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Abstract 

Despite considerable advances in knowledge tracing algorithms, educational technologies 

that use this technology typically continue to use older algorithms, such as Bayesian Knowledge 

Tracing. One key reason for this is that contemporary knowledge tracing algorithms primarily 

infer next-problem correctness in the learning system, but do not attempt to infer the knowledge 

the student can carry out of the system, information more useful for teachers. The ability of 

knowledge tracing algorithms to predict problem correctness using data from intelligent tutoring 

systems has been extensively researched, but data from outcomes other than next-problem 

correctness have received less attention. In addition, there has been limited use of knowledge 

tracing algorithms in games, because algorithms that do attempt to infer knowledge from answer 

correctness are often too simple to capture the more complex evidence of learning within games. 

In this study, data from a digital learning game, Decimal Point, was used to compare ten 

knowledge tracing algorithms’ ability to predict students’ knowledge carried outside the learning 

system – measured here by posttest scores – given their game activity. All Opportunities 

Averaged (AOA), a method proposed by Scruggs, Baker, & McLaren (2020) was used to convert 

correctness predictions to knowledge estimates, which were also compared to the built-in 



estimates from algorithms that produced them. Although statistical testing was not feasible for 

these data, three algorithms tended to perform better than the others: Dynamic Key-Value 

Memory Networks, Logistic Knowledge Tracing, and a multivariate version of Elo. Algorithms’ 

built-in estimates of student ability underperformed estimates produced by AOA, suggesting that 

some algorithms may be better at estimating performance than ability. Theoretical and 

methodological challenges related to comparing knowledge estimates with hypothesis testing are 

also discussed. 

  



Introduction 

Knowledge tracing is a common way to use data from intelligent tutoring systems to gain 

insights about students’ learning. One of the most important applications of knowledge tracing 

models is to inform teachers about students’ knowledge (Ritter et al., 2016). Knowledge tracing 

has received a lot of study in recent years as newer algorithms have been developed which have 

been shown to be very accurate at predicting student performance. However, current learning 

software used at scale largely uses older knowledge tracing algorithms, rather than the most 

recent work in this area. 

Recent work in knowledge tracing mostly focuses on inferring future problem correctness 

within the learning system being studied, treating better performance at this task as evidence of a 

better model (e.g., Choffin et al., 2019; Gervet et al., 2020; cf. Pelánek, 2017). However, as 

noted by Scruggs, Baker, & McLaren (2020), it is also important – perhaps more important -- to 

capture latent knowledge that transfers outside a learning system. Ultimately, teachers and other 

stakeholders need to know what knowledge a student has (Curry et al., 2016), not just how well 

they will perform on the next problem within the system. Early work on the Bayesian 

Knowledge Tracing (BKT) algorithm examined the model’s ability to estimate how well students 

would perform outside a learning system (i.e., Corbett & Anderson, 1995; Corbett & Bhatnagar, 

1997; Baker et al., 2010; Pardos et al., 2011), and some algorithms based on item response 

theory also provide estimates of latent knowledge (Klinkenberg, Straatemeier, & van der Maas, 

2011; Wilson et al., 2016). By contrast, work over the last decade has produced increasingly 

complex models that attempt to fit item-to-item or new bottom-up skill-to-item mappings (i.e., 

Deep Knowledge Tracing (DKT) and Dynamic Key-Value Memory Networks (DKVMN); Piech 

et al., 2015; Zhang et al., 2017). While these models typically perform better at predicting 



knowledge within the learning system (Zhang et al., 2017; Gervet et al., 2020), they no longer 

explicitly attempt to connect to external knowledge. To address this limitation, Scruggs and 

colleagues (2020) introduced a method (called “AOA”) that extends these approaches to map 

them back to interpretable latent skills and tests the approach on post-tests external to the 

learning system. This method – averaging the predictions of student performance at each step of 

the students’ work – was simple but functioned unexpectedly well at predicting performance on 

an external post-test. 

In this paper, we extend this work by investigating whether the AOA method can also 

work for types of learning technologies where knowledge tracing has typically not been used, 

such as learning games. These environments are often too complex for classic algorithms such as 

BKT: in many games, a student’s behavior can provide evidence about many competencies 

simultaneously, and there is not a 1:1 mapping between an action and a single skill, leading some 

researchers to propose machine learning (Rowe et al., 2022) or deep learning knowledge 

modeling approaches (e.g. Hooshyar et al., 2022). However, these contemporary algorithms 

cannot currently provide the information most useful to teachers. If AOA can be applied in 

learning games, then it may be possible to derive information about student knowledge from 

gameplay, in an actionable fashion that teachers can use. However, most current research on 

knowledge tracing uses large benchmark datasets from intelligent tutors (e.g., Choffin et al., 

2019; Gervet et al., 2020; Zhang et al., 2017), with other learning environments receiving less 

attention (but there are exceptions, as discussed in the review of Abyaa et al., 2019; some notable 

cases include Lee et al., 2015; Pardos et al., 2013). It is not yet clear how well new knowledge 

tracing algorithms predict problem correctness – or other outcomes – using data from digital 

learning games or other types of learning environments.  



