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Abstract. Students are starting to use networked visual argumentation tools to 
discuss, debate, and argue with one another about topics presented by a teacher. 
However, this development gives rise to an emergent issue for teachers: how do 
they support students during these e-discussions? The ARGUNAUT system aims 
to provide the teacher (or moderator) with tools that will facilitate effective 
moderation of several simultaneous e-discussions. Awareness Indicators, provided 
as part of a moderator’s user interface, help monitor the progress of discussions on 
several dimensions (e.g., critical reasoning). In this paper we discuss preliminary 
steps taken in using machine learning techniques to support the Awareness 
Indicators. Focusing on individual contributions (single objects containing textual 
content, contributed in the visual workspace by students) and sequences of two 
linked contributions (two objects, the connection between them, and the students’ 
textual contributions), we have run a series of machine learning experiments in an 
attempt to train classifiers to recognize important student actions, such as using 
critical reasoning and raising and answering questions. The initial results presented 
in this paper are encouraging, but we are only at the beginning of our analysis. 

1. Introduction 
It is becoming increasingly common for students to use computer-based tools to 
discuss, debate, and argue with one another about topics presented in a classroom. Such 
collaborative software tools are designed to allow students to work on separate 
computers but communicate in synchronous fashion, contributing to an evolving 
discussion through a shared “workspace.” In Israel, England, and the Netherlands, for 
instance, we are working with and collecting data from over 15 classrooms that are 
using the tool Digalo (http://dito.ais.fraunhofer.de/digalo/) to engage students in e-
discussions. We also have plans to collect data from the use of another collaborative 
tool, Cool Modes (www.collide.info/software). These tools share a common model in 
supporting e-discussions: a graphical environment with drag-and-drop widgets that 
students can use to express their ideas, questions, and arguments in visual fashion.  

Of course, simply providing students with computer-based tools, such as Digalo 
and Cool Modes, will not lead to fruitful discussion and collaboration. Evidence from 
the computer-supported collaboration literature suggests that fruitful collaboration does 
not occur spontaneously [1]. One approach that has been used and continues to be 
investigated by many researchers is the notion of providing a “script” to support 
collaboration (e.g., [2, 3]). Another approach is to provide a software agent that can 
coach and/or tutor the collaborating students [4]. A third approach is to include an 
artificial student in the collaboration whose responsibility it is to provide student-like
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contributions and peer coaching [5]. 
Yet another approach, taken within the ARGUNAUT project discussed in the 

current paper, is to assist the human moderator, or teacher, of an e-discussion in 
keeping students on topic, correcting misstatements, and generally guiding the students 
toward fruitful discussion and collaboration [6]. Such an approach has the advantage of 
leveraging the knowledge and skills of perhaps the premier resource in supporting 
learning and collaboration: the teacher. To the extent a teacher can provide 
personalized attention to individual conversations, and individuals in those 
conversations, he or she is tutoring the students, widely considered to be the most 
effective way of providing instruction. 

However, the cognitive load of moderating multiple simultaneous e-discussions 
may be too high on teachers. The ARGUNAUT system aims at relieving this by 
providing the teachers with feedback regarding important elements of each discussion, 
explicitly focusing their attention on events or situations requiring their intervention.  

An approach we are pursuing is to use machine-learning techniques [7] to evaluate 
past e-discussions and use the results to provide “Awareness Indicators” for teachers 
and moderators in the context of new e-discussions. Pedagogical experts on our team 
have annotated components of past discussions as to whether, for instance, students 
applied critical reasoning, were on topic, or were engaged in raising and answering 
questions. We then used these annotations to train machine-learning classifiers for the 
purpose of identifying these meaningful characteristics in new e-discussions. The 
annotations and subsequent classifications are based on structural, process-oriented, 
and textual elements of the student contributions.  

In this paper, we provide an overview of ARGUNAUT, present and discuss the 
initial results obtained in applying machine learning to a corpus of Digalo data for the 
purpose of supporting ARGUNAUT Awareness Indicators, and discuss our next steps 
in attempting to realize fully the potential of machine learning applied to e-discussions. 

2. Overview of the ARGUNAUT Project 
An e-discussion in ARGUNAUT proceeds by students responding to a given question 
(e.g., “What is your opinion about experiments on animals?”) and to one another’s 
contributions. Students make contributions to the discussion by dragging and dropping 
shapes corresponding to discussion moves, such as “question” or “claim,” filling text 
into those shapes to express an idea or argument, and linking shapes to other shapes 
with directed or undirected links, labeled as “supports” or “opposes.” To support the 
moderator of such discussions, the approach we have taken is to provide a 
“Moderator’s Interface” that contains, among other data, a series of “Awareness 
Indicators” associated with each e-discussion. The Moderator’s Interface allows the 
teacher to oversee all of the e-discussions currently taking place in the classroom. 

