
Efficient Privilege De-Escalation for Ad Libraries in Mobile
Apps

Bin Liu∗, Bin Liu†, Hongxia Jin∗, Ramesh Govindan‡
∗Samsung Research America, Mountain View, CA

†School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
‡Department of Computer Science, University of Southern California, Los Angeles, CA

{bin2.liu, hongxia.jin}@samsung.com bliu1@cs.cmu.edu ramesh@usc.edu

ABSTRACT
The proliferation of mobile apps is due in part to the advertising
ecosystem which enables developers to earn revenue while provid-
ing free apps. Ad-supported apps can be developed rapidly with the
availability of ad libraries. However, today’s ad libraries essentially
have access to the same resources as the parent app, and this has
caused significant privacy concerns. In this paper, we explore ef-
ficient methods to de-escalate privileges for ad libraries where the
resource access privileges for ad libraries can be different from that
of the app logic. Our system, PEDAL, contains a novel machine clas-
sifier for detecting ad libraries even in the presence of obfuscated
code, and techniques for automatically instrumenting bytecode to
effect privilege de-escalation even in the presence of privilege inher-
itance. We evaluate PEDAL on a large set of apps from the Google
Play store and demonstrate that it has a 98% accuracy in detecting
ad libraries and imposes less than 1% runtime overhead on apps.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures—Modules, packages; K.4.1 [Computers and Society]: Pub-
lic Policy Issues—Privacy

General Terms
Design, Experimentation, Languages, Measurement, Security

Keywords
Previlege De-Escalation; Ad Libraries; Mobile Apps; Static Analy-
sis; App Instrumentation

1. INTRODUCTION
Mobile device usage has reached astronomical levels in recent

years. According to a recent report from Gartner Forecasts [12],
Android device shipments alone are predicted to hit 1.17 billion by
the end of 2014. Much of this growth has been fueled by two factors:
the ease of app development, and the availability of free apps.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Copyright c© 2015 ACM 978-1-4503-3494-5/15/05 ...$15.00.
http://dx.doi.org/10.1145/2742647.2742668.

The ease of app development has been enabled in part by system
support for component-oriented development [10], in which app de-
velopers can easily integrate libraries (sometimes from third-parties)
as components of their app. In the Android ecosystem, libraries are
used for various purposes. Social SDKs, like Facebook, Twitter4j
and WeChat, allow developers to integrate popular social elements
to their apps. Development tools, such as ActionbarSherlock, Holo-
Everywhere and GeocoderPlus, provide developers with feature-rich
and relatively well-maintained plugins for enhancing, say the utility,
UI, and image processing capabilities of their apps.

The availability of free apps has been enabled by an ad ecosystem
in which app publishers incorporate ad delivery software in their
apps. This software is provided by ad networks who contract with
advertisers to deliver ads to end users. App developers are paid by
ad networks either by the number of times ads are seen by users, or
the number of times they are clicked, or some combination thereof.
More than 83% of apps [11] in Google Play are free and developers
of free apps mostly rely on advertising for revenue [58].

To facilitate ad delivery, ad networks provide ad libraries to app
developers. Ad libraries, like AdMob, InMobi and Vungle, offer
developers solutions for monetizing their apps by showing ads to app
users. To show ads in their apps, developers need to bundle ad SDKs
in their app code to display ads to users through corresponding ad
widgets. These ad widgets can communicate with their ad networks
to fetch and show proper ads, according to apps’ context or users’
information, such as location.

In this ecosystem, incentives are skewed against the user. De-
velopers have the incentive to deliver the most relevant apps to
maximize their revenue, as do ad networks. This results in ad li-
braries taking unwarranted liberties with personal data on devices
in order to more efficiently target ads. As a result, although users
seem to understand the privacy risks with using mobile apps in gen-
eral [19], they are especially concerned about privacy risks posed
by ad libraries [54]. An extensive user study [43] points out that
“mobile advertising services were a consistent privacy concern for
the most participants” and users “felt the least comfortable when
private resources were used for advertising.” In another previous
study [41] on location privacy of mobile advertising, users stated
that they would “feel more comfortable” with advanced privacy
controls than “with a simple opt-in/out-out mechanism”.

One approach to this problem is to selectively de-escalate privi-
leges to each component of an app. In this way, an ad library can
have fewer privileges than the app logic itself. The Android ac-
cess control model, which governs access to sensitive data such as
location, identifiers, and contacts, and which has not evolved signifi-
cantly over many releases, is also too coarse-grained to permit such
privilege de-escalation. The current access control model allows
users to specify permissions at app install time, and these permis-

89

MobiSys’15, May 18–22, 2015, Florence, Italy.

sions apply to all components of the app. In response to this, there
is a large literature that has explored finer-grained access control
methods (Section 8). In general, these methods are effective but
require significant changes to the underlying OS, or, when they do
not require such changes, can sometimes be ineffective in enforcing
access to sensitive data. Moreover, simple solutions that deny privi-
leges to ad libraries that are not needed by the app logic are likely
to be ineffective: our measurements show that in a majority of apps
in a large corpus of over 60,000 apps, the permissions requested
by the ad are a subset of the permissions needed by the app logic
(Section 5).

In this paper, we propose a pragmatic approach to selective privi-
lege de-escalation for ad libraries. In our approach, a user can allow
the app logic access to location and the contacts database, but, if
she chooses, deny these privileges to the ad library. Our system,
called PEDAL, has several desirable properties: it does not require
OS or VM modifications, is resistant to obfuscated code, prevents
privileges inherited by the ad library from app code, and is highly
efficient.

The design of PEDAL poses two challenges: how to identify ad
library code in an app, and how to effect selective privilege de-
escalation.

The first challenge is non-trivial because, in a compiled binary,
there is no annotation that preserves the separation between bytecode
from app logic and bytecode from an ad library. More important,
library bytecode can often be obfuscated to prevent reverse engineer-
ing. In this paper, PEDAL surmounts these challenges by observing
that, even in the presence of obfuscation, ad libraries have several
features that can be used to identify them. These features arise from
the functionality of ad libraries (ad delivery) and from their modu-
larity (they have to expose well-defined interfaces to apps). Based
on this observation, PEDAL includes a highly effective, obfuscation-
resistant, machine classifier that can separate ad library from app
logic code (Section 4).

Effecting privilege de-escalation is non-trivial also, since a prag-
matic solution must not require changes to the OS or the VM, or
must not require rooting1 a phone, since these can adversely affect
deployability. Moreover, any solution must be highly efficient; sig-
nificant slowdowns in app execution time can affect usability. Most
importantly, in a substantial fraction (25%, Section 6) of apps, ad
libraries inherit privileges from the app logic — they access sensi-
tive resources like location etc. by invoking callbacks to app code.
Any solution for privilege de-escalation must prevent this kind of
privilege inheritance. PEDAL uses efficient binary rewriting and
information flow analysis to overcome these challenges (Section 4).

Figure 1 and Figure 2 show two examples of PEDAL in action. The
first example shows how a user can, in the AccuWeather app, disable
Internet access permissions for ad libraries but keep it enabled for
this app’s main logic. Figure 1 shows that while the app can still
function (can download breaking news), the ad space is empty
because the ad library cannot download ads. In the second example,
in the AroundMe app, the ad library inherits location privileges
from the app logic. In this case, the user can choose to use PEDAL’s
controller app, which allows users to specify de-escalation policies
(see Figure 8 for details), to feed obscured location data. In the
example shown, PEDAL feeds the correct location (San Jose) to the
app, but feeds Sunnyvale (a city close to San Jose) to the ad library.
Figure 2(b) shows the result: while the app lists hotels near the
real location, the ad library recommends hotels around the obscured
location.

1http://betanews.com/2013/10/01/5-reasons-not-to-root-android/

(a) Normal version (b) Controlled version

Figure 1: Disable Internet access for ad libraries.

(a) Normal version (b) Controlled version

Figure 2: Return obscured location for ad libraries.

PEDAL can be used both by end-users and app markets. Individual
Android users may use this system to enable self-defined resource
access control for ad libraries of apps on their phones. App markets
may also apply PEDAL to enforce their policies on ad libraries. For
example, an app market may provide plausible-obscured-location
options to users to enjoy apps with obscured but plausible location
targeted ads. For example, instead of feeding accurate location,
say San Jose, to ad libraries, PEDAL may still feed plausible nearby
locations, such as Santa Clara or Sunnyvale to them to require useful
ads. In this scenario, the ad widgets cannot collect accurate location
information but the ads can still be relevant to the user’s current
location.

As an aside, there is a fundamental difference between PEDAL and
existing ad blockers such as AdBlock Plus [14]: Ad blockers attempt
to completely prevent ad delivery, while PEDAL allows the option

90

of only blocking access of certain resource types to ad modules but
still allowing ads to be delivered. In addition, ad blockers usually
require rooted phones to enable full functionality while PEDAL does
not.

Overall, this paper makes four contributions:
• The design and implementation of a system, PEDAL, for se-

lective privilege de-escalation for ad libraries.
• An efficient, accurate, automatic and obfuscation-resistant

method for identifying ad libraries embedded in app bina-
ries. Our method uses a machine classifier based on features
extracted using static analysis of bytecode.

• An efficient and flexible privilege de-escalation method that
prevents privilege inheritance. This method uses binary rewrit-
ing, so does not require changing the Android OS or rooting
the phone.

• Extensive experiments on a large set of real apps to show
that PEDAL is both effective and efficient. Our prototype of
PEDAL has 98.9% precision and 97.7% recall on identifying
ad libraries and requires only 0.57 seconds per app for iden-
tification and rewriting. Apps incur less than 1% additional
running time and can very effectively de-escalate privileges
for ad libraries.

The rest of the paper is organized as follows: Section 2 provides
background and motivates the design of PEDAL. Sections 3 and
4 discuss the architecture, and the design and implementation of
PEDAL. Sections 5 and 6 evaluate the efficacy of ad library iden-
tification, and of privilege de-escalation, respectively. Section 7
discusses PEDAL usage scenarios and future refinements. Related
work is described in Section 8, and the paper is summarized in
Section 9.

2. BACKGROUND AND MOTIVATION
Before describing PEDAL, we provide some background on app

execution, code obfuscation, and the app privilege model in Android.

