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Abstract. Computer-based intelligent tutoring systems (ITSs) are a key to learn-
ing in many educational scenarios, but not all students engage effectively with
them. Student engagement with ITSs is typically assessed via log data (e.g.,
problem-solving time), which only partially captures its multidimensional nature.
In the current project, we studied how students engage with an intelligent tutor
using a combination of log-based, electroencephalography (EEG), and eye-
tracking measures. A total of 56 high school students participated in a school-
based study with a pretest-intervention-posttest design. During the intervention,
students watched short videos and solved chemistry problems using an ITS. Pre-
liminary analysis shows that log-based measures substantially improved model fit,
explaining 26% more variance in posttest scores than a model using only pretest
scores. Within the model, error rate and hint request rate were significant predic-
tors, while self-reported effort and time spent on problems were not. Hint requests
were negatively associated with learning outcomes, emphasizing the need to assess
how students use hints and other assistive features of ITSs. Adding EEG and eye-
tracking measures did not significantly improve the overall performance of the
model. However, a more fine-grained, problem-by-problem analysis revealed that
frontal EEG alpha power significantly predicted the number of errors on individual
intervention problems. In the future, this finding may support the development of
EEG-informed ITSs that can provide more personalized assistance. More gener-
ally, these results highlight the value of multimodal measures of engagement in
educational technology research.
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1 Introduction

Computer-based intelligent tutoring systems (ITSs) are a critical component in many
educational settings, particularly in K-12, including in-person and online learning. ITSs
are designed to complement traditional classroom learning by providing students with
personalized guidance and support that are tailored to their learning progress and individ-
ual needs [1-3]. ITSs are designed to be engaging, but not all students learn effectively
with them, possibly due to differences in engagement [4, 5].

The current study builds on the Interactive-Constructive-Active-Passive (ICAP) the-
oretical framework, which proposes a direct link between the level of engagement in an
instructional activity and its corresponding learning outcomes [6]. According to ICAP,
passive activities, such as listening to a lecture, lead only to superficial learning (e.g.,
recall). Conversely, constructive and interactive activities that require high levels of
engagement, such as solving science problems, ultimately lead to robust learning [7].
This framework suggests that examining student engagement with ITSs may help explain
differences in learning outcomes.

There is a growing consensus that engagement should be viewed as a multidimen-
sional construct [8, 9]. Fredricks and colleagues [10] proposed three components of
engagement: (1) Behavioral engagement: learners’ participation in the learning process,
including effort and persistence (e.g., note-taking); (2) Cognitive engagement: learners’
mental investment in the learning task, such as allocation of attention; and (3) Affec-
tive engagement: feelings and attitudes about the learning task or learning context (e.g.,
interest, boredom). Typically, students’ engagement with ITSs is measured via log-based
student interaction data (e.g., time to complete a problem), but these data do not fully
capture all three dimensions of engagement. For example, it is challenging to determine
how students cognitively engage with assistive features of ITS - such as hints - based on
log-data alone (do students read hints?).

In the current study, we incorporated a set of neurophysiological measures (Elec-
troencephalography and eye-tracking) to capture a more comprehensive picture of how
students engage with ITSs. Specifically, we focus on EEG activity in the alpha band (8-
12 Hz), which has been associated with lapses of attention [11, 12] and mind-wandering
[13, 14]. We also focus on gaze position as a proxy for the locus of attention [15—
17]. These two neurophysiological measures could provide information on the cognitive
engagement of learners [9].

The current study addresses the following research questions: RQ1: What are the
relations between tutor log-based and neurophysiological measures? RQ2: How much
of the variability in learning outcomes with ITS can be attributed to log-based and
neurophysiological measures?

2 Methods

2.1 Participants

56 students participated voluntarily (Mean,g. = 15.89 years, 52% female, 66% white),
currently taking a chemistry course, from two high schools in the USA. All received
permission from their caregivers, and signed an assent form, as required by our Insti-
tutional Review Board. We excluded 3 students from EEG and 12 from eye-tracking
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due to poor data quality (EEG: >50% artifacts; Eye-tracking: > 30% missing or >1°
calibration error).

22 ITS

The specific ITS platform that was used in this project is a web-based chemistry tutor
that has been validated extensively in previous studies (Fig. 1) [18-20]. During tutored
problems, students could request context-sensitive and on-demand hints, as well as
access an on-screen calculator. As students worked through each problem, the tutor
also provided automatic error messages, adaptive support, and correctness feedback.

