes concerning their obser-
vations during labeling, including whether an edge described
two equivalent goal statements. The authors labeled 50 edges
independently, which yielded a Kappa κ = 0.288, which is fair
agreement [27]. Next, they reviewed their disagreements and
developed four rules to clarify labels as follows:

• For goals g1 and g2, if g1 describes an activity in broader
terms than g2, then g1 is refined by g2;

• If g2 is a step in the a process described by g1, then g1
is refined by g2;

• If g1 describes an environmental action by an agent that
the system supports through g2, then g1 is refined by g2;
and

• If g1 describes the same action as g2, with or without an
additional action, including a pre- or post-condition, then
g1 is equivalent to g1.

After developing these rules, the authors coded a second
sample of 50 refinement relations to yield an updated Kappa
κ = 0.711, which is a substantial level of above chance
agreement [27]. Next, the first author labeled the remaining
refinement relations to obtain a dataset of 550 relations.
Finally, the labeled ground truth is used to evaluate the model-



generated refinement relations by computing the number of
true positives (TP), true negatives (TN), false positives (FP)
and false negatives (FN). Accuracy is reported using the
formula: (TP + TN) / (TP + TN + FP + FN).

V. RESULTS

The goal extraction method was applied to 34 transcripts,
which cover a total of 2,615 turns. The average number of
turns per transcript is 76.9 turns with the median number of
70 turns. Table I presents summary statistics from the goal
extraction step: for GPT-4o, the whole column describes the
extraction results from using the whole transcript, the moving
columns describe extraction using the moving window with
an instruction to respond with only general goal descriptions
(-G) and without this additional instruction (-S), and Human /
moving is the tracing method applied to the human extracted
goals. Each extraction was performed 10 times and the table
reflects the average statistics: total phrases is the number of
phrases traced to the total number of extracted goals; unmatched
phrases is the proportion of total phrases that did not match
strings within the transcript (i.e., hallucinated phrases); trace
correctness is the ratio of matched phrases to total phrases;
interviewer goals is the number of goals that trace to matching
speech in the interviewer’s turns; stakeholder goals is the num-
ber of goals that trace to matching speech in the stakeholder’s
turns; and multi-turn goals are goals that span across multiple
turns.

In Table I, we observe that GPT-4o in general produced
on average 105 more goals than what the humans reported.
During our inspection of the human-authored goals, we ob-
served goals that did not derive from the transcript. Rather,
they were likely introduced by the interviewer using their own
knowledge, which is a similar observation to Debnath et al.
(2021) [28], [29]. The inability to trace human-authored goals
to the transcript, if indeed they were created solely by the
interviewer, may explain the lower 83.3% trace correctness,
despite using the moving window for tracing.

TABLE I
STATISTICS FOR GOAL EXTRACTION TASK

Statistics GPT-4 Human
whole moving-G moving-S moving

Total phrases 672.2 604.7 535.5 595.2
Unmatched phrases 109.4 34.8 31.3 99.6
Trace correctness 83.7% 94.2% 94.1% 83.3%
Interviewer goals 6.5 17.8 13.2 16.1
Stakeholder goals 339.9 335.5 265.3 232.7
Multi-turn goals 6.5 13.5 8.7 13.5
Total goals 346.4 353.3 278.5 248.8

The RQ1 asks “How well do extracted goals trace back to
source text?” To answer RQ1, the authors manually reviewed
all the transcript traces tied to these goals and found that
GPT-4o incorrectly produced two goals, resulting in an overall
accuracy of 98.7%. We discuss these two cases in Section VI.

The RQ2 asks “How do LLM-extracted goals compare to
human-extracted goals?” To answer RQ2, the authors manu-
ally mapped the GPT-4o extracted goals to the human-authored

goals. We observed that 173 human-authored goals mapped to
GPT-4o-generated goals. GPT-4o also produced additional 30
goals that traced to the transcript and that the interviewers had
missed. In addition, there were 76 human-authored goals that
did not map to any GPT-4o-generated goal. Overall, the goals
generated by GPT-4o matched 62.0% of the goals generated
by the interviewers. We discuss examples of the differences
further in Section VI.