2.1 Background
Libraries in Android. Android apps are written in a dialect of Java,
and compiled down into a bytecode that is executed by the Dalvik
Virtual Machine (DVM). Apps may include library code either for
special purpose uses (such as image or video processing), or for
analytics or ad delivery. In this paper, we focus on libraries for ad
delivery: some apps can include more than one such library.

AroundMe.java
ScootClaim.java

…...

AdMob.jar
MoPub.jar

…...

Refer to

Main Application

Source Code

Compiling

bytecode

Figure 3: Source code to bytecode.

When developing an Android app, the developer sees clear bound-
aries between the app’s source code and every other library. For
example, as shown in Figure 3, the developers of the AroundMe

app maintain their own source code. The app source also includes
multiple libraries2 provided by various third parties. However, when
this app source is compiled to bytecode, the boundaries between
the developers’ code and libraries become unclear: compilation
does not preserve all syntactic distinctions. Thus, it is sometime
difficult to tell whether two classes belong to the app code or belong
the a same library. One syntactic distinction that is preserved after
compilation is the folder path for each class file. The folder path
uniquely names a class file in a hierarchical namespace, and often,
the upper levels of the hierarchy name the library that the class file
belongs to.
Obfuscation. To prevent reverse engineering of source code from
bytecode, app developers and library developers sometimes obfus-
cate the bytecode in two ways: at the package level and at the
code-level. Package level obfuscation is motivated by prior work
that has used folder path names to statically analyze app binaries to
characterize potential risks [35], compute permission usage statis-
tics [56], understand longitudinal code changes [26], extract usage
patterns [57], and characterize apps [58] and so on. All of these
pieces of work perform these analyses by matching bytecode paths
against a manually-maintained blacklist of ad library names. For ex-
ample, a path /com/millennialmedia/android indicates
the presence of the ad library “Millennial Media”. To foil this de-
tection, some ad libraries, like AirPush, LeadBolt and AdsMogo,
perform package name obfuscation and generate random package
names for different developers.

Source code level obfuscation renames classes, methods and fields
to semantically obscure names to prevent from reverse engineering
the source code. Figure 4 shows a simple example of using package
name obfuscation and source code obfuscation. Clearly, source code
level obfuscation makes it harder to reverse engineer the original
source from bytecode.

A nontrivial fraction of Android apps contain obfuscated code.
We manually examined 200 randomly chosen apps from a corpus
of about 60,000 (Section 5), and found that 107 of them contained
ad libraries with source-code level obfuscation, and 37 of them
obfuscated app code.
The Android Permissions Model. The Android permissions model
governs app access to resources. A resource is an abstraction for
data generated either by a hardware device (GPS or camera), data
unique to a device (phone number, device ID, MAC address), or
data generated by users and generally considered private (contact
information). The Android permissions model requires an app
developer 1) to notify users of which resources are required for the
app, and 2) to explicitly ask the user’s permission, at app install
time, for access to these resources. Once the app is installed, the app
and all its included libraries are granted access to these resources as
long as the app is installed on the phone.

This model is at once too permissive and too coarse-grained, and
there have been many examples of instances where permissions
have been misused to breach privacy, often by ad libraries [26,
35, 55]. In response to this, recent versions of Android include a
hidden permission manager called “App Ops” [1] that allows users
to manage app permissions after installation. Moreover, several
pieces of research have proposed finer-grained and restrictive access
control for resources; we cover these in Section 8.

2Not included in this example are native libraries [6] that are written
in native-code languages such as C/C++. The purpose of introducing
native libraries is mainly for reusing existing code libraries written
in C/C++. We discuss native libraries later.

91

D:\papers\mobisys 2015_seacat\pics\new 2.java Tuesday, March 24, 2015 9:55 AM

package com.somecompany.ads.sdk
public class AdRequest {

private final int requestId;
private final String requestMessage;

public AdRequest(int id,
String message) {

requestId = id;
requestMessage = message;

}
public int getId() {

return requestId;
}
public String getMessage() {

return message;
}

}

package com.ylzr.btpl187440
public class a {

private final int a;
private final String b;

public a(int paramInt,
String paramString) {

this.a = paramInt;
this.b = paramString;

}
public int a() {

return this.a;
}
public String b() {

return this.b;
}

}

-3-

(a) Source code

D:\papers\mobisys 2015_seacat\pics\new 2.java Tuesday, March 24, 2015 9:55 AM

package com.somecompany.ads.sdk
public class AdRequest {

private final int requestId;
private final String requestMessage;

public AdRequest(int id,
String message) {

requestId = id;
requestMessage = message;

}
public int getId() {

return requestId;
}
public String getMessage() {

return message;
}

}

package com.ylzr.btpl187440
public class a {

private final int a;
private final String b;

public a(int paramInt,
String paramString) {

this.a = paramInt;
this.b = paramString;

}
public int a() {

return this.a;
}
public String b() {

return this.b;
}

}

-3-

(b) Obfuscated code

Figure 4: Perform package name obfuscation and source code obfuscation on the source code

2.2 Privilege De-Escalation
Motivated by the shortcomings of the current permission model,

we focus on a specific problem: how to selectively de-escalate the
privileges given to ad libraries? In other words, even though a user
may grant an app permissions to several resources, we would like
to restrict access by ad libraries to some of these resources. Our
position is that ad libraries may, in general need a different set of
resources than the apps they are included in, so users should be able
to selectively control privileges for these libraries separately from
the main app logic.

Why focus on ad libraries? In Figure 5(a), a measurement of more
than 60,000 apps shows that nearly 57% of apps use ad libraries.
This indicates the magnitude of the problem: more than 1 of every 2
apps may be susceptible to privacy leakage. Furthermore, in roughly
half of the ad-included apps, the ad libraries requested permission
for a resource that was not required by the app logic itself!

App Logic

App

Ad Library

OS

Location Manager

getLocationgetLocation

setLocation

Figure 6: Two ways of resource access. Taking Location as an
example, ad libraries can directly get the location information by
calling system calls, or provide interfaces for the app logic to transfer
the location information to it.

There are several ways in which to address this problem, but we
consider a part of the design space that has not been explored before.
We focus on a solution that has the following properties:
• It permits users to selectively de-escalate the privileges asso-

ciated with ad libraries, without affecting privileges granted
to other libraries or to the app itself.

• It is obfuscation-resistant: it has a high likelihood of success
even in the presence of source-code obfuscation. This is

motivated by the finding above that non-trivial amounts of
obfuscation exist in today’s apps.

• It must not require changes to the operating system or the
API, or require special forms of modification (like rooting the
phone). These assumptions enhance the deployability of the
solution.

• It must be efficient and only minimally impact the execution
time of the app.

• Finally, it must guard against privilege inheritance by ad
libraries. In many apps, ad libraries, rather than access re-
sources directly, invoke methods in the app logic that provide
access to resources (Figure 6). Effectively, ad libraries in-
herit privileges granted to the app itself, and any privilege
de-escalation must prevent this. In our corpus of 60,000 apps,
we have found substantial numbers of apps that inherit access
to location, the phone ID, and, to a lesser extent, the contact
information and the account profile, as shown in Figure 5(b).

3. EFFICIENT PRIVILEGE DE-ESCALATION
In this paper, we describe the design and evaluation of a system

for efficient privilege de-escalation. The system, named PEDAL,
contains two parts: a Separator and a Rewriter (Figure 7). The
input to PEDAL is a packaged app, and the output is a repacked app
with de-escalated privileges for any (obfuscated) ad libraries in the
app. In this section, we describe the overall architecture of PEDAL,
leaving the detailed design and implementation to the next section.

The input app is first unpacked and transformed to Java bytecode,
then sent to the Separator for feature extraction and classification.
Feature extraction and classification is designed to separate the
bytecodes to two different sets. The Separator scans and collects
statistics on bytecodes3 to generate feature vectors. Those feature
vectors are input to a classifier which outputs two bytecode sets: the
ad library set and the app logic set.

The Rewriter then performs binary rewriting on the bytecode
sets. Specifically, the goal of the Rewriter is to interpose on 1)
direct access to resources from both sets, and 2) calls from the app
logic code to the ad library set that accesses resources (to prevent
privilege inheritance, Section 2). Rewriter maintains a list denoting

3Note that we do not consider native code when performing classifi-
cation because the usage of native code in ad libraries is minimal.
(Section 6).

92

43%

27%

31%

All permissions used by ad libraries are needed by apps' main logic
Ad libraries have at least one permission unused by apps' main logic
Apps that do not use ad libraries

(a) Classify apps by ad libraries and permissions
Location Contacts PhoneId Account/Profile

0

2000

4000

6000

8000

10000

12000

14000

N
um

be
r o

f a
pp

s

Apps in which ad libraries only directly access resources
Apps in which ad libraries have indirect resource access behaviors

(b) Direct and indirect resource access of ad libraries

Figure 5: A measurement of 63,105 apps

Figure 7: System Architecture

what private resources to control, such as Internet, location, contacts,
phone ID and so on, takes both bytecode folder sets as inputs, and
outputs the controllable versions (with respect to the resource types
to control) of the two sets. As we describe later, the Rewriter does
not attempt to interpose on all functions that lead to resource access,
but 1) identifies a small set of core resource access functions and
rewrites these functions which are used for directly accessing the
concerned private resources, and 2) uses information flow analysis
techniques to identify and rewrite another small set of functions
which are used for ad libraries to indirectly access resources. The
two rewritten bytecode sets, with other necessary files, are then
repackaged back to a new app.

Finally, PEDAL contains a Controller app (Figure 7) for users to
specify de-escalation policies for ad libraries.

This design achieves the requirements listed in Section 2 as
follows. Classification and binary-rewriting achieve selective de-
escalation on ad libraries. As we show later (and this is a major con-
tribution of our work), the Separator is obfuscation-resistant. By us-
ing binary rewriting, our approach does not require OS level changes,
and also achieves significant efficiency. Finally, the Rewriter, by an-
alyzing information flow across bytecode sets, can prevent privilege
inheritance.

4. PEDAL DESIGN AND IMPLEMENTATION
In this section, we present the detailed design and implementation

of PEDAL.

4.1 The Separator
The goal of the Separator is to identify potentially obfuscated ad

libraries packaged within an app. Before we explain the Separator,
we observe that Java class files are usually named hierarchically.
This naming hierarchy enables unique names for classes, permit-
ting flexible inclusion of software from different sources into an
application. Each bytecode corresponding to each Java class is then
conceptually in a “folder” whose path name specifies the part of the
hierarchy that class name is in. For example, the folder whose path
is /com/millennialmedia/android would contain the ad
library distributed by Millenial Media.