2.3 Procedure

Students participated in a self-paced study (~3 h) in a quiet school office. They first
completed a pretest (~ 50 min), consisting of four stoichiometry problems (isomor-
phic to the tutored problems) and three conceptual knowledge questions. Within one
week, students participated in the EEG and eye-tracking session (preparation: ~ 30
min), including watching content-related videos and solving six tutored problems, each
followed by a self-reported effort rating (~ 1 h). A posttest concluded the session (~
40 min). Pre/posttests had two isomorphic forms (A and B), counterbalanced across
students.

2.4 Log-Based Measures

The current paper focuses on three measures that were extracted from the log file for each
tutored problem — duration on problem, number of hint requests, number of errors—as
well as self-reported efforts.

2.5 Eye-Tracking

Eye-tracking data were collected using a Tobii Pro Fusion screen-based eye tracker. The
ITS display was divided into eight Areas of Interest (AOIs): problem statement, hint
window, calculator, four problem steps, and the final result (see Fig. 1). The current
paper focuses on the proportion of time looking at each AOL

2.6 EEG

EEG was recorded using a 32-channel mbt Smarting Pro system. Data were band-pass
filtered (1-30 Hz), cleaned of noisy channels/periods, and re-referenced. Ocular/muscle
artifacts were removed via ICA. Preprocessed data were epoched into 1-s intervals,
tapered with a Hanning window, and transformed (4-30 Hz) via FFT. Alpha power
(8-12 Hz) was normalized by total 4-30 Hz power [21], then averaged across frontal,
central, and posterior ROIs. Analyses was carried using Matlab R2024b, with EEGLAB
2024.0 [22] and FieldTrip [23].
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Fig. 1. A screenshot of the Chemistry Tutor with areas of interest for eye gaze analysis.

3 Results

Students’ averaged 3.54 (SD = 1.22) on the pretest and averaged 4.37 (SD = 1.08) on
the posttest, out of a total possible score of seven. A paired-sample t-test indicated that
students’ performance significantly improved (t(55) = 5.55, p <.001).

To address RQ1 (“What are the relations between tutor log-based and neurophysi-
ological measures?”), we first assessed the correlations among log-based measures for
each tutored problem. We also averaged the measures across problems and computed
the correlations between the aggregate measures. Overall, self-reported effort, problem
duration, number of errors, and number of hint requests were positively, significantly
correlated with each other (Table 1).

Next, a series of linear regressions were used to test whether the neurophysiological
measures significantly predicted each one of the log-based measures. This preliminary
analysis indicated that in four out of the six tutored problems, frontal EEG activity in
the alpha band significantly predicted the number of errors on problems (fs = -.91
to -.52 and ps =.001 t0.04). The regression coefficients were negative, indicating that
higher alpha power was associated with fewer errors. Alpha power did not significantly
predict self-reported effort, duration, or number of hint requests. Among the eye-tracking
measures, the only significant association across problems was between the proportion
of time looking at the hint window and number of hint requests.

To address RQ2 (“How much of the variability in learning outcomes with ITS can
be attributed to log-based and neurophysiological measures?”), a regression model was
used to predict total posttest performance based on pretest performance. Adding the log-
based measures to the model explained significantly more variance than pretest alone
(R? Change =-27, p <.001). Specifically, the model predicting posttest performance with
pretest explained 27.6% of the variance (F(1, 54) = 20.58, p <.001, R* =.28, R pdjusted
=.26), while the model with the log-based measures predicted 53.6% of the variance
(F(5, 50) = 11.56, p <.001, R* =.54, R*sdjusted =-49). Within the extended model,
pretest score (f =.28, p =.017) was a significant, positive predictor and total number of
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errors (f = -.45, p =.018) and total number of hint requests (f = -.29, p =.034) were
significant, negative predictors of posttest score. Duration on problem (§ =.15, p =.41)
and self-reported effort (f = -.04, p =.66) were not significant predictors of posttest
performance. A preliminary analysis that included the neurophysiological measures did
not improve the model (R2 Change =-11, p =.47).