Each Awareness Indicator of an e-discussion provides summarized information 
about an important aspect of the discussion. An indicator may be a relatively easily 
computed aspect of the e-discussion, such as how many times each student has 
contributed to the conversation, or a more complex analysis component, such as 
whether the students have been or are currently engaged in critical reasoning. The 
human moderator is the ultimate judge of when and how to intervene in an e-
discussion; the indicators are intended only to call attention to potentially important 
discussion characteristics. 

The architecture we have designed and partially implemented to support this 
approach is shown in Figure 1. The end user environment, shown on the left side of 



 

 3 

Figure 1, is the Digalo or Cool Modes tool used by groups of collaborating students. 
All actions taken by the students, such as creating a new shape, link, or textual 
contribution, are logged. The moderator (teacher) uses the Moderator’s Interface, 
shown in the middle of Figure 1, to monitor on-going e-discussions and intervene when 
appropriate. The Awareness Indicators are based on either “Shallow Loop” analysis, 
straightforward calculations, such as counting the contributions made by each student, 
or “Deep Loop” analysis, application of machine-learning classifiers to the logged data. 
Using the Annotation Tool, the moderator can annotate maps in real-time to provide 
additional data to train the Deep Loop classifiers. The Deep Loop, shown on the right 
side of Figure 1, is an off-line process that takes annotated maps, translates them to a 
form suitable for machine learning, and generates new classifiers that are subsequently 
used at run time to classify actions of the students in real time. 

 

3. Annotating Collaborative Data for the Deep Loop 
The first step in generating Deep Loop classifiers for the ARGUNAUT system was the 
manual annotation of existing e-discussion Digalo maps. This corresponds to the 
process depicted at the bottom of Figure 1, in which human pedagogical experts 
annotate real maps. The annotated maps are the products of actual Digalo sessions in 
Israeli junior high school and university classrooms. For the purposes of our initial 
analyses, the maps were also translated from Hebrew to English. 

The experience of our pedagogical experts suggested general criteria for coding, 
such as participation and responsiveness [8], as well as dialogic analysis [9]. The 
selection of annotation categories was based on discussion between the pedagogical 
and technical experts of our team, as well as an iterative analysis of the maps. 

We developed specific annotation schemes for two aspects of the Digalo maps: (1) 
individual contributions (the shape level, i.e., single shapes) and (2) connected 
contributions of one or more students (the paired-shapes level, i.e., two contributions 
(shapes) with a connecting link) in a map. While the shape-level annotations focus 
primarily on interpretation of the text within a shape, the paired-shapes level involves 
analysis of structural, process-oriented, and textual aspects of the shapes. A paired-

 
Figure 1: The ARGUNAUT Architecture 
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shape involves the interpretation of two distinct but related pieces of text, the structural 
relationship between the contributions (a connector), and the order of the contributions. 
In total, we defined seven annotation variables for the shape level (topic focus, task-
management focus, critical reasoning, request for clarification or information, critical 
evaluation of opinions, summary, and intertextuality) and five annotation variables for 
the paired-shapes level (question-answer, contribution-counterargument, contribution-
supportingargument, contribution followed by question, and qualifier/compromise). 
Tables 1 and 2 show examples of a few of these variables. 

Table 1: Sample of the Shape-Level Coding Scheme 
Annotation-
variable name 

Explanation / Coding Examples 

Topic focus 
(TF) 

A contribution that focuses on the topic or task. 

0. No topic focus content 
1. Topic focus content 

TF: “Its not nice of human beings to 
exploit animals for their own needs. I 
think animals also have rights.” 
Non-TF: “I’m bored.” 

Critical 
Reasoning 
(CR) 
 

An individual contribution that contains critical 
reasoning or argumentation (i.e., claim + backing). 
Student provides an explanation or some backing (e.g. 
evidence) to illustrate a position/opinion. If you can 
add “because” between two parts of the contribution, it 
is probably critical reasoning. 

