
Assumption 1: We show that this is mathematically self-contradictory.
Shape recipes can be viewed as a single linear operation: 

Krecipeapproximates the true kernel
We show that Krecipeextrapolates the known low-spatial-frequencies of 
K by replicating a single low-frequency octave into the high frequencies, 
as shown below. The result is that intermediate octaves of Krecipedo not 
resemble the replicated octave. This means that shape recipes learn so 
many parameters that they cannot all simultaneously generalize to the 
higher spatial frequencies.

• Using a database of natural images and coregistered laser 
scans, we explore the statistical relationship between natural 
images and their underlying 3D surfaces (range images), and 
how that relationship changes over scale. We begin by 
analyzing and evaluating a previous model of scaling in 
natural scenes used in a technique known as shape recipes3. 
We then advance a new model of scaling based on the 
statistics of natural scenes.

• We apply our new model by extending the shape recipe 
technique for enhancing low-resolution range data using a 
full-resolution color image. We then evaluate our method 
using natural scenes with ground-truth high-resolution range 
data. We demonstrate a two-fold improvement in 
performance over the previous method.

• We provide theoretical insight into the depth cues and 
statistical regularities that contribute to our model, and study
their relative strengths. We show that, in natural scenes, 
shadow-based depth cues may contribute more to linear 
shape-from-shading than traditional Lambertian shading cues.
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Traditional physics-based methods for inferring depth from 
single images require many restrictive assumptions, while 
overlooking many useful statistical regularities in real scenes.

Little is known about the joint statistics of images and 3D surface 
shape in real scenes, despite the potential benefits of statistical 
models and the growing success of statistical methods in vision

Using a database of natural images and coregistered laser scans,
we explore the statistical correlations between images and range
data in natural scenes, and we examine how that relationship 
changes over spatial scale.

One model for scaling in the range/intensity relationship has 
already been advanced implicitly in a technique known as shape 
recipes.

Shape recipes is a technique for enhancing low-resolution range 
data using a high-resolution intensity image, which is one 
immediate application for statistical models of scaling in the 
range/intensity relationship.

Shape recipes works by learning a relationship between 3D shape 
and monocular cues in the low spatial scales and applying that 
relationship to the high frequencies. One advantage of this 
approach is that hidden variables important to inference from 
monocular cues (such as illumination direction) may be 
implicitly learned from the low-resolution range and intensity 
images.
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Extending Shape Recipes Shadow cues more powerful 
than shading cues?
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Intensity Image Pyramid Range Image Pyramid

Learn a regression 
kernel k from the 
known low spatial-
resolutions

Apply k/2 to infer 
the next pyramid 
band

Apply k/4 to infer 
the next pyramid 
band

Shape Recipe Algorithm for the super-resolution of range images given 
a full-resolution intensity image3:
1. Decompose the full-resolution intensity image and low-resolution 
range image into steerable pyramids.
2. For each orientation, learn a linear regression kernel from the low-
resolution intensity band to the low-resolution range band.
3. Apply this kernel to the high resolution bands, (reducing the kernel 
amplitude by half for each octave)

Assumptions of Shape Recipes:
1. The learned regression kernel should change slowly across spatial scales.
2. The regression kernel amplitude is reduced by half for each octave.

Using a laser-scanner with integrated color photosensor, we collected a 
database of single-material scenes. We studied the first order statistics of 
these scenes, including covariance between intensity and distance.

In the paper, we show that ZI* (which is the Fourier transform of the 
cross-covariance matrix cov[z,i]) can be modeled by ZI*(r,θ) ≈ B(θ)/rα, 
where α was measured at 3.65 ± 0.14, and B(θ) is a parameter of the 
scene which depends on lighting direction and other scene properties.

II * was fit by A/r2.60, which means that K may be approximated as

The power-law drop-off of 1/r verifies the second assumption of shape recipes.

However, the linear lambertian assumption that this assumption was based on 
predicts that the real part of K should be zero.

Yet, in our database, we found that the real part of K was often the stronger 
component.

In a previous paper, we found that dark areas of an image were more likely to be 
further away7. We attributed this to cast shadows: object interiors and cavities are 
more likely to lie in shadow than object exteriors, and the interiors are further 
from the observer. In the dataset used in this paper, the correlation between 
brightness and distance was ρ = 0.37. This direct correlation contributes to the 
real part of K. 

The 1/r drop-off rate of the real part of K is a new finding. We believe that this 
happens because concavities with smaller apertures but equal depths tend to be 
darker. 

Example Imag[Krecipe ] Example Imag[Kpowerlaw ]

Our model of K ≈ B(θ)/r suggests that 
we can extrapolate K by measuring B(θ) 
in the low spatial-frequencies. This 
gives us Kpowerlaw, which we can use to 
estimate Z by:

High Resolution Color Image Low Resolution Range Image 
(Lambertian rendering)

High Resolution 
Power-law Reconstruction

Low resolution range image Shape recipe reconstruction Power-law method reconstruction

High resolution color image Shape recipes vs original 
low-resolution

Power-law method vs original 
low-resolution

(improved pixels are white)

For each of the 28 single-materials scenes in our dataset, we down-sampled our high-
resolution range images to create low-resolution range images, and used shape recipes and 
our power-law method to attempt to reconstruct the original high-resolution range images. 
Shape recipes improved 21 of the 28 images, for an average of 1.3% less mean squared 
error than the down-sampled low-resolution range image. The power-law method improved 
26 of the 28 images, for a 2.2% reduction of mean squared error. We estimate that most of 
the remaining error (95%) is either due to nonlinearities in the intensity/range relationship 
or noise in the acquisition of our images.
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Log-log polar 
plot of |real[ZI]| 
for one scene in 
our database.

As noted previously, the imaginary part of ZI, which is expected to come 
from shading, was often smaller than the real part of ZI, which is expected to 
come from shadow cues.

What are the relative contributions of these cues?

Assumption 2 is based on the linear lambertian shading equations, and 
can be tested by exploring the natural scene statistics:

Below is a plot of B(θ) for one scene. The real part of B(θ) (in black) is 
uniformly negative, corresponding to the correlation between distance and 
darkness. The imaginary part, as predicted by the linear lambertian model, 
reaches its minima at the illumination direction (at the extreme left, almost 
180o, for this scene).

Linear shape from shading has received some attention since its introduction6

as a fast, reasonably accurate, and biologically plausible method of inferring 
depth from shading. However, linear shape inference methods have so far 
utilized only Lambertian shading cues. Linear shape-from-shading 
algorithms could be adapted to exploit the correlations in the real part of ZI, 
which we believe are related to cast shadows.

We re-ran our algorithm with either the real or imaginary part of Kpowerlaw

set to zero.
• The algorithm is 27% as effective with Imag[K] alone (no real component)
• The algorithm is 72% as effective with Real[K] alone (no imag component)
Thus, in our database, using only linear cues, shadow-based cues appear to 
be more powerful than shading-based cues.

Subdividing our database according to environment supports this theory. 
Shadow cues may be expected to be most powerful in scenes of foliage, 
where regions deeper into foliage are more heavily shadowed. 
Urban scenes contain fewer shadowed crevises and concavites, and many 
continuous, smooth surfaces where shading is most effective.

Environment: % improvement from shadow-based cues alone
foliage (8 scenes) 96%
rocky terrain (8 scenes) 76%
urban scenes (building fascades and statues, 12 scenes) 35%

Im[B(θ)] depends primarily 
on lighting direction

Re[B(θ)] depends mostly on 
the prominence of shadows.