Digital learning games are a popular way to teach many concepts, particularly in math 

and science (Mayer, 2019). As students interact with digital learning games, their actions can be 

recorded in log files. These log files can reflect very detailed learning processes which can 

further our understanding of how students learn (see e.g., Koedinger et al., 2010; 2013; Shute et 

al., 2009). 

Clarke-Midura and Yudelson (2013) discuss the possibility of applying machine learning 

methods to infer students’ understanding in digital learning games from such log data. Most 

subsequent research in this context focuses on direct predictions of posttest performance, without 

attempting to estimate student knowledge (e.g., Georgiadis et al., 2019; Ke, Parajuli, & Smith, 

2019; Min et al., 2015), or assesses player understanding at individual time points (such as game 

rounds or levels) separately (e.g., Asbell-Clarke, Rowe, & Sylvan, 2013; Rowe et al., 2020). 

These studies (and others) demonstrate the feasibility of measuring knowledge from player 

behavior in a variety of types of games and learning genres. However, very few studies have 

modeled student knowledge in games using knowledge tracing methods which explicitly model 

how students’ understanding grows and aggregate evidence of student understanding over time 

into a single overall measure of student knowledge on a skill or knowledge component. We are 

aware of only the work of Lee et al. (2015), which uses Bayesian Knowledge Tracing (BKT) to 

study students’ learning in a physics game. They separately fit BKT on segments of gameplay, 

then build clusters using BKT’s parameter estimates to better understand how students’ 

knowledge emerges. As game-based learning and stealth assessment in games have become 

more common, understanding students’ moment-by-moment learning as they interact with games 

has become more important (Owen & Baker, 2019). 



In this paper, then, our goal is to investigate whether the AOA extension makes it 

possible for games to effectively infer students’ knowledge that carries out of those games. In 

doing so, we compare contemporary algorithms extended with AOA to earlier algorithms that 

produce their own knowledge estimates – Bayesian Knowledge Tracing (BKT; Corbett & 

Anderson, 1995), Correct First Attempt Rate (Yu et al., 2010), Elo (Klinkenberg, Straatemeier, 

& van der Maas, 2011), Item Response Theory (de Ayala, 2009), Hierarchical Item Response 

Theory (Wilson et al., 2016), and Performance Factors Analysis (Pavlik, Cen, & Koedinger, 

2009), to understand the relative contribution of the newer algorithms for this goal.  

Extending Knowledge Tracing with All Opportunities Averaged (AOA) 

While algorithms such as BKT and PFA produce their own estimates of students’ skill 

level, many of the newer algorithms used in this paper only produce estimates of problem 

correctness. Problem correctness estimates were converted to skill estimates as in (Scruggs et al., 

2020). For each algorithm, performance predictions were collected for each problem that each 

student attempted. Those predictions were then grouped by skill and averaged, giving a mean 

performance prediction for each skill, for each student. This method results in skill estimates 

produced by averaging correctness predictions on all of a student’s opportunities to practice the 

skill, hence the name All Opportunities Averaged. This method was used to produce skill 

estimates for all algorithms (except CFAR), even including those algorithms that produce their 

own skill estimates, based on findings in (Scruggs et al., 2020), where this method outperformed 

several algorithms’ own skill estimates. All estimates produced by averaging opportunities have 

a “-AOA“ suffix in the results section. 

Bayesian Knowledge Tracing 



Bayesian Knowledge Tracing (BKT; Corbett & Anderson, 1995) is a state-based 

knowledge tracing algorithm where student learning is modeled as students transitioning from an 

unlearned state (not knowing the skill) to a learned state (knowing the skill) as they work on 

exercises. BKT models all skills separately and treats all items as being equally difficult. BKT 

also differs from all other algorithms in our study by being explicitly designed to infer latent 

knowledge (and predict test performance), although it also predicts next-item correctness. A 

BKT model is fit by empirically determining four probabilities: the chance of a student correctly 

answering an item from a skill they do not know (guess), incorrectly answering an item from a 

skill they do know (slip), initially knowing a skill, and transitioning between the unlearned and 

learned states. 

In this study, BKT was implemented using code from Baker et al. (2010) to fit the 

parameters. As described in Baker, Corbett, and Aleven (2008), the parameters were bounded to 

avoid model degeneracy. All parameters had a floor of 0.01, guess and slip had a ceiling of 0.3, 

and the other two parameters had a ceiling of 0.99. Once fit, parameters were applied in Excel 

and final knowledge estimates and correctness predictions were collected. Although BKT does 

generate its own knowledge predictions, we apply AOA to convert its correctness predictions as 

well. 

