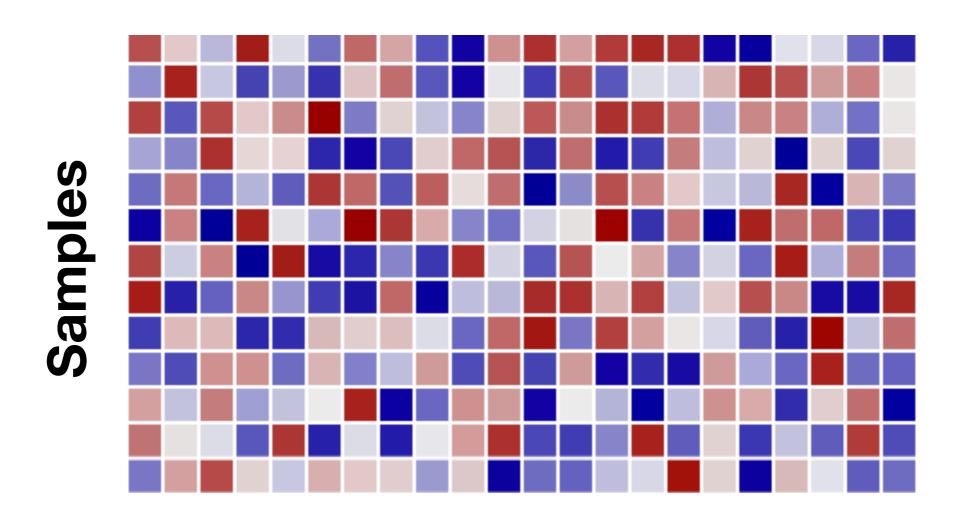
Personalized Regression Enables Sample-Specific Pan-Cancer Analysis

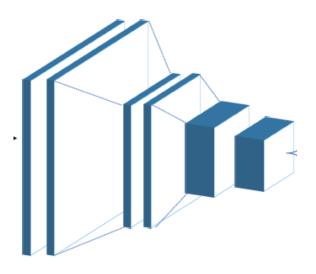
Benjamin J. Lengerich, Bryon Aragam, Eric P. Xing {blengeri, naragam, epxing}@cs.cmu.edu \$\square\$0\text{ben_lengerich}, @itsrainingdata

Cancer is Complex

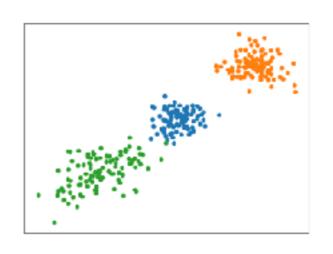

- Different mutations can cause similar phenotypes.
- There are many possible driver mutations.
- Do we need to build a single model that works for all cancers?
- Could we build a different model for each type of cancer?
 - But cancer "type" may not correspond to any single clinical covariate.

The Extreme: Sample-Specific Models

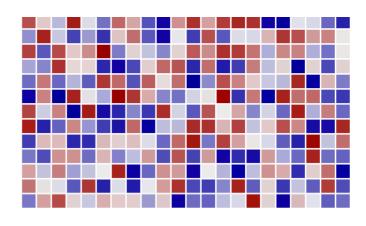
- What if we try to understand tumors one at a time?
- Could we use simple models that each work for a single patient?
 - Enable new types of questions to be asked: "How does this tumor's model differ from the cohort's?"


Our Goal

Sample-Specific, Pan-Cancer Models:



Model Parameters


Why Sample-Specific Models?

Deep Learning Mixed Effects

Mixtures

Sample-Specific Varying-Coefficient

Universal Effects

Complicated Effects

"Self-driving cars"

Personal Effects

Simple Effects

"This tumor is due to a mutation in gene TP53"

Why Pan-Cancer Models?