The RQ3 asks “What is the accuracy of refinement relation-
ships in LLM-generated models?” To answer RQ3, the second
author randomly sampled from refinement relations generated
by GPT-4o and relations not generated by this model, and the
first author labeled a randomized shuffle of the sample for
whether they are true or false refinement relations. Among
these results, we observed that GPT-4o-generated 227 true
positives, 170 true negatives, 73 false positives and 80 false
negatives for an overall accuracy of 72.2%. We elaborate with
specific examples in Section VI.

VI. DISCUSSION

We now discuss our observations in agglomerative cluster-
ing and goal extraction.

A. Agglomerative clustering

Agglomerative clustering works by iteratively merging pairs
of clusters based on a distance metric, such as Euclidean
distance. The benefit of this method is that one need not
specify the number of clusters in advance, e.g., as in k-means
clustering. Consequently, this technique does not guarantee
that all goals in a cluster are semantically equivalent, even if
they are more similar than goals outside the cluster. Below,
we present three clusters from a Transcript #32 describing
how the stakeholder prepares for a programming interview.
In cluster #1, each of the goals refer to efficiency in using
the keyboard to write code. This includes goals that describe
efficiency in the absence of a mouse, and a goal to avoid using
UI-heavy tools. In cluster #2 obtained from goals extracted
from the same transcript, however, the cluster covers a wider
range of topics, including unrelated goals. Finally, cluster #3
includes goals to support multiple programming languages.
In our inspection of the 22 clusters created from goals for
this transcript, we observed that 20 clusters are more like
cluster #1 and #3, which describe near-similar goals, and
only two clusters are like cluster #2 with a mix of dissimilar
goals. We informally observe this phenomena across multiple
transcript clusters and attribute it to agglomerative method,
which terminates using a pre-defined distance threshold when
the remaining clusters are too dissimilar.

1: [‘Ensure efficiency by keeping hands on the keyboard
while coding.’, ‘Keep hands on keyboard to improve
efficiency’, ‘Improve efficiency with keyboard shortcuts’,
‘Map keyboard shortcuts for specific functions’, ‘Main-
tain a productive workflow using keyboard shortcuts’,
‘Achieve efficiency without using a mouse’, ‘Remember



commands and shortcuts without referring to documen-
tation’, ‘Eliminate reliance on UI-heavy tools’, ‘Use
keyboard shortcuts for coding tasks’]

2: [‘Push code to version control’, ‘Keep config file to make
the system just like local customization’, ’Edit text-based
files’, ‘Switch between files quickly’, ‘Switch between
files easily’]

3: [‘Fit tools for any kind of programming language’, ‘Fit
editor for any kind of language’, ‘Support any kind of
programming language’, ‘Fit text editor for any pro-
gramming language’, ‘Allow customization for any kind
of language’, ‘Handle different programming languages’,
‘Support any programming language’]

The consequence of mixed-goal clusters is that random
sampling from clusters like cluster #2 will lead to under-
sampling dissimilar goals. For example, if we randomly choose
“Push code to version control” from cluster 3, then we miss
goal “Edit text-based files”, which is notably dissimilar. One
solution would be to detect these dissimilar clusters and
increase the sampling within the cluster to include dissimilar
goals, for example, up to some threshold of dissimilarity.
To address this issue, we propose to extend the method by
checking intra-cluster similarity to find the 1-2 mixed goal
clusters and then to select goals using a distance threshold
and metric, such as cosine similarity.

B. GPT-4o Goals Missed by the Interviewers

We have a number of goals that GPT-4o extracted that
the interviewers missed. The authors manually reviewed and
traced all these goals to the texts in the transcripts. With the
exception of two goals, we believe the rest of the goals were
missed simply due to human oversight. We highlight the two
goals generated by GPT-4o for which we did not find evidence.

1) Save and read posts when offline. In Transcript
#28 the stakeholder discusses an obstacle instead of a
goal, where one cannot perform these activities as a
consequence of being offline.

2) Express appreciation for personalized

playlists. In Transcript #5 the stakeholder voices
really liking a particular feature during the interview,
and this is not a goal.

