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• Has been used successfully in many applications
– Error-correcting codes, Image super-resolution, stereo, 

photometric stereo, etc.

• Slow for large cliques
– Each message takes                time
– Especially slow for continuous variables
– Loopy Belief Propagation over continuous variables is 

historically limited to pairwise MRFs

• Computes marginals of factorized distribution
ex: 
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N = number of 
variables in clique

M = number of 
states per variable



Today’s Talk:
1) A method to reduce complexity from 

to                for certain potential functions.
2) Application: Higher Order Spatial Priors
3) Application: Shape from Shading
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Efficient Belief Propagation for Large Cliques

• Each factor sends a message to each associated 
variable. Requires             operations.

Goal of Belief Propagation:
Given
compute marginals for each variable.

N = number of variables in the factor. M = number of states per variable.



Efficient Belief Propagation for Large Cliques

• Each factor sends a message to each associated 
variable. Requires             operations.

• Suppose 
Using a change of variables, each message can be 
computed in                operations

– This is an exact method.

• Method also works if

Goal of Belief Propagation:
Given
compute marginals for each variable.

N = number of variables in the factor. M = number of states per variable.

(Linear Constraint Node)



Linear Constraint Nodes
If the factor                           , then I can compute its
messages in                  time (instead of                time)

(Message from Factor node to Variable node)



Linear Constraint Nodes

Apply a change 
of variables:

(Jacobian is constant)

(Message from Factor node to Variable node)
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Perform each integrand seperately

(Message from Factor node to Variable node)

If the factor                           , then I can compute its
messages in                  time (instead of                time)



Linear Constraint Nodes

Original Potential Function Approximation using 2 constraint nodes

A sufficient number of linear constraint nodes 
can approximate any potential function
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Original Potential Function Approximation using 4 constraint nodes

A sufficient number of linear constraint nodes 
can approximate any potential function



Linear Constraint Nodes

Original Potential Function Approximation using 6 constraint nodes

A sufficient number of linear constraint nodes 
can approximate any potential function



Linear Constraint Nodes

Original Potential Function Approximation using 8 constraint nodes

A sufficient number of linear constraint nodes 
can approximate any potential function



Hard Linear Constraint Nodes

• Hard constraints allow overcomplete 
representations.

• Good choice of 
representation makes
LBP more efficient
and more effective.

Hard constraints:



Application 1:  Inference with 
Higher-Order Spatial Priors

• Many applications of belief propagation 
infer images or intrinsic images
– image-based rendering, denoising, inpainting
– stereo, shape-from-X, reflectance estimation

• These problems are highly ambiguous & 
require strong spatial priors for success

• Pairwise MRFs cannot capture rich image 
statistics.



Pairwise MRFs for Denoising

Original Image
Image with Gaussian 

additive noise (σ = 20) Pairwise MRF

P. F. Felzenszwalb and D. P. Huttenlocher. Efficient belief propagation for 
early vision. In CVPR, volume 1, pages 261–268, 2004.



Fields of Experts

• Learn the prior probability of images as a 
product of student-T distributions on the 
outputs of K linear filters:

S. Roth and M. J. Black. Fields of experts: A framework for learning image priors. In CVPR, pages 860–867, 2005.
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Fields of Experts
• Denoising with FoE is competitive with the current 

state-of-the-art using 5x5 filters & gradient descent.
• FoE could make a great spatial prior for other 

applications (stereo, SFS, etc).
• Is efficient belief propagation possible for FoE?



Fields of Experts
• Denoising with FoE is competitive with the current 

state-of-the-art using 5x5 filters & gradient descent.
• FoE could make a great spatial prior for other 

applications (stereo, SFS, etc).
• Is efficient belief propagation possible for FoE?
• Lan, Roth, Huttenlocher, & Black, ECCV 06

– Uses three 2x2 “experts” (clique size = 4)
– Uses computational short-cuts particular to denoising.

• Using Linear Contraint Nodes reduces 
computational complexity from              to         

X. Lan, S. Roth, D. P. Huttenlocher, and M. J. Black. Efficient belief propagation 
with learned higher-order markov random fields. In ECCV, pages 269–282, 2006



Denoising ResultsOriginal Image Noisy Image (σ = 20)

Pairwise MRF 2x2 Linear Constraint Nodes

1) Performance is slightly 
better than Lan et al:

2) Speed is much faster:

3) Design generalizes to 
other applications.

27.4031.62Ours

27.2930.89Lan et al

26.6630.73Pairwise

σ =20σ =10PSNR:

Lan et al: 16min / iteration

Ours: <2min / iteration

Both require ~30 iterations.



Application 2:  Shape from Shading

• Goal: Recover 3D surface 
shape from a single image
– Assume a single, infinitely-distant 

light source from a known 
direction.

– Assume a Lambertian surface 
with constant albedo.



Shape from Shading
• SFS is highly nonlinear and underconstrained
• Previous approaches often struggle with local minima.

R. Zhang, P.-S. Tsai, J. E. Cryer, and M. Shah. Shape from shading: A survey. IEEE Trans. 
Pattern Anal. Mach. Intell., 21(8):690–706, 1999

Zheng & ChellappaLee & KuoGround Truth



Shape from Shading Using LBP

(single pixel)
• Two variable nodes per 

pixel – representation is 
overcomplete

• Linear dependencies 
between variables must be 
enforced

• Real surfaces have zero 
curl

Integrability Constraint NodesIntegrability Constraint Nodes



Shape from Shading Using LBP

(single pixel)

Lambertian Constraint NodesLambertian Constraint Nodes
• Potential function is a level 

set of the Lambertian 
equation.

• Any BRDF could be used.



Shape from Shading Using LBP

(single pixel)
• Encode prior on

and 
• Here, Laplace distributions 

are used.

• Priors on                      and 
can be built into 

integrability nodes
• Smoothness nodes can also 

encode convexity priors.

Smoothness NodesSmoothness Nodes



Shape From Shading Results

Good image rerenderings imply that the Lambertian and 
Integrability constraints were wholly satisfied. 

Improved performance can only be achieved through improving 
the spatial prior model p(Z).



• Any reflectance function can be used
– handles matte or specular surfaces

• Any known light arrangement can be used
– handles multiple or diffuse lighting

• Handles nondeterministic reflectance functions
– handles uncertainty in lighting, reflectance, or albedo

• Handles attached shadows and missing data well.
• Computes marginals as well as point estimates.
• Can exploit rich spatial priors

– can easily be combined with Fields of Experts
• Can be combined with other cues

– Stereo, contours, texture, perspective, etc

Solving SFS using Belief Propagation 
offers several novel flexibilities:
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