At a high-level, Separator marks each bytecode within an app as
belonging to an ad library or not (i.e., it separates bytecodes, hence
the name). Specifically, Separator identifies one or more folders that
contain ad libraries. Folders can be nested, so a folder marked as
containing an ad library implies that all bytecodes in subfolders are
also part of the ad library.

As an aside, since Separator identifies ad libraries at the gran-
ularity of a folder, a potential approach to foil the Separator is to
inter-mingle app logic and library code within a single folder. In
practice, this is hard to do: the hierarchical class namespace, such as
/com/google/android/gms/ads, /com/mopub/mobileads, /com/mobfox,
/com/airpush/android, /com/mobclix/android/sdk, /com/applovin,
and so on, is designed to enable separable development of code by
different vendors, so that the folder hierarchy is used to distinguish
code from different vendors. In this way, a developer can easily

93

incorporate class files from different vendors. Even within a given
vendor, hierarchical naming is used to ensure modularity: for exam-
ple, Google uses different hierarchical names for its analytics library
and its ad library. Finally, we emphasize that while Separator relies
on class hierarchies, it is robust to folder path name obfuscation, as
described below.

The key idea behind Separator is to use a binary machine classifier
trained to identify ad libraries, even in the presence of obfuscation.
The classifier accepts a feature vector of a bytecode folder (described
below) and predicts whether the folder belongs to an ad library. We
have manually extracted labeled training data from several hundred
ad libraries and apps to train the classifier, and the details are pre-
sented in Section 5. The main challenge in our work is selecting
features for the classifier that would enable accurate classification
in the presence of obfuscation.
Bytecode Extraction. Our approach does not require source code;
rather it extracts semantic features from bytecode. For this, we
convert Dalvik bytecode to Java bytecode using well known tech-
niques [36], then perform feature extraction on the Java bytecode.
Feature Extraction. The most important aspect of Separator design
is to choose the set of features that ensure high classification accu-
racy. The features need to be: 1) effective and accurate, correctly
separating ad libraries from apps; 2) easy and fast, requiring few
complex operations to calculate; 3) general enough to support a
variety of ad libraries from different vendors; and 4) robust enough
to support both obfuscated and non-obfuscated ad libraries. After
examining and analyzing the bytecodes of popular ad library SDKs,
we chose 128 features that meet the above goals and are informative
to ad library classification. These features can be categorized into
the following groups.
Usage of Android basic components: These are binary features of
whether a bytecode folder contains the usage of Android basic com-
ponents4: activity, service, content provider and broadcast receiver.
Compared to other software libraries, ad libraries are usually imple-
mented as an independent module. For example, they may contain
activities for displaying ads, may hold background services for peri-
odically requesting ads, may use content providers for storing and
retrieving informational data, and may register broadcast receivers
for better reacting to system events (e.g., disabled screen or low
battery).
Usage of selective Android permissions: These are binary fea-
tures of whether a bytecode folder uses the following Android
permissions: INT ERNET , ACCES S _NETWORK_S T AT E/_WIFI_S T AT E,
ACCES S _FINE/_COARS E_LOCAT ION, and WRIT E_EXT ERNAL_S TORAGE.
These permissions are most likely to be used by ad libraries (they
may, of course, be used by the app logic or by other components,
so permissions usage is only one of the many features we con-
sider). INT ERNET is necessary for communicating with ad networks.
NETWORK_S T AT E and WIFI_S T AT E are for checking the availabil-
ity and status of network connections. LOCAT ION is for better ad
targeting, and WRIT E_EXT ERNAL_S TORAGE, which implicitly allows
READ_EXT ERNAL_S TORAGE, is for saving and serving cached ads
when the device is offline.

To determine this feature vector, we first extract API calls and
content provider URIs from the bytecode, then map that information
to permissions using PScout [21]. Note that we have also tried
taking all Android permissions and treated each one as an individual

4We refer interested readers to [5] for more Android application
fundamentals.

feature. However, in practice, this causes model overfitting and
degrades the classifier performance.
Usage of visual elements: These are binary features of whether
a bytecode folder has implemented instances of visual elements.
Ad libraries provide user interfaces (UI) for showing ads. For
example, interstitial ads prefer to implement their own activities
for displaying full-screen ads, and banner ads usually extend web-
view or imageview to show ads inside small rectangles. Features
in this group check whether there are customized classes that are
derived from the commonly used UI widgets, such as activity, we-
bview and videoview. We identified 12 classes from android.app,
android.widget or android.webkit that can be used for implement-
ing ad UI components.
Usage of information sources and sinks: Information sources refer
to system calls that read non-constant information from a shared
resource, and information sinks refer to system calls that write a
piece of information to a shared resource [51]. Ad libraries prefer
certain types of information. For example, they often use account
and phone state information to uniquely identify user devices. We
extract features in this group by using SuSi [51], a machine-learning
approach to classify Android system calls to 12 information source
categories and 15 information sink categories. These source and sink
categories form 27 features. Each binary feature indicates whether
any API call belonging to a category is observed in a bytecode
folder.
Usage of APIs for runtime permission check: One interesting ob-
servation, which was first pointed out in [56], is that sometimes
ad libraries may try to dynamically check certain permissions and
take advantage of these permissions if they are available to apps.
This check can be performed through a cluster of API calls like
android.content.Context.check*Permission (where “*” denotes a
collection of API call names such as “checkCallingOrSelfPermis-
sion”). Thus, one feature is added to indicate whether a bytecode
folder has called any functions for runtime permissions checks.
Keyword matching for class, method and field names: In practice,
we have found that the combination of these features accurately
recognizes most ad libraries. However, these features can some-
times wrongly classify social-network or e-business plugins into ad
libraries, such as Facebook or Amazon. These plugins have very
similar behaviors as ad libraries and do, indeed, have many of these
features. Therefore, the added binary features in this group show, in
a bytecode folder, whether the names of classes, methods or fields
contain specific keywords that are often used in ad libraries but
rarely used in social-network and e-business plugins, such as “ads,”
“adsdk,” “interstitial,” “campaign,” “impression,” “mraid (Mobile
Rich Media Ad Interface Definitions),” and so on. We use a dic-
tionary of 26 such keywords, and 78 (26×3) features for keywords
defined for classes, methods and fields, respectively.
Obfuscation-Resistance. The features we have chosen for classi-
fication are robust to code obfuscation. First, code obfuscation is
used to protect developer code from reverse engineering, and it does
not obscure API calls, content provider URI or class names of the
Android system. For example, ProGuard [15], an official Android
obfuscation tool, explicitly confirms this in its manual. Obviously,
except for the last group of features (keyword matches), all the
features are only related to Android system entities and will not be
affected by code obfuscation. Second, code obfuscation can foil key-
word matching by obscuring most names in an ad library; however,
it still needs to preserve some interface names so that can be easily
understood by developers and simplify integration with applications.
For instance, Chartboost [9], a popular ad library that uses obfusca-
tion, still preserves some methods and classes with explicit and in-

94

formative names, such as showInterstitial, requestMorePromotion
and ImpressionActivity, for ease of integration. Thus, in most cases,
we can still capture features for the last feature group even with an
obfuscated ad library. Actually, as shown in the evaluation, even
without keyword matching features, the classifier can still make
reasonable decisions based on other feature groups.

Finally, our features will not be affected by package name obfus-
cation because the Separator does not rely on the path or package
name or components thereof, only on the class hierarchy itself. For
example, if /com/millenialmedia/android is obfuscated
to /a/b/e, Separator’s features do not change and it will be able
to identify all bytecodes in folder /a/b/e as belonging to an ad
library. Path name obfuscation makes it harder to associate the ad
library with its developer, but that association is not necessary for
PEDAL’s functionality.
An Optimization. Each Android app has a main bytecode package
that usually carries the implementation of the most important part
of the app logic. The name of the bytecode folder that contains
this is globally unique across an app store, and is defined in the
app’s manifest. Instead of attempting to classify this main bytecode
package, we directly mark this folder as not being an ad library.
This optimization has two advantages: 1) it can prevent the potential
influence of wrongly classifying this major functional folder as an
ad library; and 2) it can speed up the total classification time by
skipping feature vector generation for these folders – classification
time matters because it can impact how quickly an app store can
process a batch of apps.
Augmenting Separator with call-graph information. The classi-
fier itself focuses on finding the key functional components of ad
libraries such as components for fetching/displaying ads or sending
user data to ad networks, so it may miss some auxiliary libraries
referenced by the key functional components. These libraries are
still logically part of the ad library, but may not contain any of the
signatures of these libraries. We applied call-graph information to
attempt to ascertain these auxiliary libraries. However, as we show
in Section 5, doing this incurred significant cost without additional
benefit: intuitively, if these auxiliary libraries do not have signatures
similar to ad libraries and perform some auxiliary function (e.g.,
parsing JSON objects), it is probably not necessary to instrument
them to perform privilege de-escalation. So our PEDAL prototype
does not use this technique.