0. No critical reasoning 
1. Use of critical reasoning 

CR: “I am against experiments on 
animals, because to my opinion it is not 
fair to use them against their will while 
they cannot reject.” 
CR:  "Here it's not like with humans, as 
the father disengages from them, and he 
doesn't see them even in the afternoon, 
and he doesn't belong to the pack any 
more" 

Table 2: Sample of the Paired-Shapes Coding Scheme 
Annotation-
variable name 

Explanation / Coding Examples 

Contribution-
CounterArgument 
(CCA) 

A contribution in which the 2nd shape opposes the 
claim/argument raised in the 1st shape and provides 
reasons or other type of backing for the opposing 
claim. Typically (but not necessarily) the type of 
link between the shapes would be “opposition.” 
0. Not a Contribution-CounterArgument 
1. A Contribution-CounterArgument 

1st shape text: “Do not separate, the male 
should be a partner in what happens 
even after the birth. The offspring is also 
his and he should take responsibility.” 
2nd shape text: "But in a situation like 
this the mother can get pregnant again 
and so might neglect a group of cubs." 
Link between shapes is “opposition” 

Question-Answer 
(QA) 

A contribution in which the 1st shape is a question, 
the 2nd shape is an answer to that question. 
Typically (but not necessarily) the type of link 
between the shapes would be “other.” 
0. Not a Question-Answer 
1. A Question-Answer 

1st shape text: “In the wild does the 
father separate from the cubs or does he 
continue to live with them?” 
2nd shape: “They all live in a pack” 
Link between shapes is “other.” 

At the shape level, a total of 677 shapes in 42 Digalo discussion maps were 
annotated. Three skilled coders initially applied the coding scheme summarized in 
Table 1 to a small number of maps. Coding differences were resolved through 
discussion and decision rules, and the annotation scheme was revised. The three coders 
then annotated the remainder of the maps, with discussion and decision rules resulting 
in a “consensus” annotation for every shape of every map. Interrater reliability, using 
Fleiss’ Kappa, was calculated for the second round of annotations, resulting in an 
acceptable value (or within range of acceptability) for all variables (i.e., close to 0.7). 

At the paired-shapes level, 226 paired-shapes in 21 Digalo discussion maps were 
annotated. Two of our coders applied the coding scheme summarized in Table 2 to five 
maps, resolved differences, and applied a revised coding scheme to the remainder of 
the maps. Interrater reliability, using Cohen’s Kappa, was calculated, with acceptable 
values for all variables except qualifier/compromise, which was not used for learning. 
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4. Use of Machine Learning Techniques in the Deep Loop 

Given these manual annotations, our ultimate goal is to train machine-learning 
classifiers to predict the appearance of these discussion characteristics in the context of 
new e-discussions and make the resultant classifiers available to the ARGUNAUT 
Awareness Indicators depicted in Figure 1. Our first step toward this goal was to 
validate the use of a machine learning approach and to identify the variables that hold 
the greatest promise of being useful to the Awareness Indicators. It is clearly non-trivial 
to generate good classifiers, given the complex characteristics of e-discussions, 
including the shapes chosen by students for contributions, the links created between 
shapes, and the text provided within a shape. On the other hand, an approach that does 
reasonably well, with a success rate of, say, 80% to 90% in the most critical situations, 
may be sufficient for the purposes of moderation. 

Our approach draws from and is most closely aligned with that of Donmez, Rosé, 
Stegmann, Weinberger, & Fischer [10]. Using TagHelper, a software tool that 
leverages machine-learning techniques to classify text, they ran multi-dimensional 
analyses over a large corpus of textual argumentation data and achieved a 0.7 Cohen’s 
Kappa (or higher) on 6 of 7 dimensions. We are also doing multi-dimensional analysis, 
as exemplified by the multiple variables of interest at the shape and paired-shapes 
levels, and also experimented with TagHelper as part of our analysis. On the other 
hand, our objective is different. Donmez et al focused exclusively on textual 
contributions, while we are interested in structural and chronological data in addition to 
the text. Also, while Donmez et al.’s goal is to automate corpus analysis for coders, we 
will use our classifiers to provide feedback for e-discussion moderators. 

5. Initial Analyses and Results of Machine Learning 
For our initial analyses, we experimented both with TagHelper and YALE, freely 
available software that supports interactive experimentation with a wide range of 
machine learning algorithms [11].  We ran some preliminary YALE experiments, using 
the first 21 annotated maps (318 shapes). We derived a basic set of attributes that 
expressed characteristics of the text and structure of the shapes, including text length, 
shape type, number of in-links, number of out-links, and number of undirected links. 
Using a variety of algorithms, including J48 decision tree and PART, and 10-fold cross 
validation, the critical reasoning variable yielded classifiers that had by far the best 
results, including a Kappa value of 0.72 (above the standard acceptable level of 0.7) 
with most other Kappas at or near acceptable (0.6 to 0.7). All of the other shape-level 
variables yielded classifiers with lower Kappa values, 0 in many cases. A possible 
reason for the lower Kappa values is the proportionally unbalanced annotations of 
either positive or negative labels for these other variables, compared to the relatively 
balanced distribution of positive (47%) and negative (53%) labels for critical reasoning.  