Deep Knowledge Tracing 

Deep knowledge tracing (DKT; Piech et al., 2015) uses long short-term memory 

networks, a complex variant of recurrent neural networks, to predict correctness of student 

responses based on past activity. DKT does not provide estimates of student knowledge or skill 

performance, only predictions of correctness for each problem. 



DKT was implemented using Yeung and Yeung’s (2018) extensions to the original DKT 

method, which uses regularization to reduce occasional fluctuations in correctness prediction 

values and eliminate instances where predicted correctness decreased after students’ correct 

answers or increased after incorrect answers. We used AOA to create knowledge estimates from 

DKT’s problem correctness predictions.1 

Dynamic Key-Value Memory Networks for Knowledge Tracing 

Dynamic Key-Value Memory Networks (DKVMN) is an algorithm created by Zhang and 

colleagues (2017) which creates its own knowledge component (KC) mapping based on input 

data. It then estimates student mastery on these KCs and uses those estimates to predict student 

correctness. Unlike most algorithms that produce mastery estimates, DKVMN’s estimates cannot 

be applied back to predefined skills in a straightforward manner due to its use of its own item-

KC mapping. In this study, we implemented DKVMN using code from Zhang et al. (2017). 

After fitting DKVMN, we used AOA to translate its correctness predictions to knowledge 

estimates. 

Performance Factors Analysis 

Developed by Pavlik, Cen, and Koedinger (2009), Performance Factors Analysis (PFA) 

uses a logistic function to model and predict student performance based on students’ successes 

and failures as they practice various skills. In this study, the algorithm was implemented in 

Python following the formulas in Pavlik et al. (2009), using SciPy’s (Virtanen et al., 2020) 

BasinHopping optimizer to fit parameter estimates. Those parameters were applied in Excel; we 

then recorded individual correctness predictions and each student’s final learning probability for 

each skill. Similarly to the other studied algorithms, in addition to using the final learning 

 
1 Using DKT, we were unable to calculate valid correctness predictions for 22 problem attempts, out of 68,033 
attempts. Those invalid attempts were omitted. 



probabilities as knowledge estimates, we used AOA to generate knowledge estimates from 

PFA’s correctness predictions. 

Item Response Theory 

Item response theory (IRT), dating back to the 1950s, assumes that respondents’ ability 

and item difficulty lie along a continuum. Individuals’ correct and incorrect responses to items of 

varied difficulty are used to estimate their latent ability (de Ayala, 2009). As IRT focuses on 

analysis of test responses rather than learning activities, it generally assumes that students’ 

ability does not change while responding to items. However, Wilson, Karklin, Han, and 

Ekanadham (2016) used a one-parameter IRT model and recomputed ability estimates after each 

attempt, with the resulting correctness predictions giving higher AUC than a DKT model on 

several large data sets. Wilson et al. (2016), noting that many items in online tutoring systems 

are built from a small number of templates, also found that a hierarchical IRT (HIRT) model 

with item templates that nested items within groups outperformed one-parameter IRT and DKT. 

In this study, both IRT and HIRT were implemented using code from Wilson et al. 

(2016). Our dataset contained problem solving mini-games which were used as templates, giving 

a total of 24 different templates. Each template applied to two related skills (skills are discussed 

in the next section). As discussed in Wilson et al. (2016), HIRT’s use of template labels means 

that it had access to more information than the other algorithms studied. Finally, IRT and HIRT 

produce estimates of students’ ability on each skill, but we also applied AOA to generate 

knowledge predictions. 

Elo 

The Elo rating system, devised by Arpad Elo, is commonly used in chess and other 

games to estimate players’ ability based on their wins and losses versus other players. 



Klinkenberg, Straatemeier, and van der Maas (2011), noting mathematical similarities between 

Elo and the Rasch item response theory model, developed an algorithm that treats both students 

and items as players. Students that respond to items correctly are interpreted as having “won 

their match” against the item, thus enabling estimation of item difficulty and student ability. 

Since this algorithm can swiftly update estimates upon receiving new data, it is used in several 

adaptive learning systems (Pelánek, 2016). 

In this study, Elo was implemented using code from Abdi et al. (2019). Two different 

variants of Elo were tested: single-concept and multivariate. In single-concept Elo, models were 

fit on each skill independently, while multivariate Elo included a global proficiency parameter 

for each student. Elo produces its own estimates of student ability, but as with the other 

algorithms, we also used AOA to convert its performance predictions to knowledge estimates. 