4.2 The Rewriter
The output of the Separator is input to the Rewriter, which ef-

fects efficient privilege de-escalation by binary re-writing based on
user-specified privacy policies. We begin by first describing user-
specified policies permitted in PEDAL, then describe the Rewriter
design.
User-Specified Policies. In PEDAL, users specify policies using a
Controller app (Figure 8). This controller app is accessed through a
unique URI, and a special provider permission is set up to prevent
unauthorized apps from accessing it. This provider permission is
granted to every rewritten app by adding a permission claim entry
to their AndroidManifest.xml files using the AXML library [8]. At
runtime, a rewritten app can access the content provider by using
queryController (details are explained below), to read the user’s
configuration and effect user-specified policies. Conceptually, each
policy entry is a quadruple:

(AppName, ResourceType, ComponentType, Policy)
where AppName is an app’s identifier, ResourceType is one of
the five resources listed in Table 1, ComponentType takes the val-
ues {AD, APP}, and dictates whether the policy is specified for

D:\papers\mobisys 2015_seacat\pics\new 2.java Tuesday, March 24, 2015 9:57 AM

// the original function is:
// Location LocationManager.getLastKnownLocation(
// String provider)
public static Location PEDAL.getLastKnownLocation(

LocationManager manager, String provider) {
Policy currentPolicy = queryController("AccuWeather",

"Location", "AD");
if (currentPolicy == Policy.BLOCK) {

return null;
}
else if (currentPolicy == Policy.OBSCURE) {

Location obscuredLocation = new Location(provider);
// set obscuredLocation to Sunnyvale
obscuredLocation.setLatitude(37.369);
obscuredLocation.setLongitude(-122.036);
return obscuredLocation

}
// queryController returns Policy.ALLOW
return manager.getLastKnownLocation(provider);

}

private static Policy PEDAL.queryController(appName,
resourceType, componentType) {

// query user's configuration
// resourceType is:
// Internet, Location, a content provider URI, etc.
// componentType is: "AD" or "APP"

}

-1-

Figure 9: Example of rewriting a normal system call (This figure and
Figure 10 use Java-style pseudo-code to describe the instrumentation
technique for ease of understanding. PEDAL rewrites byte-code, and
does not require access to Java or Dalvik source.)

the ad library or the app logic, and finally, Policy takes the value
from {ALLOW,OBS CURE, BLOCK}. Our current instantiation of
PEDAL supports the five resource types listed in Table 1, and users
may thus selectively permit or deny an ad library access to each of
these resource types. These five resource categories cover the types
of resources accessed by ad libraries. It is easy to extend PEDAL to
support other resource types.

In addition, users may choose to obscure the returned results for
specific resource types. App developers may derive revenue from
some of these resources. For example, when an ad library can obtain
a user’s location and deliver targeted ads, the developer might get
more revenue than when no location is available. So, PEDAL permits
users to specify policies that enable some form of obscured result to
be returned. We discuss this below in some detail.

Finally, users can change policy settings at any time, and policy
changes take immediate effect (even while an app is running). The
Rewriter accesses these policies at run-time through a queryController
interface, as discussed below.
Rewriting for Privilege De-Escalation. Conceptually, re-writing
for privilege de-escalation is straightforward: Rewriter can inter-
pose on resource accesses by the ad library or the app logic, and
permit access only if the user-specified policies grant access. In the
example in Figure 9, the call to queryController permits access to
the Location resource if the policy permits, otherwise it returns null
or an obscured location. However, there are several subtleties in the
design, as described below.
Interposing on content providers. Rewriting content provider5 based
resource access is slightly more involved. Figure 10 shows another

5Content providers are basic Android components, and are actually
databases addressable by their application-defined URIs. One use
of content providers is to share information between apps.

95

Controller App Content Provider

Repacked App
Runtime

Repacked App1:
Location Access for Ad Libraries
Location Access for App Function

…… …… …...
Repacked App2: …… …… …...

Read through URI &
enforce user policies

(URI) content://com.ResourceAccessPolicies

Controller App UI

Figure 8: Controller App Design

Table 1: Core Functions for Different Resource Types

Resource Type Related Permissions Number of Core Functions Core Function Examples

Internet INTERNET
ACCCESS_NETWORK_STATE 15 java.net.URLConnection.openConnection

org.apache.http.HttpResponse.execute

Location ACCESS_COARSE_LOCATION
ACCESS_FINE_LOCATION 12 android.location.LocationListener.onLocationChanged

android.location.LocationManager.getLastKnownLocation

Contacts READ_CONTACTS 8 android.content.ContentProvider.query
android.content.CursorLoader.<init>

Phone ID READ_PHONE_STATE
ACCESS_WIFI_STATE 6 android.telephony.TelephonyManager.getDeviceId

android.net.wifi.WifiInfo.getMacAddress

Account/Profile GET_ACCOUNTS
READ_PROFILE 5 android.accounts.AccountManager.getAccounts

android.accounts.AccountManager.getAccountsByType

D:\papers\mobisys 2015_seacat\pics\new 2.java Tuesday, March 24, 2015 10:00 AM

// the original function is:
// Cursor ContentResolver.query(Uri uri,
// String[] projection, String selection,
// String[] selectionArgs, String sortOrder)
public static Cursor PEDAL.query(

ContentResolver resolver, Uri uri,
String[] projectin, String selection,
String[] selectionArgs, String sortOrder){

// uri.toString() is something like:
// content://com.android.contacts, content://call_log
Policy currentPolicy = queryController("Facebook",

uri.toString(), "APP");
if (currentPolicy == Policy.BLOCK) {

return null;
}
else if (currentPolicy == Policy.OBSCURE) {

// Uri for obscured content provider
Uri obscuredUri = PEDAL.getObscuredUri(uri);
return resolver.query(obscuredUri,

projection, selection,
selectionArg, sortOrder);

}
// queryController returns Policy.ALLOW
return resolver.query(uri, projection,

selection, selectionArg, sortOrder);
}

// the original sharing function is:
// void AdRequest.setLocation(Location location)
public static void PEDAL.setLocation(

AdRequest ad, Location location) {
Policy currentPolicy = queryController("AroundMe",

"Location", "AD");
if (currentPolicy == Policy.BLOCK) {

// do nothing
return;

}
else if (currentPolicy == Policy.OBSCURE) {

// set obscuredLocation to Sunnyvale
......

ad.setLocation(obscuredLocation);
return;

}
// queryController returns Policy.ALLOW
ad.setLocation(location)

}

-2-

Figure 10: Example of rewriting a system call for operating a content
provider

example for rewriting the API call query. This function can be
used to access all types of resources that are implemented through
content providers, and the uri parameter is used to differentiate
which resource type is actually queried. For example, if uri is
“content://com.android.contacts” or “content://contacts,” then the
resource type is contacts; if it is “content://call_log,” then the re-
source type is call logs; and if it is “content://com.android.calendar,”
then the resource type is calendar. When queryController receives
a content provider URI as the resourceType parameter, it first maps
the URI (using PScout [21]) to the resource type the URI pertains

to, and then follows the same procedure as when it directly receives
a resource type string, like “Location” above.
Obscuring Results. Our current prototype permits users to obscure
contacts, location, phone ID, and profile information. Specifically,
for location, phone ID, and profile information, PEDAL initiates
a new object with pre-defined fake values, and returns this new
instance to the app logic or the ad library. However, as discussed
above, access to contacts is through a special URI, and the return is a
cursor pointer to the actual database. Therefore, it is a little tricky to
OBS CURE contacts. We have implemented a fake content provider
(essentially, an app) that contains all the fields that have been defined
in the real contacts content provider tables. To OBS CURE contacts,
PEDAL simply replaces the real provider URI with the URI of the
fake content provider, and returns the usable cursor pointing to the
fake database. We have left to future work to determine how best to
obscure results that preserve user privacy without affecting the app
developer’s revenue stream.
Optimizing the Rewriter. The API for accessing a resource, like
the Internet or Location, may have many calls, not all of which
need to be interposed. For example, there are a total of 95 calls [4]
for the Internet resource, but only about 15 of them (called core
resource access functions, or core functions for short) need to be
interposed on to enforce policy. The other calls provide either higher-
level abstractions that ultimately call one of these core functions, or
provide utility functionality (for example, for parsing headers, etc.).
Avoiding interposing on the non core functions can reduce overhead
(Section 5) by avoiding calls to queryController for dynamic policy
checking. Table 1 lists the number of core functions for each of the
5 resource types we support.
Preventing Privilege Inheritance. As we have discussed, ad li-
braries may also access resources indirectly through the app logic.
To prevent this, we use an information flow analysis tool, Flow-
Droid [20] with a reported accuracy of over 90%. Our usage of flow
analysis is constrained: we are interested in code paths from calls
to resource access core functions in the app logic to Internet access
calls in the ad library. Such code paths indicate the potential for
privilege inheritance misuse. Note that our approach only focuses on

96

D:\papers\mobisys 2015_seacat\pics\new 2.java Tuesday, March 24, 2015 10:00 AM

// the original function is:
// Cursor ContentResolver.query(Uri uri,
// String[] projection, String selection,
// String[] selectionArgs, String sortOrder)
public static Cursor PEDAL.query(

ContentResolver resolver, Uri uri,
String[] projectin, String selection,
String[] selectionArgs, String sortOrder){

// uri.toString() is something like:
// content://com.android.contacts, content://call_log
Policy currentPolicy = queryController("Facebook",

uri.toString(), "APP");
if (currentPolicy == Policy.BLOCK) {

return null;
}
else if (currentPolicy == Policy.OBSCURE) {

// Uri for obscured content provider
Uri obscuredUri = PEDAL.getObscuredUri(uri);
return resolver.query(obscuredUri,

projection, selection,
selectionArg, sortOrder);

}
// queryController returns Policy.ALLOW
return resolver.query(uri, projection,

selection, selectionArg, sortOrder);
}

// the original sharing function is:
// void AdRequest.setLocation(Location location)
public static void PEDAL.setLocation(

AdRequest ad, Location location) {
Policy currentPolicy = queryController("AroundMe",

"Location", "AD");
if (currentPolicy == Policy.BLOCK) {

// do nothing
return;

}
else if (currentPolicy == Policy.OBSCURE) {

// set obscuredLocation to Sunnyvale
......

ad.setLocation(obscuredLocation);
return;

}
// queryController returns Policy.ALLOW
ad.setLocation(location)

}

-2-

Figure 11: Example of rewriting a resource sharing function for
location sharing to an ad library.

those kinds of privilege inheritance that can lead to misuse (actual
leakage of data).

Once these potential leakage paths have been identified, Rewriter
performs the same kind of interposition as above. Consider the
“Location” resource. For this, we first find the core resource access
functions that the app logic uses to fetch location information (infor-
mation flow sources), and then find the places within the ad library
part where the Internet core functions are called (information flow
sinks). Then, we apply FlowDroid to search for all paths between
the defined flow sources and sinks, and further find and interpose on
all unique sharing functions that cross the boundary between the app
logic and the ad library, as shown in Figure 11. However, in some
cases, we cannot fake a resource type in a sharing function if the
resource value has been transformed somewhere along the path. For
example, it is possible that, a piece of “Location” information, say
latitude 40.714 and longitude -74.006, is accessed in the app logic,
and then transformed into a string “New York”, and finally what
is returned to the ad library part is the string instead of the actual
location object. In these cases, because we do not have enough
knowledge to analyze the semantics of the transfer between the orig-
inal object type and the transferred object type, we conservatively
block or return a null object for these sharing functions regardless
of users’ policy setting.
Other Details. Java reflection can foil our interposition technique,
since reflection can invoke any method of an object at runtime with-
out explicitly exposing the actual function signatures. To deal with
this, PEDAL intercepts function calls to re f lect.Method.invoke to
decide the actual function signatures during runtime using the func-
tion call re f lect.Method.toGenericS tring, and then distributes the
invoke call to the actual control logic if core functions are dynami-
cally detected. A similar technique can be used if reflection is used
to achieve privilege inheritance. However, PEDAL cannot handle
native libraries; in Section 5, we show that ad libraries rarely use
native code.