We then focused solely on the critical reasoning variable, since it appeared to hold 
the best prospects for the machine learning approach (and is also a variable of keen 
interest to our pedagogical experts). We scaled up our analysis to the fully annotated 42 
maps (677 shapes) and experimented with deeper aspects of the language within 
shapes. In addition to the basic set of attributes described above, we derived two 
additional attributes that represent word-level contributions: term_evidence_pos, a 
count of the number of words used in the text contribution of a shape that are contained 
in a “positive” term list, and term_evidence, the difference between the number of 
words used in the text contribution that are contained in the “positive” and the 
“negative” term lists. The two lists consisted of the top 25 words in the “positive” and 
“negative” categories identified by a word analysis of the entire corpus of 677 shapes, 
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using the Odds Ratio (originally defined, but not named, in [12]).  We also applied 
TagHelper to the data, and it generated over 1600 text-focused attributes, representing 
terms and parts of speech in the corpus.  

Table 3: ML Results for the Critical Reasoning Var. running AdaBoost with DecisionStump over 42 Maps 

Attributes Parameters True Pos. Rate True Neg. Rate Acc. Kappa 
Basic set (baseline) I = 10 (Default) 84% 74% 79% 0.57 
Basic set I = 100 (Tuning) 81% 81% 81% 0.62 
(+ term_evidence_pos) I = 100 (Tuning) 80% 83% 82% 0.63 
(+ term_evidence) I = 140 (Tuning) 79% 84% 82% 0.63 

(+ TagHelper attributes) Chi-squared att. sel.;  
I = 60 (Tuning) 82% 87% 85% 0.68 

 

A summary of the results of these experiments, again run using 10-fold cross 
validation, are shown in Table 3. AdaBoost with DecisionStump yielded the best 
results without parameter tuning, so we focused on this algorithm in our experiments.  
As can be seen, the baseline Kappa achieved with this algorithm, with no parameter 
tuning run over the basic set of attributes (i.e., the “Default”), was 0.57. Adding the 
term_evidence_pos and term_evidence attributes to the basic set of attributes, as well as 
applying parameter tuning to the number of AdaBoost iterations (I), yielded 
improvement over the baseline, but the best Kappa (0.68) was obtained using chi-
squared attribute selection over the TagHelper and basic attributes. The difference 
between the baseline and TagHelper Kappa is significant (p < 0.003) using a t-test. 
Thus, our initial shape-level experiments demonstrate that at least for the critical 
reasoning variable, we can obtain an acceptable Kappa value with the assistance of 
TagHelper. These experiments also demonstrate the potential value of text-focused 
attributes combined with structural attributes when learning over our e-discussion 
maps, as the use of TagHelper attributes yielded the best results. 

Finally, we performed a series of YALE experiments to investigate how well we 
could train classifiers to identify the paired-shapes variables, such as those shown in 
Table 2 (e.g., question-answer), using the 21 annotated maps (226 paired shapes) as 
training data. In this analysis we accounted for all three aspects of the maps – text, 
structure, and process. However, we did not use TagHelper, as it seemed to have a 
somewhat less logical application to multiple texts associated with single training 
instances (i.e., the separate texts associated with each of the shapes in a paired shape). 
We also tried to see if we could re-use the shape-level annotations as attributes in these 
learning experiments. At the paired-shapes level, we identified and experimented with 
three sets of mutually exclusive attributes, as well as combinations of those sets: 

1. Basic attributes that do not represent process or structure: verticesSameUser, 
combinedTextLength, diffInTextLength, linkType, timeBetweenFirstModOfEachShape 

2. Attributes that represent ordering (i.e. process) and structure of shapes: link_v[1,2]_sameUser, 
textLength[1,2], shape[1,2], linkDirection 

3. Attributes that represent ordering and rely on shape-level annotations (using the human 
annotations): vertex[1,2]_TopicFocus, vertex[1,2]_TaskManagementFocus, 
vertex[1,2]_CriticalReasoning 

 

Table 4 shows the results we achieved for the question-answer variable, which had 
the most balanced proportion of positive (29%) and negative (71%) examples, using the 
PART algorithm, 10-fold cross validation, and parameter tuning of the confidence 
threshold for pruning (C) and the minimum number of examples per leaf (M). The 
default parameters were used in the baseline case of attribute set 1 on its own. The 
paired-shapes results for question-answer can be viewed as highly encouraging, even 
more so than the critical reasoning variable at the shape level, with the highest Kappa 
achieved 0.87 when applying the PART algorithm to the attribute sets 1, 2, and 3. The 
difference between the baseline and this Kappa is significant (p = 0.00001) using a t-
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test. Results for the other paired-shapes level variables were generally not as good as 
the results shown in Table 4, with the problem of too few labels leading to Kappa 
values of 0 in the worst cases. On the other hand, inclusion of the process-related and 
shape-level annotation attributes improved the learning results in virtually all cases. 

