Efficient Belief Propagation for Vision
Using Linear Constraint Nodes

P—g—
Brian Potetz 6/ / /

Dept. of Computer Science &

Center for the Neural Basis of Cognition
Carnegie Mellon University / / /

CVPR 2007 j/()%@%@




Belief Propagation

 Computes marginals of factorized distribution
ex. P(a’s ba C, da €, g) X fl(a’: ba C, d)fQ(bs e’)f3(ca g)f4(es g)

 Has been used successfully in many applications

— Error-correcting codes, Image super-resolution, stereo,
photometric stereo, etc.

« Slow for large cliques
— Each message takes O(M") time
— Especially slow for continuous variables

— Loopy Belief Propagation over continuous variables is
historically limited to pairwise MRFs
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o Slow for large cliques | states per variable
NN o N = number of
— Each mesSsage takes O(M ) time variables in clique

— Especially slow for continuous variables

— Loopy Belief Propagation over continuous variables is
historically limited to pairwise MRFs



Efficient Belief Propagation for Vision
Using Linear Constraint Nodes

Today’s Talk:

1) A method to reduce complexity from o(m?)
to O(NM?) for certain potential functions.

2) Application: Higher Order Spatial Priors
3) Application: Shape from Shading




Efficient Belief Propagation for Large Cligues

Goal of Belief Propagation:
Given P(Z) « f1(z1, 72,73, %4) fo(z2, z5) f3(=3, T6) f2(zs5, T6)
compute marginals for each variable.

« Each factor sends a message to each associated
variable. Requires O(M") operations.

N = number of variables in the factor. M = number of states per variable.



Efficient Belief Propagation for Large Cligues

Goal of Belief Propagation:

Given P(Z) « f1(z1, 72,73, %4) fo(z2, z5) f3(=3, T6) f2(zs5, T6)
compute marginals for each variable.

« Each factor sends a message to each associated
variable. Requires O(M") operations.

N = number of variables in the factor. M = number of states per variable.

e Suppose f1(£) =g(Z-7) (Linear Constraint Node)
Using a change of variables, each message can be
computed in O(NM?2) operations

— This is an exact method.

N
e« Method also works if f1(Z) = g(z g&%))
1=1



Linear Constraint Nodes

If the factor f1(Z) = g(Z - ¥), then | can compute its
messages in O(NM?) time (instead of O(MYN) time)

m?:lz(xz) — (Message from Factor node to Variable node)

[ [ [ a@rz1varotvszstvaaa)ma(@2)ms (s)ma(rs) deadesdas
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If the factor f1(Z) = g(Z - ¥), then | can compute its
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ml}-I;lz(mz) — (Message from Factor node to Variable node)

[ [ [ a@rz1varotvszstvaaa)ma(@2)ms (s)ma(rs) deadesdas

Yyl — Y2 Y2 — Y3 Y3
= ///Jg(vlzcl—l—yl)mz( )m3( )ma(==)dy1dy>dys
() v3 V4

Apply a change

= VaAZX
of variables: y3 44

Y2 = v3T3 1+ Y3
Y1 = v2x2 + Yo

(Jacobian is constant)




Linear Constraint Nodes
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Perform each integrand seperately
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Linear Constraint Nodes

If the factor f1(Z) = g(Z - ¥), then | can compute its
messages in O(NM?) time (instead of O(MYN) time)

ml}tlz(mz) — (Message from Factor node to Variable node)

[ [ [ a@rz1varotvszstvaaa)ma(@2)ms (s)ma(rs) deadesdas

Yyl — Y2 Y2 — Y3 Y3
= ///Jg(vlzcl—l—yl)mz( )m3( )ma(==)dy1dy>dys
() v3 V4

x /g(vlfb‘l + y1) S2(y1)dy1
— _J

V

Perform each integrand seperately



Linear Constraint Nodes

A sufficient number of linear constraint nodes
can approximate any potential function

2

f@ =11 gi(@- )

1=1

i i

Original Potential Function Approximation using 2 constraint nodes



Linear Constraint Nodes

A sufficient number of linear constraint nodes
can approximate any potential function
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Original Potential Function Approximation using 4 constraint nodes



Linear Constraint Nodes

A sufficient number of linear constraint nodes
can approximate any potential function

6
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Original Potential Function Approximation using 6 constraint nodes



Linear Constraint Nodes

A sufficient number of linear constraint nodes
can approximate any potential function
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@ = 11 gi(@- )
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Original Potential Function Approximation using 8 constraint nodes



Hard Linear Constraint Nodes

1 if 2-v=c¢

Hard constraints: @ =s@-0={ 5 &7

 Hard constraints allow overcomplete

. p
S

e Good choice of
‘\4\,\ %
b\@r@%‘\’f"\\i‘!‘

representation makes
LBP more efficient
and more effective.




Application 1: Inference with
Higher-Order Spatial Priors

 Many applications of belief propagation
Infer images or Intrinsic images

— Image-based rendering, denoising, inpainting

— stereo, shape-from-X, reflectance estimation
 These problems are highly ambiguous &

require strong spatial priors for success

e Pairwise MRFs cannot capture rich image
statistics.