Correct First Attempt Rate 

Correct First Attempt Rate (CFAR) is a simple algorithm used by Yu et al. (2010) in the 

2010 KDD Cup. It estimates student knowledge by computing students’ average correctness over 

all problems that they have attempted so far in the given skill, only considering their first 

attempts at each problem. As CFAR is already similar to AOA, we do not average its estimates, 

only taking final values for each student, for each skill. 

Logistic Knowledge Tracing 

Logistic Knowledge Tracing (LKT; Pavlik, Eglington, & Harrell-Williams, 2021) is a 

flexible knowledge tracing framework that uses a variety of features in logistic regression-based 

models to predict student performance. The precise features used are chosen as part of the model 

design process, but they are typically linear or nonlinear functions that vary based on students’ 



prior outcomes or their time spent practicing. Pavlik et al. (2021) describes 25 different features 

which are currently available in the LKT package (Pavlik & Eglington, 2021). 

In this study, a relatively simple LKT model was constructed by one of the authors. The 

model included intercepts for students and items and two features. The first feature, capturing 

learning for the KC, was a logarithmic version of the additive factors model feature, using the 

natural log of the count of prior observation plus one (Chi et al., 2011). The second feature, 

which adapts to performance on the KC, was based on an exponential recency weighted function 

of prior probability correct introduced as a feature in the recent-PFA (rPFA) work of Galyardt 

and Goldin (2015). Our version of this feature used an exponential recency weighted function of 

the prior logit. In this function successes and failures decay as in rPFA model, however, we 

compute log(decayed (success+1)/decayed (failiures+1)) whereas rPFA uses decayed 

successes/decayed (successes +3). This feature was chosen over the rPFA version since it is 

exactly centered on the logit value that would produce the prior performance observed. Other 

than the regression coefficients, the LKT model requires 1 additional non-linear parameter to 

characterize the recency function, which was optimized using LKT’s built in L-BFGS-B search 

for non-linear feature parameters. The model did not produce skill estimates because each 

prediction depends on the item intercept, therefore AOA was used to translate its correctness 

predictions. 

Participants, Data Collection and Algorithm Application 

Data for this study was originally collected for a series of studies on teaching decimal 

concepts with Decimal Point, a digital learning game (Forlizzi et al., 2014; McLaren et al., 

2017). The game is based on an amusement park metaphor, with the player moving between 

twenty-four different mini-games that teach different decimal concepts. The game has a narrative 



in which alien characters have come to Earth and must learn about decimals; the student’s job is 

to “teach” the characters while solving problems within each mini-game. Decimal Point is a 

game comprised of a variety of game features, including fantasy, non-competitive environment, 

and slow pace (Costello & Edmonds, 2007). 

Students from middle schools in the United States were included in the original studies 

(McLaren et al., 2017), which took place across four semesters. Students completed a pretest (not 

used in the current study), played the learning game during their regular math classes for seven 

days, then completed a posttest and a delayed posttest (also not used). The original studies 

compared the game with a non-game control condition, but this study only includes the 500 

students who were assigned to the game condition. During one semester, the original study 

examined the effect of erroneous examples on decimal understanding. 169 students received 

materials with an additional self-explanation subproblem on at least some of the problems; 61 of 

those students received an additional self-explanation subproblem on all problems. 

The Decimal Point materials consisted of 48 game-based problems, each of which 

comprised several subproblems (referred to here as items), for a total of 297 items. For both the 

standard problem-solving and erroneous example conditions, after answering each problem, 

students were asked, via a multiple-choice question, to give advice to a hypothetical student 

solving that problem. The advice was essentially a “self-explanation” of how the problem was 

solved. For the erroneous example condition, before solving each problem, students were 

presented with a hypothetical student’s incorrect attempt, then asked what reasoning error led to 

their mistake.  



All materials and posttests were delivered through the MathTutor learning management 

system (Aleven, McLaren, & Sewall, 2009), which recorded all interactions. More information 

about the game materials is available in McLaren et al. (2017). 

 

Figure 1. Decimal Point Rocket Science mini‐game, asking students to demonstrate the Sorting skill. 

The problems covered five different skills: 

 Addition – add two decimal numbers together, entering the result and any 

applicable carried values. 

 Bucket – compare several decimal numbers to a single criterion number, grouping 

the decimals that are larger or smaller than the criterion into two different buckets. 

 Number Line – place a given decimal number on a number line. 



 Sequence – continue a sequence of three given decimal numbers by entering the 

next two numbers in the sequence. 

 Sorting – select from a group of decimal numbers in either ascending or 

descending order. 

Some skills, such as Addition, ask students to enter multiple values before submitting 

their final answer; a mistake in any entered value resulted in the subproblem being incorrect. In 

this study, we treat each answer submission as a single attempt regardless of the number of 

values entered. 