After replacing all core functions and sharing functions with their
rewritten versions, the modified bytecode together with other app
files are then repacked to a modified package file. The repacking tool
we have implemented strictly preserves and follows the procedure
and parameters of the original packing process. Finally, the app is

Table 2: Feature Selection and Classifier Performance

Feature Selection Category Recall Precision
Ad Library 0.991 0.988

All Features Non-Ad Module 0.976 0.982
Weighted Average 0.984 0.985

Ad Library 0.857 0.866
No Keyword-Matching Features Non-Ad Module 0.827 0.815

Weighted Average 0.842 0.841
Ad Library 0.746 0.716

Only Keyword-Matching Features Non-Ad Module 0.925 0.919
Weighted Average 0.836 0.818

Ad Library 0.908 0.905
No Basic-Component Features Non-Ad Module 0.913 0.916

Weighted Average 0.911 0.911
Ad Library 0.899 0.899

No Permission Features Non-Ad Module 0.887 0.902
Weighted Average 0.893 0.901

Ad Library 0.937 0.928
No Visual-Element Features Non-Ad Module 0.928 0.925

Weighted Average 0.933 0.927
Ad Library 0.922 0.91

No Sources-and-Sinks Features Non-Ad Module 0.902 0.884
Weighted Average 0.912 0.897

Ad Library 0.97 0.973
No Permission-Check Feature Non-Ad Module 0.955 0.949

Weighted Average 0.963 0.961

signed; we use the strategy introduced in [62] to re-sign apps using
a parallel set of randomly generated keys.

5. EVALUATION: THE SEPARATOR
In this section, we systematically evaluate the PEDAL classifier.

The highlights of our evaluation are:
• PEDAL is highly accurate (98.9% precision, 97.7% recall)

in separating ad libraries from apps. The system is robust
to obfuscation: it can identify obfuscated ad libraries with
97.4% accuracy.

• PEDAL can discover nearly 5× more ad library sources than
the number of ad libraries in blacklists prepared by prior
work [26, 27, 35, 44, 49, 55, 57, 58].

The Dataset. We crawled the Google Play Store [13] and down-
loaded 63,105 free apps between June 2nd, 2014 and August 1st,
2014. About 5% of these apps failed the Dalvik to Java bytecode
conversion step, so our analysis uses the remaining 59,759 apps.
Classifier Training. We use LibSVM [29], a state-of-the-art SVM
library, to build our classifier. We obtained training samples of
the classifier, which are ad and non-ad modules, from two sources.
First, we collected 100 JAR files of popular ad SDKs listed in [7,35].
From the JAR files we extracted 335 ad modules as positive training
data points, among which 117 use code obfuscation and 26 use
package name obfuscation. Second, we collected the top 500 free
apps in Google Play on August 1st, 2014, and extracted non-ad
bytecode modules from these APK files. We randomly sampled
335 non-ad modules among them as negative training data points.
The kernel (sigmoid) and parameters (γ=0.125, d=3, cost=8) of the
SVM model were chosen according to a grid search of parameters
in exponential scale. After a 10-fold cross validation, our classifier
performed with accuracy of 98.5% on classifying ad and non-ad
modules. To demonstrate that our classifier is not biased by includ-
ing popular examples in the training set, we intentionally omitted
Google AdMob, the most popular ad library, from the training set.
Feature Efficacy. We now quantify the accuracy loss when omitting
each feature selectively (Table 2).

First, keyword-matching features which represent the occurrences
of key phrases, such as “ads,” “promotion,” in class, function, or

97

field names, play an important role in boosting the accuracy of our
classifier. If we exclude these features, the classifier would perform
with an accuracy of 84%, which is lower than using the full feature
set. Ad libraries appear to preserve such human readable names
even in obfuscated library code, since this simplifies integrating the
library into the app.

We then explored classifier accuracy if the classifier were to
use only keyword-matching features. Compared to only using the
remaining feature set (i.e., without keyword matching), these two
approaches appear to have comparable accuracy. However, the
accuracy of detecting ad libraries using only keyword-matching is
very low. Taking these two results together, our results show that
using keyword matching is necessary, but not sufficient (in the sense
that other features are also necessary), to ensure high-accuracy.

Finally, omitting other groups of features selectively resulted in
accuracy losses of between 2%∼9%, suggesting that every feature
group is important for the classification. As an aside, we have
explored many other feature sets related to function argument types,
function return types, class inheritance, full permission list and so
on. These additional sets only marginally increase accuracy, and
can sometimes reduce accuracy due to classifier overfitting. Thus,
the finally chosen features reflect the best tradeoff between the
classification accuracy and the complexity of the feature space.
Classifier Evaluation on Real-world Apps. To further evaluate
our classifier on real-world usage scenarios, we tested the classifier
on a subset of real apps. We randomly chose 200 apps from our
corpus of free Android apps. For each app, we applied the classi-
fier to automatically identify the ad libraries in it, and examined
the results by manually checking the bytecode to see whether the
classifier can accurately and completely find the ad libraries within
the app. Specifically, we checked ad-related behaviors by scanning
through string elements, data format for URL requests and sensi-
tive API calls in the bytecode of these apps, since this information
cannot be obfuscated. Of the 200 apps, the classifier accurately and
completely identified ad libraries in 186 apps (93.0%). From the
200 apps, we found 357 ad library occurrence from 174 unique ad
libraries, of which the classifier identified 347. Note that among
these 357 ones, 173 of them (48.5%) did not appear in the classifier
training set (AdMob takes the largest number of 78). Among these
apps, we found obfuscated bytecode in 120 of them (107 of them
have obfuscated codes in ad library modules). Our classifier can still
automatically capture 97.4% of the ad library appearances in these
obfuscated bytecode blocks. In total, considering the performance
on each individual app, the average precision of the classifier is
98.9% (median=100%, sd=6.0%), and the average recall is 97.7%
(median=100%, sd=9.7%).
New Ad Libraries. We then applied PEDAL to our entire collection
of 59,759 apps. Among all these apps, our system found 34,167
apps (57.17%) that contain at least one ad library. Moreover, our
classifier discovered many ad libraries previously unknown to us.

PEDAL discovered 2,598 unique ad library modules, such as the
popular “com.millennialmedia.android,” and “com.google.ads”, as
well as the unpopular “com.linxad” and “com.aarki.” Note that this
count is only based on folder names, and obfuscation might cause
this estimate to be off. For example, two essentially different ad
libraries can have the same folder name “com.a.b” after obfuscation.
Conversely, a single ad library may be obfuscated differently in
different apps.

Table 3: Top-10 Frequently Occurring Ad Libraries by Ad Network
Names

Name of ad library source Frequency in the 34,167-app corpus
Google AdMob 21,772
Millennial Media 3,871
Flurry 3,215
InMobi 1,929
MoPub 1,777
Mobclix 1,581
Airpush 1,316
MobFox 1,092
Leadbolt 926
Tapjoy 899

Among these 2,598 ad library modules, we identified 546 unique
ad library sources6 by: 1) retaining modules that are used by at
least three different app publishers and 2) grouping modules that
are known to be with a same ad network or have the same package
prefix. The average occurrence of ad library sources (among the
collection of 546 identified sources) in each app is 2.12 (max=35,
min=1, median=1, sd=2.18). Table 3 presents the most frequently
occurring ad libraries in our collection of apps with respect to the
546 unique sources.

Compared to the initial 100 ad library sources we applied in clas-
sifier training, our system discovered many more new ad libraries.
This number is at least 5× more than the reported numbers in other
static code analysis based papers that maintain blacklists of ad li-
brary package names [26, 27, 35, 44, 49, 55, 57, 58]. These findings
suggest that a blacklist-based approach may be ineffective in identi-
fying ad libraries. To quantify this, Figure 12 measures the (a) the
percentage of apps that contain at least one library in the Top-N
most popular ad sources (a single ad source may contain multiple
ad libraries) and (b) the percentage of apps whose ad libraries are
entirely contained in the Top-N most popular ad sources. When N
is 100 (respectively, 200), these two values are 88.84% and 85.78%
(respectively, 93.37% and 90.50%). Indeed, even if we used all
the 546 ad library sources we discovered in a blacklist, these two
percentages are 97.23% and 95.69%. This is because there are some
highly obfuscated ad library package names that cannot be used
in the blacklist: for example, an obfuscated package name “a.b.c”
cannot be added to the blacklist because in different apps it may
represent different functional modules after obfuscation.
The Efficacy of Call Graph Information. As discussed in Sec-
tion 4, our classifier is designed to capture core functional modules
of ad libraries, and may miss some auxiliary modules. Therefore,
we explored whether it would be beneficial to detect these auxiliary
modules using call-graph analysis. To do this, we used Soot [17]
to generate the class-level call graph of an app, then marked any
auxiliary module as an ad library module if it was transitively called
from a known ad library and was not a Android system library. We
tested the efficacy of this approach on a random subset of 8,693
apps using ad libraries.

Call graph generation failed on 730 (8.4%) apps due to code
obfuscation. For the remaining 7,963 apps, call graph analysis
increases the classification cost by over two orders of magnitude, a
factor of 143.12 on average (max=7,690.0, min=1.47, median=106,
sd=347.5). On the other hand, this approach identified 684 new ad
module occurrences (7.07% of all 9,676 occurrences), of which only
55 (0.8%) have requested new permissions, compared to ad libraries
identified using the non-call-graph method. Thus, in general, this

6Modules that have obfuscated or randomized package names are
excluded from grouping. Thus, the actual number of unique sources
may be more than this number.