Pairwise MRFs for Denoising

Image with Gaussian

Original Image additive noise (o = 20) Pairwise MRF

P. F. Felzenszwalb and D. P. Huttenlocher. Efficient belief propagation for
early vision. In CVPR, volume 1, pages 261-268, 2004.



Fields of Experts

e Learn the prior probability of images as a
product of student-T distributions on the
outputs of K linear filters:

p(1) o [T ﬁ (1+1<f of>2)_ai
o > C )

S. Roth and M. J. Black. Fields of experts: A framework for learning image priors. In CVPR, pages 860-867, 2005.



Fields of Experts

e Learn the prior probability of images as a
product of student-T distributions on the
outputs of K linear filters:

Image patch

i 1 2070

p(I) oc I
C

S. Roth and M. J. Black. Fields of experts: A framework for learning image priors. In CVPR, pages 860-867, 2005.



Fields of Experts

e Learn the prior probability of images as a
product of student-T distributions on the
outputs of K linear filters:

Image patch

oD < T I (1+ ;uzfé?)%
=1

O)

x [[9(c - ©)
;

S. Roth and M. J. Black. Fields of experts: A framework for learning image priors. In CVPR, pages 860-867, 2005.



Fields of Experts

Denoising with FoE is competitive with the current
state-of-the-art using 5x5 filters & gradient descent.

FoE could make a great spatial prior for other
applications (stereo, SFS, etc).

Is efficient belief propagation possible for FOE?



Fields of Experts

e Denoising with FoE Is competitive with the current
state-of-the-art using 5x5 filters & gradient descent.

 FoE could make a great spatial prior for other
applications (stereo, SFS, etc).

 |s efficient belief propagation possible for FOE?

e Lan, Roth, Huttenlocher, & Black, ECCV 06
— Uses three 2x2 “experts” (clique size = 4)
— Uses computational short-cuts particular to denoising.

e Using Linear Contraint Nodes reduces
computational complexity from O(M*%) to ©O(4M?2)

X. Lan, S. Roth, D. P. Huttenlocher, and M. J. Black. Efficient belief propagation
with learned higher-order markov random fields. In ECCV, pages 269-282, 2006



Original Image Noisy Image (c = 20) DenOISIng RESUltS

1) Performance is slightly
better than Lan et al:

PSNR: c=10 | o =20
Pairwise 30.73 | 26.66

Lanetal |30.89 |27.29
Ours 31.62 |27.40

2) Speed is much faster:

Lan et al: 16min / iteration
Ours: <2min / iteration

Both require ~30 iterations.

3) Design generalizes to
other applications.




e
S
R
R
T
/l

S
e e Sk
e

Shape from Shading
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Shape from Shading
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A survey. IEEE Trans.

R. Zhang, P.-S. Tsal, J. E. Cryer, and M. Shah. Shape from shading

Pattern Anal. Mach. Intell., 21(8)

690-706, 1999



Shape from Shading Using LBP

_ 0z _ 0z . .
1=09y P=3az _Integrability Constraint Nodes
oo ) j « Two variable nodes per
D P D pixel — representation is
/ / ‘ overcomplete
—O

* Linear dependencies

10) 0] 0, between variables must be
/ / / enforced
&—a—6—p——6———0O e Real surfaces have zero
curl

& S —e Zoy = Zya
I I I op _ 9q
o) oy ox

Px,y — 4z,y + dr+1,y — Pxy+1 — 0




Shape from Shading Using LBP

0Oz __ 0Oz

9= 5y — oz _Lambertian Constraint Nodes
(single pixel j « Potential function is a level
Q o 0 set of the Lambertian
/ / / equation.
e S © ©  « AnyBRDF could be used.
0) o o
/ / / P(p,qi)
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Shape from Shading Using LBP

__ 0z __ 0z

9= 3y — Oz Smoothness Nodes
(single pixel) :
S e j e Encode prioron py41,4y — Pzy
O ——— 0 and gz y4+1 — da,y
/| | /‘ B /‘ B  Here, Laplace distributions
e are used.
D ( )

|Ap| + IAqI)

/ / / P(Z) «x Zl;![exp(—

 Priors on pz 441 — P2y and

/ / / Integrability nodes
T T_ T B  Smoothness nodes can also
O—p — encode convexity priors.




Shape From Shading Results

a) Original Input b) Linear Constraint Nodes ¢) Lee & Kuo d) Zheng & Chellappa
Mean Squared Error = 108 Mean Squared Error = 3390 Mean Squared Error = 4240

-

Good image rerenderings imply that the Lambertian and
Integrability constraints were wholly satisfied.

Improved performance can only be achieved through improving
the spatial prior model p(2).



Solving SFS using Belief Propagation

offers several novel flexibilities:

* Any reflectance function can be used
— handles matte or specular surfaces

* Any known light arrangement can be used

— handles multiple or diffuse lighting
 Handles nondeterministic reflectance functions

— handles uncertainty in lighting, reflectance, or albedo
 Handles attached shadows and missing data well.
 Computes marginals as well as point estimates.
e Can exploit rich spatial priors

— can easily be combined with Fields of Experts

e Can be combined with other cues
— Stereo, contours, texture, perspective, etc
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