In addition, the mini-game format allows students to restart problems at will. In this 

study, we only used data from students’ first attempts at subproblems, following standard 

practice in knowledge tracing research. For example, if a student began a problem with four 

subproblems, attempted two subproblems, restarted the problem, then attempted all four, we used 

the first two subproblem attempts from their first try, then the second two subproblem attempts 

from their second try. 

As the advice and self-explanation questions focus more on conceptual understanding of 

the material than the rest of the subproblems, we treated them as distinct skills. This gave, for 

example, Addition, covering students’ attempts to add decimal numbers, and Addition-Q, 

covering conceptual questions before or after addition subproblems. For more information on 

skills in this game, see Nguyen, Wang, Stamper, & McLaren (2019). 

In total, our data set contained 68,033 student attempts at subproblems: 7,724 for Number 

Line, 7,066 for Number Line-Q, 3,767 for Bucket, 4,602 for Bucket-Q, 1,884 for Addition, 2,304 

for Addition-Q, 7,640 for Sorting, 9,331 for Sorting-Q, 20,225 for Sequence, and 3,490 for 

Sequence-Q. The varying number of attempts relates to how the problems were presented in the 



system. For example, Number Line attempts required students to place only one value on a 

number line before receiving feedback. Meanwhile, one Addition attempt required students to fill 

in a separate answer blank for each value in the presented problem. 

After students completed the problems, their understanding was checked with a 37-item 

posttest, testing the five primary skills. The posttest contained 11 questions on Sorting, 8 on 

Addition, 7 on Sequence, 3 on Bucket, and 2 on Number Line, with the remaining 6 questions 

covering material that did not map to these skills. While the posttest did not contain any 

questions that were explicitly conceptual, its questions were more conceptual than the exercises 

and both the directly skill-based and conceptual activities in the game corresponded to the 

posttest. Thus, when making comparisons we averaged the primary skill predictions with the 

accompanying conceptual skill predictions (i.e., we averaged Sequence with Sequence-Q, and so 

on).  

The process of fitting each algorithm, taking its knowledge estimates, and applying AOA 

to translate its correctness predictions to knowledge estimates was broadly similar for all 

algorithms. We used the entire dataset to fit each algorithm; if an algorithm expected multiple 

datasets (e.g., a test set and a training set) the same set was used for each. We did not hold out a 

test set from the game data, because this paper aims to evaluate performance on the (completely 

unseen) post-test given outside the learning system.  

After each algorithm was fit, we collected its correctness predictions, which we processed 

with AOA to produce knowledge estimates. For BKT, CFAR, Elo, IRT, HIRT, and PFA, we also 

collected each skill’s final knowledge estimate for each student. IRT, HIRT, and Elo all output z-

scored final knowledge estimates, which we converted with a logistic transformation to values 

between 0 and 1 to be able to compare RMSE between algorithms. 



Results 

After producing estimates of latent knowledge from each algorithm for each student and 

each skill, we computed squared differences between each algorithm’s estimate of each skill and 

students’ actual score for that skill on the posttest. The Spearman correlations between each 

algorithm’s within-tutor knowledge estimates and students’ posttest performance on each skill 

are shown in Table 1. Table 2 depicts the root mean square error, and Figures 2 through 4 are 

density plots which show selected algorithms’ accuracy in more detail.  

 Addition  Bucket  NumLine  Sequence  Sorting 

BKT  0.17  0.30  0.56  0.26  0.55 

BKT‐AOA  0.38  0.38  0.55  0.35  0.55 

CFAR  0.28  0.40  0.57  0.39  0.56 

DKT‐AOA  0.31  0.39  0.55  0.32  0.55 

DKVMN‐AOA  0.51  0.42  0.59  0.45  0.61 

Elo‐M  0.38  0.39  0.55  0.39  0.56 

Elo‐M‐AOA  0.50  0.44  0.59  0.46  0.60 

Elo‐S  0.25  0.37  0.54  0.36  0.54 

Elo‐S‐AOA  0.31  0.39  0.57  0.39  0.56 

HIRT  0.26  0.38  0.56  0.39  0.55 

HIRT‐AOA  0.28  0.36  0.53  0.39  0.53 

IRT  0.26  0.38  0.56  0.39  0.55 

IRT‐AOA  0.27  0.35  0.53  0.39  0.53 

LKT‐AOA  0.53  0.43  0.61  0.49  0.63 

PFA  0.50  0.45  0.56  0.39  0.58 

PFA‐AOA  0.36  0.40  0.52  0.36  0.52 

Average  0.35  0.39  0.56  0.39  0.56  
Table 1. Spearman correlations between predictions and posttest scores. Higher correlations for each skill are more heavily 
shaded, with the highest for each skill in bold. 