98

1 100 200 300 400 500 546
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of ad library sources in the blacklist

Pe
rc

en
ta

ge
 o

f a
d

lib
ra

ry
ap

pe
ar

an
ce

 c
ov

er
ed

(a) Percentage of ad library occurrences covered

1 100 200 300 400 500 546
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of ad library sources in the blacklist

Pe
rc

en
ta

ge
 o

f a
d-

in
cl

ud
ed

 a
pp

s
in

 w
hi

ch
th

e
bl

ac
kl

is
t c

an
 d

et
ec

t a
ll

ad
 li

br
ar

ie
s

(b) Percentage of ad-included apps in which the blacklist
can detect all ad libraries

Figure 12: CDF comparing with the blacklist approach

Table 4: Top-10 Frequently-Used Permissions

Used by apps’ main logic (among 59,759 apps) Used by Ad Libraries (among 546 Ad Sources)
Actually Used by Ads Checked for Availability by Ads

Permission Frequency
INTERNET 43,498
ACCESS_NETWORK_STATE 36,485
READ_PHONE_STATE 15,265
VIBRATE 14,299
WAKE_LOCK 13,656
ACCESS_FINE_LOCATION 13,205
ACCESS_COARSE_LOCATION 11,153
ACCESS_WIFI_STATE 6,987
RECEIVE_BOOT_COMPLETED 5,984
READ_CONTACTS 4,943

Permission Frequency
INTERNET 546
ACCESS_NETWORK_STATE 413
READ_PHONE_STATE 264
RECEIVE_BOOT_COMPLETED 246
WAKE_LOCK 208
ACCESS_COARSE_LOCATION 190
ACCESS_FINE_LOCATION 173
ACCESS_WIFI_STATE 137
GET_ACCOUNTS 111
READ_CONTACTS 49

Permission Frequency
ACCESS_FINE_LOCATION 104
ACCESS_COARSE_LOCATION 101
ACCESS_NETWORK_STATE 86
INTERNET 81
READ_PHONE_STATE 81
WRITE_EXTERNAL_STORAGE 71
ACCESS_WIFI_STATE 70
CALL_PHONE 39
READ_CONTACTS 35
GET_ACCOUNTS 32

approach increases cost significantly while providing diminishing
returns.
Is privilege de-escalation necessary? If the permissions used by
ad libraries are disjoint from the ones used by the apps’ main logic,
we can simply apply tools such as App Ops [2] to disable those
permissions requested by the ad library. Table 4 shows the statistics
of the most frequently used permissions by both the ad libraries7

and the app logic. There is significant overlap in the permissions
requested by apps and by the ad library; of our nearly 60,000 apps,
29,926 apps have at least one permission common to both app
logic and ad library. Of these, we found 15,988 apps (53.43%)
in which the permissions used by ad libraries are ALL used by
its app function. This motivates PEDAL’s design, which enables
finer-grained permissions than the underlying Android model.

PEDAL’s design also foils ad libraries that access resources with-
out explicitly requesting permissions. These libraries check avail-
able permissions at runtime, and sometimes use permissions granted
to the app that includes the library. We analyzed both the bytecode
and the documentation of 30 randomly selected ad library SDKs,
and found that 5 of them have undocumented usage of important
privacy-related permissions. For example, neither “com.appflood”
nor “com.applovin” claims any dependency on permissions AC-
CESS_FINE_LOCATION or ACCESS_COARSE_LOCATION in their docu-
mentation. However, in the bytecode of these two libraries, we
found that they both check and have API calls that rely on the
location-related permissions. Similarly, “com.greystripe” claims
to only use Internet-related permissions, but we found that this

7Note that each ad library source may have multiple versions, and
we dated every versions of a same source using the heuristic intro-
duced in [26], Therefore, the permission usage of an individual ad
library source is based on its latest version found in our app corpus.

library checks and makes API calls to permissions CAMERA and
READ_PROFILE.

6. EVALUATION: THE REWRITER
In this section, we evaluate the overhead introduced by the Rewriter

on 34,167 apps with at least one ad library. Our main results are:
• PEDAL processes an app in about a minute on a single thread.

This task is trivially parallelizable.

• PEDAL introduces negligible runtime overhead (less than 1%
on time cost), but can still effectively achieve privilege de-
escalation.

The robustness of the Rewriter. The process of binary rewriting
and re-packaging an app can sometimes be fragile: the resulting
app may sometimes not install or run on a phone. To quantify
this, we took the 34,167 apps that contained an ad library and re-
packaged them. This step generated no failures. Then, we tested
how many of these re-packaged apps would install correctly on
an Android device (Galaxy S3). Of these, 32,965 (96.48%) apps
installed perfectly; the ones that failed to install were due to dexopt
failures. Finally, we used the PUMA [37] Android UI-automation
framework to run each repacked app for 3 minutes or until all
UI states were explored (whichever is shorter). In each app, the
ad libraries’ privilege was restricted: access to a resource either
generated an exception or returned obscured or null data. In total, 10
Android emulators were created on a server running Ubuntu 14.04
with 20-core 2.8GHz CPU and 200GB memory and the corpus of
32,965 apps was equally partitioned across these emulators. Of
these apps, 3,287 apps could not function properly and crashed
mainly because of unhandled exceptions. For example, some apps
call HttpClient.execute but fail to deal with the cases in which

99

Table 5: Micro-Benchmark: Running Time Cost of Each Step

Processing Step Time Cost (in seconds, on 29,678 ad-included apks)
Average Median Max Min Stdev

Apk to Java Bytecode 5.81 4.52 52.24 0.48 5.01
Module Classification 0.57 0.24 11.95 0.00 0.81
Indirect Flow Analysis 28.93 8.58 455.44 0.34 49.99
Java Bytecode Rewriting 3.43 1.67 72.70 0.04 4.93
Repacking to Apk 17.82 10.54 617.86 1.99 27.77
Total time 56.63 25.98 1075.85 2.73 93.25

Table 6: Top-10 Frequency of Native Function Names

Used by apps’ main logic Used by Ad Libraries
Function Name App Freq
nativeInit 1266
nativeRender 1115
nativeResize 930
nativePause 905
nativeResume 872
nativeDone 852
init 710
installNdk 609
checkLibraryVersion 599
newPolygonShape 571

Function Name App Freq
UnitySendMessage 195
getAsString 113
getAsBool 108
getAsInt 108
newObject 98
getActivity 74
getLength 52
getObjectAt 52
dispatchStatusEventAsync 46
getAsDouble 13

IOExceptions are thrown, although these exceptions are supposed
to be properly handled according to API specs. In summary, PEDAL
is reasonably robust end-to-end: out of the 34,167 apps, 29,678
(86.86%) were crash-free and successfully reported PEDAL debug
tags. In the rest of this section, we report results on this set of apps.
Rewriting overhead. Table 5 shows statistics for all steps discussed
in Section 4. Classification and rewriting incur, on average, 0.57s
and 3.43s for each app respectively. Flow analysis for detecting
privilege inheritance is as expensive as repacking in some cases
when multimedia resources need to be re-packed. Overall, the mean
per-app processing time is 56.62s, which is acceptable, especially
for app stores, since apps can be processed in parallel.
Execution overhead. The runtime overhead of an app is the cost
of invoking queryController. Our micro-benchmarks for this call
revealed an average running time of 13.09 ms (sd=22.87 ms) for a
normal resource, and 13.45 ms (sd=23.34 ms) for the URI resource.
Other invocations (e.g., those dealing with invocations) cost less
than 1ms.

To quantify the overhead end-to-end, we selected 100 apps which
used the most number of ad libraries and also accessed the location
resources. Executing these 100 apps on PUMA [37] showed a total
increase in runtime of 0.89% (min=0.02%, max=1.81%, sd=0.51%)
relative to unmodified versions of these apps8. This suggests that
PEDAL introduces negligible overhead, so is eminently practical.
How often do ad libraries inherit privileges? With our experi-
mental infrastructure, we are also able to quantify instances where
ad libraries inherit privilege. We find that there are 7,499 apps out
of the 29,678 (more than 25%) that access at least one of the five re-
source types through the app logic; this motivates Rewriter’s careful
information flow based analysis. Phone ID is the most commonly
inherited resource, in 5,348 apps, and Location is next in 3,934 apps.
Other resources are rarely inherited (about 0.5% in total).
Does PEDAL need to handle native code? We performed static
analysis on the apps to search for calls on native code functions and
found there are 5,381 apps (18.13%) that use native calls9. However,
out of the 5,381 apps, only 314 apps (1.06% of the total 29,678

8In running these experiments, we carefully ensured that both ver-
sions of the app were fed identical click streams by the “monkey”.
9This number is slightly higher than the number of 17.41% reported
by a recent large-scale study [58].

apps) use native calls in ad libraries. Table 6 lists the names of
the top-10 used native function calls, generated by disassembling
app binaries using objdump10 and IDA Pro11. None of these
appear to access resources. Finally, we did not find any instance of
app logic invoking native code defined in ad libraries, suggesting
privilege inheritance is unlikely. For this reason, PEDAL does not
perform native code analysis.
How effective is PEDAL’s privilege de-escalation? To quantify
this, we ran 3 versions of the experiments on the 100 apps discussed
above. Our UI automation tool replayed the same click stream to
each version, and collected screenshots of each app page visited. In
the first experiment, we analyzed the original apps without rewriting
them. The 100 apps generated 1000 pages, and the unmodified app
showed 843 ads. We manually checked and found that 304 of these
ads were targeted at San Jose, the phone’s location. In the second
experiment, we disabled Internet access for the ad libraries. The
apps after rewriting generated only 9 ads, indicating that selective
network de-escalation was effective. (These 9 ads were generated by
an ad library that used an HTTP client which invoked a core function
for network access that was not in our set). In the third experiment,
we obscured location data by feeding a fake location in New York,
NY for a phone located in San Jose, CA. Among the 806 ads shown,
249 were New York based, while only 23 targeted the real location
San Jose, CA. It is not trivial to determine how many ads should have
been location targeted because the targeting strategies are hard to
reverse engineer. However, in the unmodified app set, we observed
that 304/843 or about 36% of the ads were targeted. In this set, if
the same proportion were to hold, we would expect to see about 290
targeted ads, and our manual analysis uncovered about 272, which is
close to the expected number. Thus, we feel confident that PEDAL’s
miss rate (the rate at which it fails to catch resource accesses) is
relatively low (approximate 23/272). The 23 ads that targeted the
San Jose location were attributed to two causes: the failure of the
classifier to identify ad libraries, and the failure of the information
flow analysis to detect privilege inheritance. Overall, these results
suggest that obscuring location is generally effective; our corpus of
100 apps includes apps with the most ad library sources, so PEDAL’s
efficacy is likely to be higher for other apps than reported here.
PEDAL & ART. Android 4.4 introduced a new runtime, ART12,
which has officially replaced Dalvik in the newly released Android
5.0. Other proposed fine-grained control systems, such as the popu-
lar XPrivacy [18], cannot work with ART13 because they are tightly
coupled with the Dalvik environment or the old OS architecture.
However, we have verified that PEDAL modified apps work with
ART without any noticeable changes, since PEDAL does not require
OS or runtime support.