C. Interviewer Goals Missed by GPT-4o

As mentioned in Section V, there are two goals solely
authored by the interviewer that cannot be traced to the
transcripts. In the first case (Transcript #5), the interviewer
listed “search songs by title” as a goal, whereas the text de-
scribes searching for songs based on emotions the stakeholder
feels or based on keywords but not by title. In the second
case (Transcript #9), the interviewer introduced “training and
implementing AI tools to analyze user preferences...” as a goal,
whereas the stakeholder generically describes preferring one
platform that uses AI over another platform that does not. We
consider these as cases where the interviewers used their own
knowledge to author these goals. Although these goals were

Fig. 10. Frequency of Goals Extracted over Transcript, 10 Partitions

not declared by the stakeholders in the interview, they were
potential goals to be achieved in the systems.

D. Effect of Transcript Excerpt Size

Figure 10 presents the distribution of the extracted goals
across all 34 transcripts, binned by the transcript partition
for 10 partitions per transcript. Longer transcripts with 191
turns would average 19.1 turns per partition, whereas a shorter
transcript with 27 turns would average 2.7 turns per partition.
In the figure, when the extraction window covers the entire
transcript, we observe a leading bias in which goal extraction
yields more goals within the first through third tenths of the
transcript and the fewest goals in the last tenth of the transcript.
By comparison, when using a moving window of four turns,
which increments by two turns each move, then goal extraction
is more evenly distributed throughout the transcript for both
GPT-4o-generated and human-authored goals that were traced
to the windowed excerpt.

E. Analysis of Goal Refinement Relations

We conducted an analysis of goal refinement relations by
examining relations that contain cycles and by measuring
additional dimensions of the generated refinement relations
in comparison to the ground truth dataset. The ground truth
dataset is based on 15 transcripts, which were used to generate
10 goal models per goal set extracted from each of the 15 tran-
scripts. This yielded 150 generated goal models, which contain
a total 2,372 refinement relations. We analyzed the edges
between goals for directionality to detect any symmetries,
i.e., where one model defines a relation between two goals
g1, g2 as a “refines” relation, whereas another model defines
the relation as a “refined by” relation. This analysis identified
47 symmetric relations distributed over 13/15 models. In
some cases, the symmetries were between near synonymous
goals: “Receive job notifications unless they complicate the
notification tab” and “Receive job postings instantly when they
are posted.” In others, the goals were different but topically
related: “Consider employee reviews, current work tasks, and
tech stack in job postings” and “Navigate information about
the tech stack more easily.”



We grouped the GPT-4o-generated refinement relations that
did not match our assigned labels into one of the following
categories.

1) GPT-4o generates symmetric refinement relations across
two models from the same prompt, whereas we define
the relation as a refinement: e.g., “Receive job postings
instantly when they are posted” and “Receive job noti-
fications unless they complicate the notification tab” are
not symmetric. There were 23 cases.

2) GPT-4o does not generate a relationship, whereas we
define a refinement relation: e.g., “Receive frequent noti-
fications about rain in real time” and “Provide timely and
accurate weather information.” Our review indicated that
all these instances were specific goals refining broader
goals. There were 80 such cases.

3) GPT-4o generates a refinement relation, whereas we
expect no relationship: e.g., “Book flights early for better
prices” and “Make sure flight details work for the sched-
ule.” We noticed that these cases were complementary
goals. There were 65 cases.

4) GPT-4o generates a refinement relation between g1.
which is refined by g2, whereas we consider g1 to be a
refinement of g2: e.g., “Share documents instantly with
teammates” and “Accessible and integrated communica-
tion system.” In all these cases, the specific goal should
refine the broader goal. There were 35 cases.

5) GPT-4o generates a symmetric refinement relation,
whereas we claim no relation exists: e.g., “Communicate
with friends and family” and “Backup and restore mes-
sages when changing phones.” The goals are not related.
There were 6 cases.

6) GPT-4o generates a refinement relation between g1,
which is refined by g2, whereas we claim no relation exists:
e.g., “Enhance search functionality on the platform”
and “Filter potential connections based on employment
status.” The goals are not related. There were 2 cases.

7) GPT-4o does not generate a relationship, whereas we
define a symmetric relation: “Receive job notifications”
and “Receive job recommendations.” We see these goals
as equivalent. There was 1 such case.

The dataset, including the transcripts, notebooks, and scripts
are all available under the GitHub repository
https://github.com/cmu-relab/goalgeneration.