 Addition  Bucket  NumLine  Sequence  Sorting 
BKT  0.34  0.39  0.37  0.41  0.29 
BKT‐AOA  0.29  0.40  0.37  0.31  0.31 
CFAR  0.33  0.40  0.35  0.31  0.30 
DKT‐AOA  0.33  0.38  0.37  0.31  0.29 
DKVMN‐AOA  0.27  0.39  0.36  0.30  0.29 
Elo‐M  0.32  0.45  0.39  0.25  0.34 
Elo‐M‐AOA  0.26  0.39  0.35  0.30  0.29 
Elo‐S  0.35  0.45  0.39  0.27  0.34 
Elo‐S‐AOA  0.30  0.40  0.35  0.31  0.30 
HIRT  0.32  0.44  0.39  0.24  0.34 
HIRT‐AOA  0.29  0.40  0.37  0.31  0.31 



IRT  0.32  0.44  0.39  0.25  0.34 
IRT‐AOA  0.30  0.40  0.37  0.30  0.31 
LKT‐AOA  0.26  0.39  0.35  0.30  0.29 
PFA  0.45  0.43  0.45  0.56  0.35 
PFA‐AOA  0.43  0.38  0.45  0.55  0.35 
Average  0.32  0.41  0.38  0.33  0.31 

Table 2. RMSE values between predictions and posttest scores. Lower values for each skill are more heavily shaded, with the 
lowest for each skill in bold. 

Looking at tables 1 and 2, it is clear that while some algorithms produce estimates that 

are generally closer to the posttest, no algorithm definitively outperforms the others on all skills, 

across both metrics. There were also dramatic differences in performance on different skills. 

Looking at Spearman correlations, all algorithms performed similarly on Number Line and, to a 

lesser extent, on Sorting, both led by LKT-AOA. Addition, with the fewest items, saw many of 

the single-skill algorithms struggle, while algorithms that were able to use data from other skills 

tended to perform better. PFA had the highest Spearman correlation on the Bucket skill, although 

Elo-M-AOA, LKT-AOA, and DKVMN-AOA all had high correlations as well. LKT-AOA, Elo-

M-AOA, and DKVMN-AOA also performed much better than all other algorithms on Sequence. 

LKT-AOA, multivariate Elo AOA, and DKVMN-AOA correlated best with the posttest after 

averaging across all skills. Although AOA did not help in all cases, it appeared to help in more 

cases than it hurt. 

RMSE showed slightly more mixed results, with nine different algorithms leading on at 

least one skill (due to ties between algorithms). PFA struggled across many skills according to 

RMSE; nearly all of its final knowledge estimates were above 0.99 or below 0.01, leading to 

large RMSE values when predicting the posttest. AOA still appeared to lead to better 

performance for most algorithms, leading to lower RMSEs in 70% of cases, but on Sequence, the 

best-performing algorithms were all using their original skill estimates instead of AOA. After 



averaging across skills, LKT-AOA, Elo-M-AOA, and DKVMN-AOA had the lowest RMSE 

values, just as for Spearman. 

 

Figure 2. Density plot of LKT‐AOA on Addition. 

 

Figure 3. Density plot of multivariate Elo and HIRT on Bucket. 



 

Figure 4. Density plot of multivariate Elo‐AOA and HIRT‐AOA on Bucket. 



To offer more detail than simply RMSE values, the density plots in figures 2 through 4 

offer graphical representations of how closely a selection of algorithms were able to predict the 

posttest for each student. Higher peaks at the left of a plot indicates that for that skill, more of 

that algorithm’s predictions were close to students’ actual posttest scores. Rightward tails show 

the predictions which differed greatly from posttest scores. 

Figure 2 depicts the strong performance of LKT-AOA in estimating students’ skill levels 

for the Addition skill. The peak is high and very close to the Y-axis, with a relatively short tail, 

meaning that all estimates were quite close to students’ post-test scores. By contrast, Figure 3 

shows multivariate Elo and HIRT’s poorer estimates on the Bucket skill. The peaks are lower 

and farther from the Y-axis, while the tails are longer and heavier, meaning that more estimates 

were wider of the mark. Note that although these two algorithms’ RMSE differed by only 0.01 

for this skill, their density plots look quite different. HIRT’s peak is farther from the Y-axis, but 

it has a shorter tail: its estimates frequently differ moderately from posttest scores, but they do so 

more consistently and are rarely extremely wrong. These two cases have very different use 

implications when making inferences about students in real-time – a model that is usually 

moderately wrong may be less likely to make badly inappropriate decisions than a model that is 

either spot on or completely inaccurate. Finally, Figure 4 shows estimates from HIRT and 

multivariate Elo after applying AOA, again on the Bucket skill. Averaging opportunities led to 

much more accurate estimates, with fewer estimates that were way off – the peaks of the graph 

are higher, with lighter tails. The peaks are also closer to the Y-axis, particularly for HIRT. 

Statistical Analysis: Difficult to Conduct 

There is a natural desire to conduct statistical comparisons to decide whether one 

algorithm performs statistically significantly better than another algorithm, across skills. 