Table 1. Correlations among test scores, log-based measures, and neurophysiological measures

2. 3. 4. 5. 6. 7. 8 9. 10. 11. 12. 13, 14 15 16.
1. Pretest 53*% .51 .31 -50* -03 -11 -05 -04 02 .11 .03 -25 .02 -12 .08
2. Posttest -67*  -58%  -55% -04 -09 -15 -08 .01 -24 22 -04 .004 -14 .09
3. Errors 67* .82+ .03 27 27 20 -08 -03 -34* .13 .15 .18 -02
4. Hints .63*  -05 31* 37* 29* -08 -01 -43* 05 03 25 .06
5. Duration .03 34* 28+ 26 .04 -11-31* 19 .16 .07 -07
6. Effort -15 -03 -06 .45% -14 -35%-32*% .11 22 -17
7. Alpha frontal 85% 84* -11 07 21 .04 -12 -34* 03
8. Alpha central 85% -04 .14 .13 -05 -12 -37* 04
9. Alpha posterior -002 .16 .14 -04 .05 -38* -02
10. Gaze hint -11 -23 -22 .06 -07-61*
11. Gaze area 1 14 -33* -08 -25 -07
12. Gaze area 2 04 .04 -39% -25
13. Gaze area 3 .02 -09 -04
14. Gaze area 4 14 -32%
15. Gaze solution -15

16. Gaze stat.

Note. Gaze = proportion of time spent looking at each AOI. Stat. = Problem Statement. (*) p <.05.

4 Discussion

In this study, we examined how log-based ITS measures relate to neurophysiological
measures of engagement (RQ1) and how each set of measures predict learning outcomes
(RQ2). Consistent with prior ITS research, our analysis indicates that log-based mea-
sures are strongly correlated among themselves [24]. Among the EEG measures, our
preliminary analysis indicates that frontal EEG activity in the alpha band was signif-
icantly associated with numbers of errors. Previous studies reported that increases in
alpha power are associated with lapses of attention and disengagement [21, 25]. How-
ever, most of these studies have focused on alpha activity measured in posterior areas
of the brain. Our results suggest that increased frontal alpha activity is associated with
solving problems with fewer errors. This aligns with recent findings linking frontal alpha
activity to internally demanding processes and deeper understanding [26, 27].
Whereas EEG activity in the alpha band significantly predicted error numbers, it
was not predictive of self-reported effort, duration, or number of hint requests. This is
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surprising, considering prior research indicates that alpha activity is a marker of task
difficulty and cognitive load [28]. It is possible, however, that when students report
their effort level after a problem has been solved, their reports do not accurately reflect
their cognitive load during problem solving [29]. Similarly, hint requests and problem
duration might be influenced by ‘gaming the system’, not just by cognitive load [30].
Therefore, future analyses will incorporate gaming detectors.

Our analysis of eye-tracking data has, so far, yielded just one significant result: The
proportion of time students spent looking at the hint window was predictive of hint
requests. Based on prior research, other eye-tracking metrics (e.g., transitions, fixations,
gaze dispersion) may yield more insight [31-33].

With regard to predicting learning outcomes with ITS, our results indicate that other
than pretest performance, the only significant predictors of posttest performance were
hint requests and number of errors. This replicates a common finding in ITS research:
hint requests and error rates during learning predict posttest performance when account-
ing for pretest [24]. Both log-based measures were negatively associated with posttest
performance: students who made more errors and requested more hints performed more
poorly on the posttest. Indeed, numerous hint requests are known to be an indicator of
‘gaming the system’ [30]. Interestingly, self-reported effort did not significantly predict
posttest performance. This is surprising given prior research on cognitive load and learn-
ing outcomes [34]. However, as previously mentioned, it is possible that self-reported
effort does not accurately capture cognitive load during problem solving.

Finally, our analysis suggests that incorporating EEG and eye-tracking measures did
not improve the prediction of posttest performance. This analysis is preliminary as it only
included one EEG measure (alpha power) and one eye-tracking measure (proportion of
looking time per AOI). Consistent with our findings, recent research suggests that alpha
power is a sensitive measure of moment-to-moment changes in engagement, not overall
learning [21]. It is very possible that other EEG measures would be more predictive of
learning outcomes. One such measure might be theta power, which has been associated
with memory retention [28]. Similarly, more complex eye-tracking measures might have
better predictive value.

Taken together, our results indicate that EEG measures, especially frontal alpha activ-
ity, relate to how students engage with ITSs. These findings suggest that neurophysio-
logical measures could uncover aspects of ITS engagement that are not easily detectable
using log-based data. This is important because according to the ICAP framework, there
is a direct link between the level of cognitive engagement and learning outcomes. While
it is assumed that the interactive design of ITSs promotes cognitive engagement, engage-
ment with ITSs varies within and across students [35]. EEG measures could potentially
help assess student cognitive engagement more accurately and ultimately contribute to
the design of more effective ITSs. Subsequent analyses within the current study as well
as future studies should examine a wider range of EEG and eye-tracking measures and
investigate the unique contribution of these measures to our understanding of student
engagement and learning with ITS.
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