- Share information between rare and common cancer types
- Uncover molecular subtypes
- If we can handle clinical covariates well, tissue type can be simply treated as another covariate

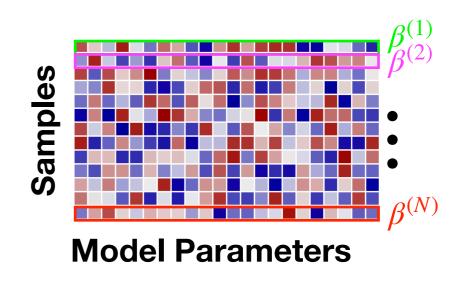
Tissue	n	Tissue	n
Breast	1,092	Ovary	376
Lung	1,016	Liver	371
Kidney	885	Cervix	304
Brain	677	Soft Tissue	259
Colorectal	623	Adrenal Gland	258
Uterus	611	Pancreas	177
Thyroid	502	Esophagus	164
Head and Neck	501	Bone Marrow	151
Prostate	495	Eye	80
Skin	468	Lymph Nodes	48
Bladder	408	Bile Duct	36
Stomach	380		

Number of Samples by Tissue Type in TCGA¹

Related Work

	Sample-Specific Models?	Unknown Covariate Effects?	General Framework?
Varying-Coefficient [1]			
Known Structure [2,3,4]			
Sample-Specific Network Estimation [5,6]			
Personalized Regression			

- 1. Hastie and Tibshirani. Journal of the Royal Statistical Society 1993
- 2. Song et al. NIPS 2009, 3. Kolar et al. NIPS 2009, 4. Parikh et al. ISMB 2011
- 5. Kuijjer et al. Arxiv 2015, 6. Liu et al. Nucleic Acids Research 2016


Personalized Regression

From estimating a single model:

$$Y = X\beta^T + \epsilon$$

To estimating sample-specific models:

$$Y^{(i)} = X^{(i)}\beta^{(i)T} + \epsilon^{(i)}$$

Overparameterized, but not hopeless!

Personalized Regression

Define the sample-specific loss functional to be minimized:

$$\mathcal{L}(\beta; d_{\beta}, d_{U}) \propto \sum_{i=1}^{N} \mathcal{L}^{(i)}(\beta^{(i)}; d_{\beta}, d_{U})$$

$$\mathcal{L}^{(i)}(\beta^{(i)}; d_{\beta}, d_{U}) \propto \underbrace{f(X^{(i)}, Y^{(i)}, \beta^{(i)})}_{\text{Prediction Loss}} + \underbrace{\rho_{\lambda}^{\beta}(\beta^{(i)})}_{\text{Regularization}} + \underbrace{\varrho_{\gamma}^{(i)}(d_{\beta}, d_{U})}_{\text{Distance-Match}}$$

Distance-Matching

Overparameterized, but not hopeless!

Distance Matching Regularization

- Main idea: Distance between sample parameters should be similar to distance between sample covariates.
- Define a regularization loss functional to be minimized:

$$\varrho_{\gamma}^{(i)}(d_{\beta},d_{U}) = \gamma \sum_{j \neq i} \left(\underbrace{d_{\beta}(\beta^{(i)},\beta^{(j)})}_{\text{parameter distance}} - \underbrace{d_{U}(U^{(i)},U^{(j)})}_{\text{covariate distance}} \right)^{2}$$

Pairwise distances between all samples

Distance Metrics Can Be Learned From Data

 Define distance metrics as linear combinations of featurewise distance metrics:

$$d_{\beta}(x, y) = [|x_1 - y_1|, ..., |x_P - y_P|] \phi_{\beta}^T$$

$$d_{U}(x, y) = [d_{U_1}(x_1, y_1), ..., d_{U_K}(x_K, y_K)] \phi_{U}^T$$

- After optimization, we can inspect the values in ϕ_{β} , ϕ_{U} to understand contributions to personalization.
- User must supply covariate-specific distance metrics.
 - Can use complicated covariate distance metrics.

When is Personalized Regression Useful?

- We are seeking a model for **inference**, not necessarily most accurate predictive model.
- We are seeking relatively simple personalized effects, not complex universal effects.
- We have covariate data which is informative of each sample.