Unfortunately, the nature of these data makes conventional hypothesis testing very challenging. 

When using squared differences between skill estimates and posttest scores, the resulting values 

violate nearly every assumption of classical MANOVA: they exhibit large amounts of positive 

skew, contain both univariate and multivariate outliers, they are both univariate and multivariate 

non-normal, nonlinear relationships between skills are common, and they have they 

heterogenous between-group variance and covariance. While MANOVA is generally robust to 

some assumption violations, particularly for large sample sizes and balanced designs (Vallejo & 

Ato, 2012), researchers rarely test violations of more than two assumptions simultaneously and 

never test with as many groups as are present here. 

There exist many robust or nonparametric variants of classical MANOVA as well (see 

citations in Finch & French, 2013; Konietschke, Bathke, Harrar & Pauly, 2015), but these 

approaches still have assumptions, related to homogenous variance (e.g., Anderson, 2001) or 

error distributions (e.g., Bathke et al., 2018), which are also violated by these data. Indeed, once 

data differ in so many ways, it may not be appropriate to statistically compare them based on a 

single value (group means or medians). For example, one algorithm may have larger overall root 

mean square error than another algorithm, but may be preferable due to having fewer extremely 

inaccurate predictions, e.g., causing a student to be advanced for having achieved mastery, when 

they are on track to do very poorly on the post-test. Finally, while we could compare skills 

individually, the number of statistical tests performed would lead to non-significant results after 

applying a post-hoc control. For these reasons, we only present descriptive statistics. 

Finding appropriate statistical ways to analyze and compare skill estimates from different 

algorithms will be a significant challenge for future work in this field. While the overwhelming 

majority of work on knowledge tracing focuses on within-system performance prediction, 



measuring and supporting the development of more latent knowledge and skill – knowledge and 

skill that carries out of the learning system – is the goal of most adaptive learning systems. As 

such, it’s important to be able to compare skill estimates and performance at measuring skill 

transferred outside the system, to determine which algorithms are more accurate. Doing so in 

future work requires addressing several challenges, both statistical and theoretical. 

From a statistical perspective, there are a variety of metrics that might be used to evaluate 

model fit (see, e.g., Pelánek, 2015; Schunn & Wallach, 2005). Effenberger and Pelánek (2020) 

discuss how methodological choices – e.g., which performance metrics are used and exactly how 

predictions are combined from cross-validation folds – impact results in knowledge tracing tasks.  

In addition, because nearly all learning systems contain multiple skills, researchers must 

decide how to combine estimates from different skills (see also Effenberger & Pelánek, 2020 for 

a related discussion of combining model fit on easy, intermediate, and difficult exercises and 

Pelánek, 2020, for a broader discussion of skills and domains). The goal of combining multiple 

estimates leads naturally to an approach like MANOVA, but the operation of MANOVA 

combines dependent variables so as to maximize between-group differences. In effect, this 

creates a weighting of skill importance which – as it will differ from study to study – prevents 

the comparison of results from one study to another, even if the same data sets are used. 

Assuming that all skills in a combined comparison should have equal weight is not a 

foolproof solution either. In this study, the algorithms used performed very differently on the 

different skills, with seven of the sixteen variants leading for at least one skill, on at least one 

metric. However, the skills had very different amounts of data available, with Sequence having 

more than ten times the attempts of Addition. Whether these skills should be seen as equally 

important is an open question, and likely depends on the goal of developing the algorithm. 



Finally, as nearly all learning systems cover multiple skills, it is likely not appropriate for 

an algorithm’s strong performance on some skills to offset its poor performance on others – users 

will expect the same level of accuracy throughout the system. When researchers compare 

knowledge estimates across multiple skills, then, it is important to show a full picture of the 

comparison being conducted. In addition to whatever final statistic is presented, means, 

minimums, and standard deviations should be reported across skills for whichever metrics are 

chosen. This will illustrate algorithms’ consistency and will help make algorithms’ outputs more 

understandable (see related discussion in Webb et al., 2021). 

Discussion and Conclusion 

This study demonstrates that a range of modern knowledge tracing algorithms can 

produce good out-of-system knowledge predictions on predefined skills, in a game context. 

While the algorithms used in this study rarely achieved posttest correlations as high as in past 

work studying these algorithms within an intelligent tutor (Scruggs et al., 2020), the correlations 

here were generated with fewer problem attempts from each skill. This study did not show the 

same dramatic benefits for AOA as that prior work, but AOA still enabled LKT and DKVMN to 

generate excellent estimates for our predefined skills. AOA also appeared to improve 

performance both single- and multiple-concept Elo and BKT, if slightly, but had little impact on 

the quality of the predictions made by IRT or HIRT with this data set and actually led to PFA 

having worse Spearman correlations with the posttest.  