Table 4: ML Results for the Question-Answer Variable running PART algorithm over 21 Maps 

Att. Sets Parameters True Pos. Rate True Neg. Rate Acc. Kappa 
1 (baseline) C = 0.25, M = 2 (Default) 59% 95% 84% 0.59 
1 C = 0.3, M = 12 (Tuning) 67% 97% 88% 0.69 
1 + 2 C = 0.2, M = 2 (Tuning) 88% 95% 93% 0.83 
1 + 3 C = 0.3, M = 2 (Tuning) 92% 94% 94% 0.85 
1 + 2 + 3 C = 0.8, M = 2 (Tuning) 92% 96% 95% 0.87 

6. Discussion 
In sum, our initial results, while preliminary, provide promise that we will be able to 
support moderation in ARGUNAUT, at least for some variables. 

As discussed with respect to the shape-level analysis, the addition of text analysis 
attributes to basic structural attributes improved learning significantly. The benefits that 
TagHelper provided over learning with structural attributes alone, or learning with 
structural attributes combined with simple word attributes, shows that the kinds of 
linguistic features TagHelper can extract are important for distinguishing between 
different forms of conversational behavior.  In fact, it may be that the textual features 
alone, without the structural features, is sufficient for training the classifiers. Upon one 
reviewer’s suggestion, we tested this and got a Kappa of 0.67, marginally below the 
best Kappa of 0.68 in Table 3. So an important next step is to investigate more fully the 
relative contributions of the two types of attributes. Although we have not yet applied 
TagHelper to the paired-shapes level of analysis – it seemed less a fit for those 
instances and our initial results were already quite good – we will investigate whether 
we can improve those results, too, using TagHelper.  

The paired-shapes analysis illustrated the importance of learning with structural 
and process attributes, both of which are critical attribute types derivable from our e-
discussion maps.  Including these types of attributes with the basic attributes (i.e., 
adding attribute sets 2 and/or 3 to attribute set 1), along with parameter tuning, led to 
statistically significant improved learning. In addition, part of our vision for using 
machine learning is to see how much we can leverage smaller building blocks, for 
instance the classification of individual shapes, in analyzing and learning from larger 
portions of the maps. We took an initial step in this direction by including individual 
shape annotations as attributes in training at the paired-shapes level and this supported 
the best results of all our experiments. 

An issue related to language analysis is the translation that we did from Hebrew to 
English to perform the experiments described in this paper. While this was a necessary 
step for initial experimentation, it is an unrealistic approach if the goal is ultimately to 
classify Hebrew (or other language) maps. We will need to include some form of cross-
language analysis in our approach. This is an issue we will investigate with respect to 
our TagHelper work and collaboration with Carolyn Rosé. In the short-term, however, 
we will continue to focus on maps translated to or originally created in English. 

Our initial analysis uncovered other issues to address. For instance, the lack of 
positive or negative labels for a number of variables, both at the shape and paired-
shapes level, led to poor results for those variables. We plan to address this in two 
ways. First, we will find and annotate more examples of the minority labels in our large 
repository of Digalo maps. Second, we will investigate the use of cost-sensitive 
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machine learning techniques, an approach sometimes used to deal with imbalanced data 
sets [13, 14]. Since in many cases the minority label is the one our moderators will be 
most interested in (e.g., it is more important to correctly identify when students are off 
than on topic), such an approach makes sense in our case.  

Finally, we simply need to do more extensive machine learning experimentation to 
verify the viability of this approach. The current sample of data is relatively small and 
focuses on a limited set of e-discussions. Annotating and training on a larger corpus 
will provide a clearer picture of whether this direction is fruitful and will allow us to 
generalize the classifiers. 

7. Conclusion 
The ARGUNAUT system aims to provide a moderator (or teacher) with tools that will 
allow him or her to moderate the simultaneous e-discussions of many groups of 
students as they discuss, debate, and argue difficult topics using a visual argumentation 
software tool. Awareness Indicators, provided as part of a Moderator’s Interface, are 
intended to alert the moderator of important events in the e-discussion, such as students 
not using critical reasoning in their contributions. In this paper we have discussed 
preliminary steps taken in using machine learning techniques to support the Awareness 
Indicators. Our preliminary results are quite encouraging, but there is still much work 
to be done. We are only in the first year of a three-year project. 
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