Scaling Laws in Natural Scenes and the Inference of 3D Shape

Abstract

® Using a database of natural images and coregisiesed
scans, we explore the statistical relationship betwnatural
images and their underlying 3D surfaces (range é@sp@nd
how that relationship changes over scale. We himgin
analyzing and evaluating a previous model of sgatin
natural scenes used in a technique known as sbeipes.
We then advance a new model of scaling based on the
statistics of natural scenes.
We apply our new model by extending the shape eecip
technique for enhancing low-resolution range datagia
full-resolution color image. We then evaluate owthod
using natural scenes with ground-truth high-resmiutange
data. We demonstrate a two-fold improvement in
performance over the previous method.
We provide theoretical insight into the depth card
statistical regularities that contribute to our rebdnd study
their relative strengths. We show that, in natacehes,
shadow-based depth cues may contribute more tarline
hape-from-shading than traditional L ian shgdiles.

Introduction

Traditional physics-based methods for inferringtiefpom
single images require many restrictive assumptiahsie
overlooking many useful statistical regularitieséal scenes.

Little is known about the joint statistics of imagend 3D surface
shape in real scenes, despite the potential beéfitatistical
models and the growing success of statistical nitfio vision

Using a database of natural images and coregisiserdscans,
we explore the istical col i [ range
data in natural scenes, and we examine how thetimeship
changes over spatial scale.

One model for scaling in the range/intensity relaship has
already been implicitly in a i shape
recipes.

Shape recipes is a technique for enhancing lowkréiso range
data using a high-resolution intensity image, whicbne
immediate application for statistical models ofiain the
range/intensity relationship.

Shape recipes works by learning a relationship eet8D shape

and monocular cues in the low spatial scales apyiag that

relationship to the high frequencies. One advantdgeis

approach is that hidden variables important torérfee from
cues (such asil direction) rhay

implicitly learned from the low-resolution rangechintensity

images.

Analysis of Shape Recipes
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Shape Recipe Algorithm for the super-resolution of range images give
a full-resolution intensity image

1. Decompose the full-resolution intensity image &w-resolution
range image into steerable pyramids.

2. For each orientation, learn a linear regresk@nel from the low-
resolution intensity band to the low-resolutiongarband.

3. Apply this kernel to the high resolution ban@educing the kernel
amplitude by half for each octave)

Assumptions of Shape Recipes:
1. The learned regression kernel should change slowly across spatial sc:
2. The regression kernel amplitude is reduced by half for each octave.

Extrapolation by Dupiicating Octaves.
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Assumption 1: We show that this is mathematically self-contcéatiy.
Shape recipes can be viewed as a single lineaatiqrer

Znign(r,0) = 1(7,0) Krecipe(r,0)
K ecpe@Pproximates the true kemx' = 2,1 /11*
We show that K. the known I patial-frequencies of
K by replicating a single low-frequency octave itite high frequencies,
as shown below. The result is that intermediateve of K,.,.do not
resemble the replicated octave. This means thaestegipes learn so
many parameters that they cannot all simultaneayesigralize to the
higher spatial frequencies.

Assumption 2 is based on the linear lambertian shading equatams
can be tested by exploring the natural scene titatis

i) ~ e y) 1(r,6) ~ 2mircos(0)Z(r, )
ay

“Yet, in our database, we found that tieal part of K was often the stronger
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Statistics of Real Scenes

Using a laser-scanner with integrated color phatsse we collected a
of singl terial scenes. We i statistics of
these scenes, including covariance between inyeasi distance.

In the paper, we show that Zihich is the Fourier transform of the
cross-covariance matrix cov[z,i]) can be modeled@byr,6) ~ B(6)/r,
wherea was measured at 3.650.14, and B) is a parameter of the
scene which depends on lighting direction and aghene properties.
11" was fit by A/£%°, which means that K may be approximated as

K(r,0) ~ B(0)/r

Log-log polar
plot of |real[ZI]|
for one scene in
our database.

The power-law drop-off of 1/r verifies the second assumption of shape recipe;

However, the linear that this was based 9
predicts that the real part of K should be zero.

component.

In a previous paper, we found that dark areas of an image were more likely t
further away. We attributed this to cast shadows: object interiors and cavities
more likely to lie in shadow than object exteriors, and the interiors are further|
from the observer. In the dataset used in this paper, the correlation between
brightness and distance was 0.37. This direct correlation contributes to the
real part of K.

The 1/r drop-off rate of the real part of K is a new finding. We believe that thi
happens because concavities with smaller apertures but equal depths tend t
darker.

Below is a plot of Bg) for one scene. The real part oBB(in black) is
uniformly negative, corresponding to the correlatitween distance and
darkness. The imaginary part, as predicted byitiear lambertian model,
reaches its minima at the illumination directionttee extreme left, almost
180, for this scene).