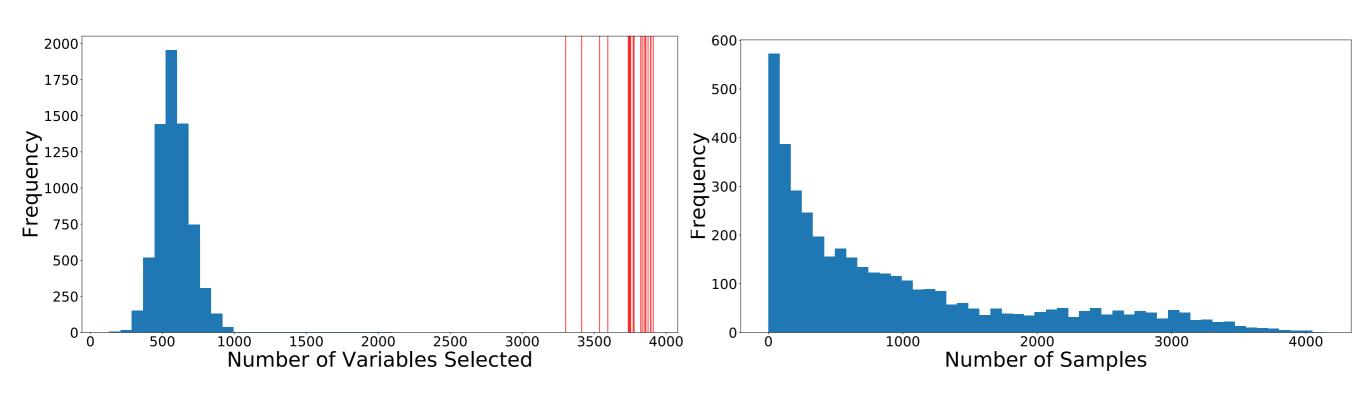
Experiments

TCGA Pan-Cancer Analysis

- Model: Logistic Regression with Lasso Regularization
- Task: Predict Case/Control Status
- Data:
 - 28 primary sites
 - 9663 samples (8944 case, 719 control)
 - 4123 RNA-Seq features
 - 14 clinical covariates

Tissue	n	Tissue	n
Breast	1,092	Ovary	376
Lung	1,016	Liver	371
Kidney	885	Cervix	304
Brain	677	Soft Tissue	259
Colorectal	623	Adrenal Gland	258
Uterus	611	Pancreas	177
Thyroid	502	Esophagus	164
Head and Neck	501	Bone Marrow	151
Prostate	495	Eye	80
Skin	468	Lymph Nodes	48
Bladder	408	Bile Duct	36
Stomach	380		

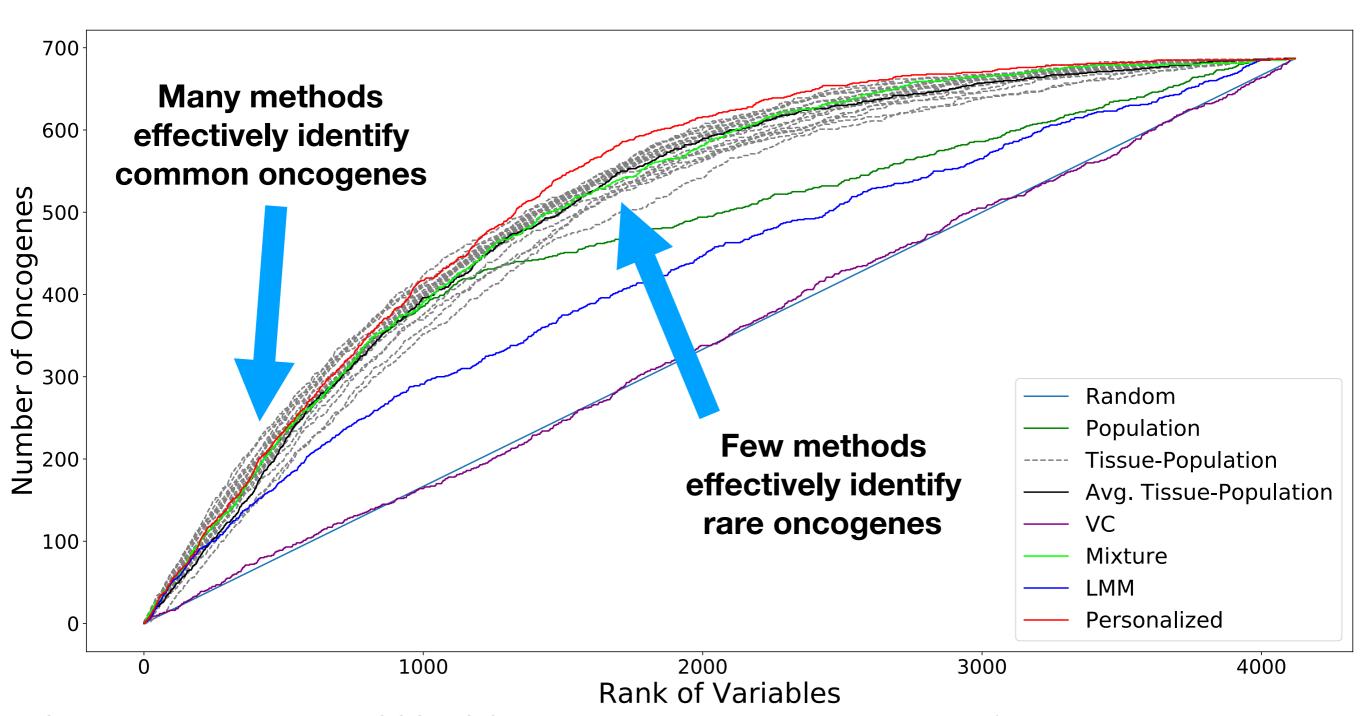
Number of Samples by Tissue Type in TCGA¹