Although the results varied notably among the five skills, three of the sixteen algorithms 

or variants tested, LKT-AOA, DKVMN-AOA, and multivariate Elo-AOA, outperformed the 

average performance of all algorithms on every skill on both Spearman correlation coefficients 

and RMSE. LKT-AOA performed particularly well, leading the field five times. 



Somewhat surprisingly, algorithms that generated their own skill estimates tended to 

underperform. BKT never outperformed the average Spearman correlation and only beat the 

average RMSE twice. IRT, HIRT, standard Elo, and multivariate Elo combined only 

outperformed the average in two cases for Spearman and in four cases for RMSE, all on 

Sequence. However, applying AOA to multivariate Elo’s correctness predictions yielded 

knowledge estimates that outperformed the average across both metrics on every skill. This 

suggests that algorithms’ knowledge estimates and performance predictions should be evaluated 

separately – an algorithm that produces good performance predictions may produce poor 

knowledge estimates and vice versa. If this finding is replicated, it could have significant impacts 

on algorithm choices in adaptive learning systems where it is important to both predict 

performance and estimate knowledge. 

Our study also leads to conclusions about the individual algorithms studied. BKT 

performed poorly on Sequence, the skill with the most items. This somewhat echoes its 

lackluster showing in past papers involving both post-test prediction (i.e., Pardos et al., 2011; 

Scruggs et al., 2020) and within-system performance prediction (Gervet et al., 2020). Scruggs 

and colleagues (2020) theorized that BKT performed poorly in that paper due to overpracticing 

leading to inflated final knowledge estimates, but only 5% of Sequence estimates in this study 

were at or above 0.95. In fact, BKT produced more final estimates above 0.95 on the other skills, 

where it did better. BKT’s interpretable structure makes it useful for a range of discovery with 

models analyses (Beck et al., 2008; Baker et al., 2010, 2018), but it generally underperforms at 

actual performance prediction, whether in-system or externally.  

Like BKT, PFA may have done poorly because it has a similarly independent variable 

structure, with estimates of learning focused on KCs and ignoring item level differences. The 



success of the model created in LKT is likely in part due to using an intercept to characterize 

item difficulty. This intercept controls for the difficulty of items during the process of model 

fitting, allowing better capture of skill-based variability. This results in a better-fitting model due 

to the fine control provided by the item difficulties, which capture substantial variance. Using the 

log of the opportunities was also likely important to capture decelerating learning.  

IRT and HIRT never achieved both a good Spearman correlation and a good RMSE on 

any skill, although they did achieve acceptable values on one of these metrics for some skills. 

HIRT never performed notably better than IRT, suggesting that our mini-games may not be as 

different as the templates used in Wilson et al. (2016). Other than multivariate Elo, which used 

data from other skills, the IRT variants also struggled on Addition; they may need more data to 

produce good predictions.  

Unlike in (Scruggs et al., 2020), the two deep learning algorithms used were never top 

performers with this game-based data set. While DKVMN performed quite well overall, it only 

tied for lowest RMSE once and never achieved a top Spearman value. DKT did worse; although 

it tied for the lowest RMSE twice, its Spearman values were lackluster. This relative 

underperformance may be explained by the findings of Gervet et al. (2020), who find that DKT 

performs better on larger datasets. Although our data set was not appreciably smaller than 

Scruggs et al. (2020), with approximately 68,000 attempts vs 70,500, this data set contained one 

additional skill and thus had fewer attempts per skill, with many attempts belonging to the 

Sequence skill. 

Recent work in knowledge tracing has focused on algorithms’ ability to predict 

performance in large datasets from intelligent tutors. However, many students currently learn in 

game-based systems that are more engaging than traditional tutors. Showing that knowledge 



tracing algorithms generate accurate estimates of students’ knowledge from game data would 

support the use of such games as educational tools and make it easier to design stealth 

assessments in games. This study provides evidence for one game, but more research is needed 

to validate these results across different types and quality of games. 

Although modern knowledge tracing algorithms can fit datasets very well, accurately 

predicting problem correctness, few of these algorithms have achieved widespread use in 

learning systems, in part because they do not provide useful information for teachers. The AOA 

extension makes it possible to map these systems’ estimates of next-problem correctness back to 

more interpretable and usable latent skill estimates. In this paper we investigate the quality of 

these estimates, grounding our analysis in a post-test of interpretable skills given outside the 

learning system and describe some of the methodological and theoretical challenges to 

conducting comparisons of knowledge estimates. We hope that future researchers will continue 

looking beyond problem correctness and will consider these issues when comparing knowledge 

estimates. As adaptive learning systems begin adopting more advanced contemporary 

algorithms, we need to determine which applications each algorithm is best for, and what their 

full profile of strengths and weaknesses are. 
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