7. DISCUSSION
Failures in Privilege De-Escalation. PEDAL’s privilege de-escalation
is not perfect: as shown in the evaluation, the Separator can intro-
duce both false positives and false negatives, which can lead to
wrongly classifying a social plugin as an ad library, or to an unsta-
ble app. However, these infrequent situations, users can choose to
revoke and turn off privilege de-escalation for an app by using the
Controller (Figure 8).

Another mechanism that may make the de-escalation more robust
and efficient is that the app store can include developers in the
loop, so that they can test the instrumented apps throughly and

10http://en.wikipedia.org/wiki/Objdump
11https://www.hex-rays.com/products/ida/
12http://source.android.com/devices/tech/dalvik/art.html
13https://github.com/M66B/XPrivacy#FAQ75

100

understand the de-escalation effects before publishing the rewritten
apps. However, developers may not always have the incentive or be
willing to cooperate for fear of losing advertising revenue.
Resigning Apps. The last step of PEDAL is to resign a repacked app
using a randomly generated developer key. This approach has two
problems. First, automatic app updates can no longer be delivered
because the signature of the app does not match the one from the
original developer. However, in this case, the app store can actively
monitor the app’s update and prepare repacked versions for each
update. Second, some features of the original app may break. For
example, a repacked app may show a blank map if this app uses
Google Maps API because the API certificate is tied to the original
developer key used to sign the app which has been replaced during
repacking. We have not found more effective solutions for this
problem other than involving the developer.
Future Improvements. PEDAL can be improved along several
dimensions:

Its classifier accuracy can be improved by designing better fea-
tures or using more advanced classifiers. Specifically, the current
selected features only reflect the most general characteristics of
existing ad libraries, and we may need to re-design some of these
features as ad libraries evolve. Moreover, although the designed
features are resistant to package-level and code-level obfuscation, it
is unclear whether they also work for other advanced obfuscation
techniques, such as flow obfuscation/logic structural obfuscation,
incremental obfuscation and so on. While we have not discovered
uses of these advanced obfuscation techniques in today’s ad libraries,
in future work we plan to explore how effective our features are for
such techniques.

In addition, although our core function list is fairly comprehen-
sive, future work might wish to extend this set as the Android API
evolves. Fortunately, PEDAL is designed to be extensible, and adding
new core functions is simply a matter of adding some signatures.
Improved information flow analysis tools can also improve the ac-
curacy of PEDAL; for example, the tool we use, FlowDroid [20] has
known limitations with respect to reflection.

Finally, PEDAL cannot detect the use of native code for resource
access. Native code cannot bypass resource permissions since these
are enforced by the kernel, but can bypass PEDAL’s privilege de-
escalation. As we show above, today’s ad libraries do not appear
to use native code for resource access. This is primarily because
native code cannot access Android abstractions such as services and
content providers [6]; these provide apps with access to location,
the contact database, call logs, account/profile, etc. Also, recently,
Android terms for ad networks enforce user tracking through a
unique Google Advertising ID [3] assigned to each user, which also
cannot be accessed by native code. Native code can use lower-level
APIs for Internet access (sockets). In this case, PEDAL can effect
privilege de-escalation by collaborating with a transparent Web
proxy, such as Sandrop [16], an approach we have left to future work.
Thus, most of the resources protected by PEDAL cannot be accessed
natively, and for the Internet resource, a plausible solution exists. In
the future, PEDAL can protect other resources (if any) that might be
accessible by native code, by extending binary rewriting to native
code, perhaps using Dynamic Binary Translation techniques [42, 50,
63], and we have left this to future work.
Extensions and Generalizations. PEDAL’s contributions go be-
yond privilege de-escalation. Our classifier-based approach can
be used to identify bytecode sets with different properties, such as
social network or e-business plugins, or to train classifiers to recog-
nize multiple categories. Moreover, PEDAL’s privilege de-escalation
can be combined with methods that implement other forms of fine-

grained access control to support advanced privacy policies such
as “allow location data access for ad libraries only during daytime,”
“block Internet access to http://www.hotads.com for ad libraries.”

More generally, the strategy we have investigated in the paper is
to first separate and distribute code fragments to different functional
sets, and then control each separated component individually. This
strategy should be generally applicable to other mobile platforms,
though the details of the approach will differ for different platforms.
For example, Windows Mobile platform uses C# (and C# bytecode),
so it should be quite straightforward to extend our technique to
support it by using bytecode analysis and rewriting frameworks for
C#, such as CCI (Common Compiler Infrastructure)14. iOS uses
Objective C, and other work has used binary rewriting for iOS apps
as well [60], so we believe PEDAL’s approach can be extended to
iOS apps as well.
Reconciling Controllability and Usability. PEDAL can be treated
as an extension to the default model of Android resource access
control. However, while providing finer-grained options, it also
increases the information workload for users to manage the settings,
and, thus, may be preferred only by experienced or expert users. One
way to address this extra workload is to use the technique of Privacy
Revelations [61] to provide more details about how users’ private
data are spread among the app logic part and the ad library part
so that app users can better understand and manage these settings.
Another possible solution is to apply profile-based methods [44,
45] to reconcile privacy and usability to reduce users’ burden of
managing the settings by learning users’ general preferences and
providing smart default settings for users.
Possible Countermeasures. Ad libraries or app developers could
foil PEDAL by: (1) Performing code obfuscation even for public
APIs; in this case, developers may need to use some confusing APIs,
such as “a.b” or “b.c.d” to integrate and call ad libraries, and this can
reduce the accuracy of our Separator to around 84% according to
Table 2; (2) Instead of using third-party ad libraries, developers can
implement their own ad libraries (and may have to set up their own
ad networks) and mix the implementation together with app logic,
in which case, it could be very difficult to make any meaningful
separation. While these countermeasures are feasible, they require
significantly more development efforts.

8. RELATED WORK
Our work is inspired by two strands of work: one on selective

privileges and fine-grained access control in mobile systems, and
the other on analyzing malicious behaviors within the ad ecosystem.
Selective Privileges. Most closely related to PEDAL is prior work
that has considered the precise form of selective privilege assign-
ment for ad libraries. AdSplit [55] achieves this goal by extending
the Android OS so that the application logic and the ad library run
in different processes with different user IDs. AdDroid [49] instead
suggests introducing a new set of API calls and permissions for ad
libraries to Android system. LayerCake [53] modifies Android to
permit ad libraries to embed UI elements in the main logic, without
exposing data or privileges of the main app. Finally, Compac [59]
modifies the Android OS to enable component level privileges, and
developers need to manually distinguish components. Unlike these
systems, PEDAL does not require modifications to the underlying
operating system or its APIs, and does not require developer inter-
vention.
Fine-grained Access Control. A complementary set of systems
has considered fine-grained access control to resources. One line of

14https://ccimetadata.codeplex.com

101

work in this area has explored access control and information flow
control techniques and associated expressive policy specification
languages. Starting with TaintDroid [33], a long line of work has
explored these techniques and languages: AppFence [38], Mock-
Droid [25], Apex [48], TISSA [64], FlaskDroid [28], ASM [47] and
ASF [22]. Another line of work has explored library re-writing [62]
or loader modifications [18] to achieve the same goal. A third line
of work has used binary rewriting (using techniques discussed in
[31,36]) to achieve fine-grained access control [23,24,32,39,40,52]
and derived and enforced sub-permissions in popular permission
groups. None of these pieces of work attempt to enforce per-
component access control; PEDAL is complementary and separates
privileges per component, and PEDAL can be combined with some
of these to provide finer-grained per component access control.
Ad Analysis. We have also been inspired by another line of work
that explores the static or dynamic behavior of ad libraries. For ex-
ample, several pieces of work have used static analysis to explore ad
library security and privacy [35], the evolution of ad libraries [26],
statistics of ad library usage on Google Play [58], characteristics
of ad library APIs [27], users’ common privacy preferences on ad
libraries [44], and usage of ad-supported apps [57]. Our compo-
nent separation technique builds upon the blacklisting techniques
employed by these pieces of work: for example, [58] maintained
a list of 21 ad libraries, [26] used a list of 68 ad libraries, and [35]
generated a list of 100 ad libraries. In contrast, PEDAL is able to
identify over 5× more ad library sources than prior work.

Finally, PEDAL is complementary to prior work that has used
dynamic analysis to identify ad fraud [30, 46], or to estimate the
impact of app plagiarism on ad revenue [34].

9. CONCLUSION
In this paper, we have described PEDAL, a system to achieve

selective privilege de-escalation for ad libraries. PEDAL performs
automated classification to identify ad library code, and rewrites core
resource access functions and resource sharing functions of these
bytecode sets to achieve de-escalation. PEDAL is robust, by design,
to both package name obfuscations and source code obfuscation.
Despite this, PEDAL shows remarkable classification accuracy and
efficacy, yet requires reasonable computing power to process apps.
Finally, PEDAL is effective and imposes negligible runtime overhead
for apps.

Acknowledgements
We would like to thank our shepherd, Landon Cox, and the anony-
mous referees, for their insightful suggestions for improving the
technical content and presentation of the paper.

10. REFERENCES
[1] Android 4.3 Includes Hidden App Permissions Manager That

Could Bolster Privacy & Security. http://techcrunch.
com/2013/07/26/android-app-ops/, 2013.

[2] How to Restore Access to App Ops in Android 4.4.2+.
http://www.howtogeek.com/177915/
how-to-restore-access-to-app-ops.....
.-in-android-4.4.2/, 2013.

[3] Advertising ID. https://developer.android.com/
google/play-services/id.html, 2014.