Clinical Covariates

- 14 Clinical Covariates:
 - **Tissue Features**: Disease Type, Primary Site, Days to Collection
 - Sample Molecular Biomarkers: Pct. Tumor Cells, Pct.
 Normal Cells, Pct. Tumor Nuclei, Pct. Lymphocyte Infiltration,
 Pct. Stromal Cells, Pct. Monocyte Infiltration, Pct. Neutrophil
 Infiltration
 - Patient Demographic Features: Age at Diagnosis, Year of Birth, Gender, Race
- Traditional methods expect these data encoded as one-hot vectors, which expands dimensionality 5X!

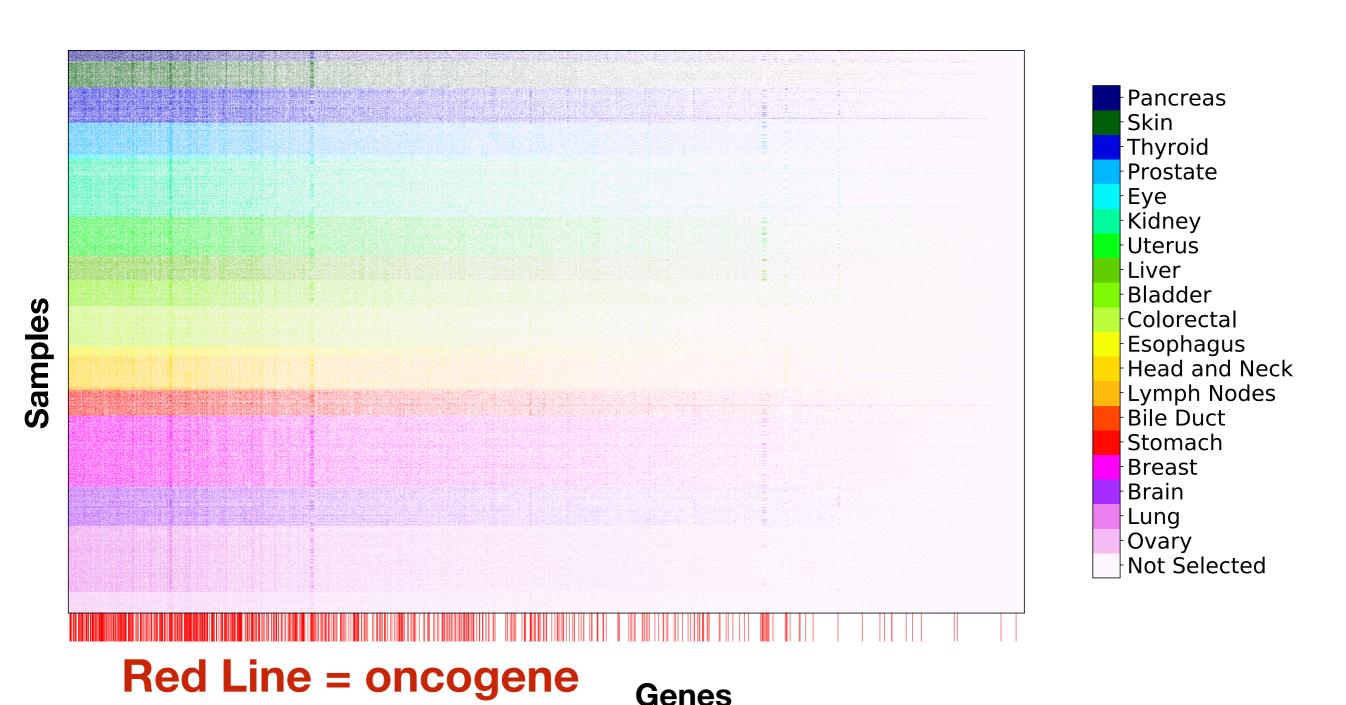
Personalized Models Are More Efficient with Variable Selection