VII. THREATS TO VALIDITY

We now discuss threats to validity.
Construct validity is the correctness of operational measures

used to collect data, build theory and report findings from the
data [30], and the extent to which an observed measurement
fits a theoretical construct [31]. Axel van Lamsweerde defines
a goal as “a prescriptive statement of intent that the system
should satisfy through the cooperating of its agents” [6]. In
the KAOS goal modeling framework, goals are defined in
terms amenable to real-time temporal logic, as a state or event
to be achieved, maintained, or avoided by the system [32].
For example, the goal “Implement filtering by tags feature”

extracted by GPT-4o from Transcript #4 could be written as the
achievement goal Achieve[EmailsFilteredByTags] in KAOS.
Yu defines goals as statements about “why a system is needed,”
specifically highlighting organizational goals [33]. In require-
ments engineering, actions that are controllable or observable
by the machine can be described by specifications [34]. In
addition, Zave and Jackson describe goals that are not directly
impacted by the machine as goal regress [35]. In addition to
goal statements, goal refinement relationships can exist in a
AND-refinement relationships to indicate that the satisfaction
of two or more goals is necessary to satisfy a parent goal.

In our method, we instruct GPT-4o using the goal defini-
tion introduced by van Lamsweerde (see Prompt #1), quoted
above [6]. This yields a range of high and low-level action
descriptions that begin with a verb. We did not evaluate the
extracted goals for whether they were observable or control-
lable, nor did we check for whether goal regress was occurring,
which may be a threat to construct validity. We did evaluate
whether the extracted goals were similar to human-authored
goals in response to RQ2. Finally, our definition of refinement
relationship excludes AND-refinements and only covers OR-
refinements.

Internal validity is the extent to which measured variables
cause observable effects in the data [30]. In this study, we
introduced multiple points of measurement to check that
assumptions were correct between the stages of goal ex-
traction and goal model generation. This includes checking
that extracted goals were valid descriptions of interviewer
and stakeholder speech in response to RQ1. In addition, we
evaluated the goal refinement relations, including relations
generated and not generated by GPT-4, as well as, relations
generated between explicit and implicit goals in response to
RQ3.

External validity determines the scope of environmental phe-
nomena or domain boundaries to which the theory and findings
generalize [30]. We identify two threats to external validity.
(1) The transcripts describe student interviewers. Although the
student interviewers were taking a graduate-level requirements
engineering class and received lecture, training, and videos
to prepare them to interview stakeholders, this assignment
might have been a student interviewer’s first time conducting
requirements elicitation. Furthermore, the student interviewers
could have blended interviewing concepts from other commu-
nications courses that introduce interviewing techniques not
directly related to requirements elicitation. The stakeholder
responses obtained by professional software engineers with in-
dustry experience conducting interviews may differ from those
obtained by the student interviewers in this study. Nonetheless,
the interview assignments were evaluated against a rubric and
graded to the satisfaction of the requirements engineering
class instructors. (2) The prompts and prompt outputs (e.g.,
extracted goals and generated goal models) are limited to GPT-
4o. Prior research shows that prompt performance does not
transfer across models [36], even across different models sizes
of the same family (e.g., 13B versus 175B GPT-3). Trans-
ferability is increasingly difficult as models undergo different



fine-tuning practices (e.g., instruction-tuning [2], alignment [1]
and function calling [37]).

VIII. CONCLUSION

In software engineering, interviews are a popular technique
to elicit requirements. Successful interviewing requires ex-
perience to direct the dialogue with an aim of creating a
specification. In addition, the interviewer can miss require-
ments stated in the transcript or they can use their own
knowledge to introduce requirements that do not trace back
to the transcript. We developed an LLM-based approach to
extract requirements from interview transcripts and to build
goal models that organize requirements into refinement re-
lationships. This includes finding goals explicitly stated in
transcripts, in addition to implied goals inferred from the
extracted goal list. The evaluation yields a 72.2% accuracy in
finding refinement relationships and an error analysis identifies
a number of explanations for the false positives and false
negatives. Future work includes new techniques, such as self-
reflection, to reduce this error and to introduce additional
goal model elements, such as agents, operations, conflicts, and
obstacles.
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