[4] Android API Guides. https:
//developer.android.com/guide/index.html,
2014.

[5] Android Application Fundamentals.
http://developer.android.com/guide/
components/fundamentals.html, 2014.

[6] Android NDK. http://developer.android.com/
tools/sdk/ndk/index.html, 2014.

[7] AppBrain Statistics on Android Libraries: Ad Networks.
http:
//www.appbrain.com/stats/libraries/ad,
2014.

[8] AXML: Read Write Android Binary XML and resources.arsc
Files. https://code.google.com/p/axml/, 2014.

[9] Chartboost. http://www.chartboost.com/, 2014.
[10] Component-based Software Engineering.

http://en.wikipedia.org/wiki/
Component-based_software_engineering, 2014.

[11] Distribution of Free vs. Paid Android Apps.
http://www.appbrain.com/stats/
free-and-paid-android-applications, 2014.

[12] Gartner Says Worldwide Traditional PC, Tablet, Ultramobile
and Mobile Phone Shipments to Grow 4.2 Percent in 2014.
http:
//www.gartner.com/newsroom/id/2791017,
2014.

[13] Google Play. https://play.google.com/store,
2014.

[14] Install Adblock Plus for Android. https:
//adblockplus.org/en/android-install, 2014.

[15] ProGuard. http://developer.android.com/
tools/help/proguard.html, 2014.

[16] Sandrop: Secure Android Proxy.
https://code.google.com/p/sandrop/, 2014.

[17] Soot: a Java Optimization Framework.
http://www.sable.mcgill.ca/soot/, 2014.

[18] XPricacy. https:
//github.com/M66B/XPrivacy#xprivacy, 2014.

[19] P. Aditya, B. Bhattacharjee, P. Druschel, V. Erdélyi, and
M. Lentz. Brave New World: Privacy Risks for Mobile Users.
In Proc. ACM SPME, 2014.

[20] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. L. Traon, D. Octeau, and P. McDaniel. FlowDroid: Precise
Context, Flow, Field, Object-sensitive and Lifecycle-aware
Taint Analysis for Android Apps. In Proc. ACM PLDI, 2014.

[21] K. Au, B. Zhou, J. Huang, and D. Lie. PScout: Analyzing the
Android Permission Specification. In Proc. ACM CCS, 2012.

[22] M. Backes, S. Bugiel, S. Gerling, and P. Styp-Rekowsky.
Android Security Framework: Enabling Generic and
Extensible Access Control on Android. arXiv preprint
arXiv:1404.1395, 2014.

[23] M. Backes, S. Gerling, C. Hammer, M. Maffei, and von
P. Styp-Rekowsky. AppGuard: Enforcing User Requirements
on Android Apps. In Proc. ETAPS TACAS. 2013.

[24] A. Bartel, J. Klein, M. Monperrus, K. Allix, and Y. Traon.
Improving privacy on android smartphones through in-vivo
bytecode instrumentation. arXiv preprint arXiv:1208.4536,
2012.

[25] A. R. Beresfordand, A. Rice, N. Skehin, and R. Sohan.
MockDroid: Trading Privacy for Application Functionality on
Smartphones. In ACM HotMobile, 2011.

[26] T. Book, A. Pridgen, and D. Wallach. Longitudinal Analysis
of Android Ad Library Permissions. In Proc. IEEE MoST,
2013.

102

[27] T. Book and D. Wallach. A Case of Collusion: A Study of the
Interface between Ad Libraries and Their Apps. In Proc. ACM
SPSM, 2013.

[28] S. Bugiel, S. Heuser, and A. Sadeghi. Flexible and
Fine-grained Mandatory Access Control on Android for
Diverse Security and Privacy Policies. In Proc. USENIX
security, 2013.

[29] C. Chang and C. Lin. LIBSVM: A Library for Support Vector
Machines. ACM Transactions on Intelligent Systems and
Technology, 2:27:1–27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[30] J. Crussell, R. Stevens, and H. Chen. MAdFraud:
Investigating Ad Fraud in Android Applications. In Proc.
ACM MobiSys, 2014.

[31] B. Davis and H. Chen. Retroskeleton: Retrofitting Android
apps. In Proc. ACM MobiSys, 2013.

[32] B. Davis, B. Sanders, A. Khodaverdian, and H. Chen.
I-ARM-Droid: A Rewriting Framework for In-app Reference
Monitors for Android Applications. In Proc. IEEE MoST,
2012.

[33] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung, P. McDaniel,
and A. Sheth. TaintDroid: An Information-flow Tracking
System for Realtime Privacy Monitoring on Smartphones. In
Proc. OSDI, 2010.

[34] C. Gibler, R. Stevens, J. Crussell, H. Chen, H. Zang, and
H. Choi. AdRob: Examining the Landscape and Impact of
Android Application Plagiarism. In Proc. ACM MobiSys,
2013.

[35] M. Grace, W. Zhou, X. Jiang, and A. Sadeghi. Unsafe
Exposure Analysis of Mobile In-app Advertisements. In Proc.
ACM WiSec, 2012.

[36] S. Hao, D. Li, W. Halfond, and R. Govindan. Sif: A selective
instrumentation framework for mobile applications. In Proc.
ACM MobiSys, 2013.

[37] S. Hao, B. Liu, S. Nath, W. Halfond, and R. Govindan.
PUMA: Programmable UI-automation for Large Scale
Dynamic Analysis of Mobile Apps. In Proc. MobiSys, 2014.

[38] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall.
These Aren’t the Droids You’re Looking for: Retrofitting
Android to Protect Data from Imperious Applications. In Proc.
ACM CCS, 2011.

[39] J. Jeon, K. Micinski, and J. Vaughan. Application-Centric
Security Policies on Unmodified Android. University of
Maryland Computer Science Department Technical Report,
2011.

[40] J. Jeon, K. Micinski, J. Vaughan, A. Fogel, N. Reddy, J. Foster,
and T. Millstein. Dr. Android and Mr. Hide: Fine-grained
Permissions in Android Applications. In Proc. SPSM, 2012.

[41] P. G. Kelley, M. Benisch, L. F. Cranor, and N. Sadeh. When
are users comfortable sharing locations with advertisers? In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’11, pages 2449–2452, New York,
NY, USA, 2011. ACM.

[42] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure
execution via program shepherding. In Proc. USENIX
Security, 2002.

[43] J. Lin, S. Amini, J. Hong, N. Sadeh, J. Lindqvist, and
J. Zhang. Expectation and Purpose: Understanding Users’
Mental Models of Mobile App Privacy through
Crowdsourcing. In Proc. ACM UbiComp, 2012.

[44] J. Lin, B. Liu, J. Hong, and N. Sadeh. Modeling Users’
Mobile App Privacy Preferences: Restoring Usability in a Sea
of Permission Settings. In Proc. SOUPS, 2014.

[45] B. Liu, J. Lin, and N. Sadeh. Reconciling Mobile App Privacy
and Usability on Smartphones: Could User Privacy Profiles
Help? In Proc. WWW, 2014.

[46] B. Liu, S. Nath, R. Govindan, and J. Liu. DECAF: Detecting
and Characterizing Ad Fraud in Mobile Apps. In USENIX
NSDI, 2014.

[47] A. Nadkarni and W. Enck. ASM: A Programmable Interface
for Extending Android Security. In Proc. USENIX security,
2014.

[48] M. Nauman, S. Khan, and X. Zhang. Apex: Extending
Android Permission Model and Enforcement with
User-defined Runtime Constraints. In Proc. ASIACCS, 2010.

[49] P. Pearce, A. Felt, G. Nunez, and D. Wagner. AdDroid:
Privilege Separation for Applications and Advertisers in
Android. In Proc. ACM ASIACCS, 2012.

[50] M. Probst. Dynamic Binary Translation. In Proc. UKUUG
Linux DeveloperâĂŹs Conference, 2002.

[51] S. Rasthofer, S. Arzt, and E. Bodden. A Machine-learning
Approach for Classifying and Categorizing Android Sources
and Sinks. In Proc. NDSS, 2014.

[52] N. Reddy, J. Jeon, J. Vaughan, T. Millstein, and J. Foster.
Application-Centric Security Policies on Unmodified Android.
UCLA Computer Science Department Technical Report, 2011.

[53] F. Roesner and T. Kohno. Securing embedded user interfaces:
Android and beyond. In Proc. USENIX Security, 2013.

[54] S. Rosen, Z. Qian, and Z. Mao. AppProfiler: a Flexible
Method of Exposing Privacy-related Behavior in Android
Applications to End Users. In Proc. ACM CODASPY, 2013.

[55] S. Shekhar, M. Dietz, and D. Wallach. AdSplit: Separating
Smartphone Advertising from Applications. In Proc. USENIX
Security, 2012.

[56] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and H. Chen.
Investigating User Privacy in Android Ad Libraries. In Proc.
IEEE MoST, 2012.

[57] A. Tongaonkar, S. Dai, A. Nucci, and D. Song. Understanding
Mobile App Usage Patterns Using in-App Advertisements. In
Proc. Passive and Active Measurement, 2013.

[58] N. Viennot, E. Garcia, and J. Nieh. A Measurement Study of
Google Play. In Proc. ACM SIGMETRICS, 2014.

[59] Y. Wang, S. Hariharan, C. Zhao, J. Liu, and W. Du. Compac:
Enforce Component-level Access Control in Android. In ACM
CODASPY, 2014.

[60] T. Werthmann, R. Hund, L. Davi, A. Sadeghi, and T. Holz.
PSiOS: Bring Your Own Privacy & Security to iOS Devices.
In ACM ASIACCS, 2013.

[61] D. Wetherall, D. Choffnes, B. Greenstein, S. Han,
P. Hornyack, J. Jung, S. Schechter, and X. Wang. Privacy
Revelations for Web and Mobile Apps.

[62] R. Xu, H. Saidi, and R. Anderson. Aurasium: Practical Policy
Enforcement for Android Applications. In Proc. USENIX
Security, 2012.

[63] B. Yee, D. Sehr, G. Dardyk, J. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar. Native client: A
sandbox for portable, untrusted x86 native code. In Proc.
IEEE Security and Privacy, 2009.

[64] Y. Zhou, X. Zhang, X. Jiang, and V. Freeh. Taming
Information-stealing Smartphone Applications (on Android).
In Proc. TRUST, 2011.

103