1m[B(6)] depends primariy
* on lighting direction

&
Re[B() depends mostly on
/ the prominence of shadows;

Extending Shape Recipes

Our model of K~ B(6)/r suggests that
we can extrapolate K by measurindB(
in the low spatial-frequencies. This
gives us K,c, Which we can use to
estimate Z by:

Zpowertaw = I Kpowertaw + Ziow
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Inference Results in Real Scenes

Low Resolution Range Image
(Lambertian rendering)

High Resolution

High Resolution Color Image
e Power-law Reconstruction

b
jare
For each of the 28 single-materials scenes in atasit, we down-sampled our high-

resolution range images to create low-resolutiolyeaimages, and used shape recipes and

our power-law method to attempt to reconstrucwifiginal high-resolution range images.
Shape recipes improved 21 of the 28 images, favanage of 1.3% less mean squared
error than the down-sampled low-resolution rangagen The power-law method improved

be26 of the 28 images, for a 2.2% reduction of mepraged error. We estimate that most of|
the remaining error (95%) is either due to nonlities in the intensity/range relationship
or noise in the acquisition of our images.

Low resolution range image Shape recipe reconstruction Power-dwdeconstruction

Shape recipes vs orignal
low-resolution

(improved pixels are white)

B AR
High resolution color image

Power-aw method vs original
low-resolution

Genler for the Nearal Basis of Cognition K

Shadow cues more powerful
than shading cues?

As noted previously, the imaginary part of ZI, whis expected to come
from shading, was often smaller than the real giaai, which is expected to
come from shadow cues.

What are the relative contributions of these cues?

We re-ran our algorithm with either the real or gin@ry part of K, e aw

set to zero.

+ The algorithm is 27% as effective with Imag[K] ato(no real component)
« The algorithm is 72% as effective with Real[K] aéo(no imag component)
Thus, in our database, using only linear cues, ®hdshsed cues appear to
be more powerful than shading-based cues.

our to enviror this theory.
Shadow cues may be expected to be most powerakines of foliage,
where regions deeper into foliage are more heahiydowed.
Urban scenes contain fewer shadowed crevises anmheites, and many
continuous, smooth surfaces where shading is nffestige.

Environment: % improvement from shadow-based cues alone
foliage (8 scenes) 96%
rocky terrain (8 scenes) 76%
urban scenes (building fascades and statues, hi2sce 35%

Linear shape from shading has received some attesitige its introductioh
as a fast, reasonably accurate, and biologicadlygible method of inferring
depth from shading. However, linear shape inferenethods have so far
utilized only Lambertian shading cues. Linear shiapm-shading
algorithms could be adapted to exploit the coritet in the real part of ZI,
which we believe are related to cast shadows.

References
[1] J. E. Cryer, P. S. Tsai and M. Shah, “Integration of shape from shadiisgeneo,” Pattern
Recogpition, 28(7):1033--1043, 1995
[2] W.T. Freeman, E. H. Adelson, “The design and use of steerable'FIEEEE, Transactions on
Pattern Analysis and Machine Intelligent8, 891--906 1991,
[3] W.T. Freeman and A. Torralba, “Shape Recipes: Scene represertidicnaser to the image,”
Advances in Neural Information Processing Systems 15 (NIPS), MIT @63
[4] C. Q. Howe and D. Purves, “Range image statistics can explain taias perception of
length,” Proc. Nat. Acad. Sci. U.S.8913184--13188 2002
5] M. S. Langer and . W. Zucker, “Shape-from-shading on a cloudy dagptJSoc. Am. ALl
467--478 (1994).
[6] A. Pentland, “Shape information from shading: a theory about humaegiers.” Spat Vis. Vol.
4, pp. 165--82, 1989.
[7] B. Potetz, T. S. Lee, "Statistical correlations between two-dimeaiimages and three-
dimensional structures in natural scenes,”J. Opt. Soc. Amel0, A292--1303 2003
[8] D. Scharsteinand R. Szeliski, “A taxonomy and evaluation of densérame stereo
correspondence algorithms,” ICV 47(L/2/3):7--42, April-June 2002.
(9] A. Torralba, A. Oliva, “Depth estimation from image structure,”EEEransactions on Pattern
Analysis and Machine Intelligence. 24(9): 1226--1238 2002
[10] A. Torralba and W. T. Freeman, *Properties and applications of shapes;e{fE Computer
Society Conference on Computer Vision and Pattern Recognition, 2003,
[L1] C.W. Tyler, “Diffuse illumination as a default assumption for sHapen-shading in the
absence of shadows,” J. Imaging Sci. Tech#@I319--325 1998,