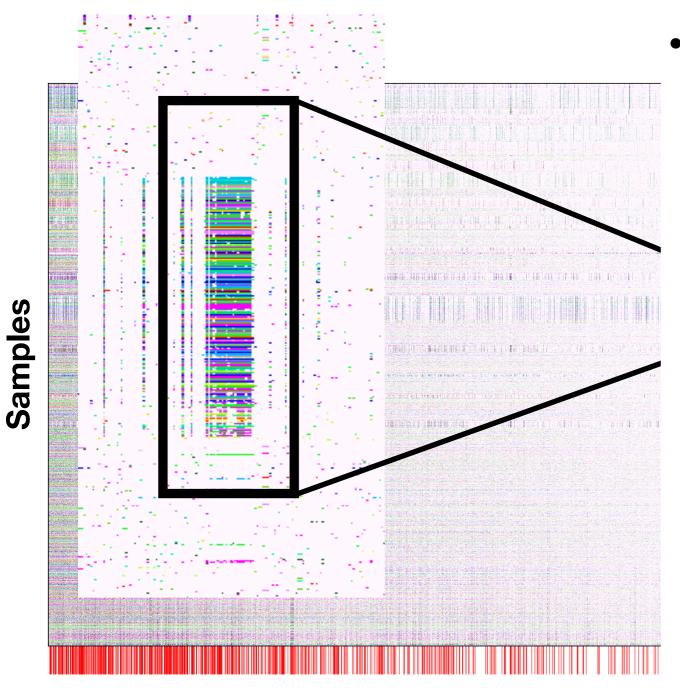
Selects Fewer Genes Per Sample:


Uses each Gene in Fewer Samples:

Red Lines Indicate Number of Variables Selected by Tissue-Specific Models

Most Genes are Selected for Fewer than 500 Samples


Personalized Regression Gives More Weight to Known Oncogenes [1]


1. Oncogenes as annotated in COSMIC (Forbes et al. Nucleic Acids Research 2014)

17 Ben Lengerich | ISMB 2018

Personalized Regression Produces Sample-Specific Pan-Cancer Models

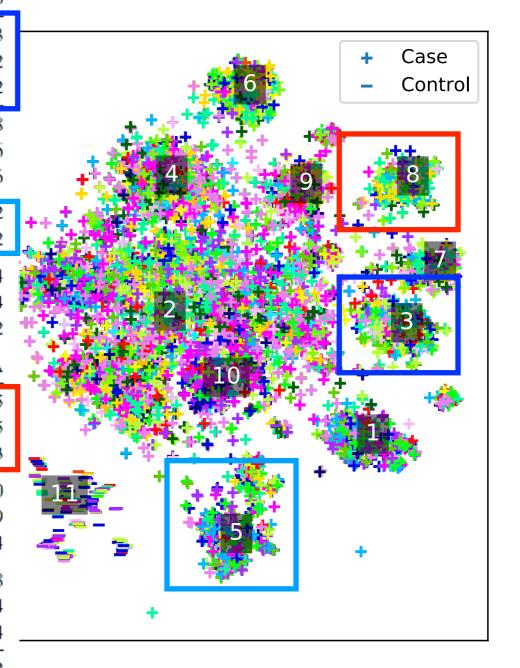
Personalized Models Reveal Molecular Subtypes Which Span Tissues

- Over-represented for the GO biological process term "Modulation of Chemical Synaptic Transmission" (p < 0.05FDR)
 - Includes genes ATP1A2, SLC6A4, ASIC1, GRM3, and SLC8A3, which code for ion-transport processes.
 - Ion-transport processes have long been seen in vivo as an important system in thyroid cancer [1] and in vitro from leukemic cells [2], but only recently as a functional marker across different cancer types [3].

Filetti et al. European Journal of Endocrinology 1999

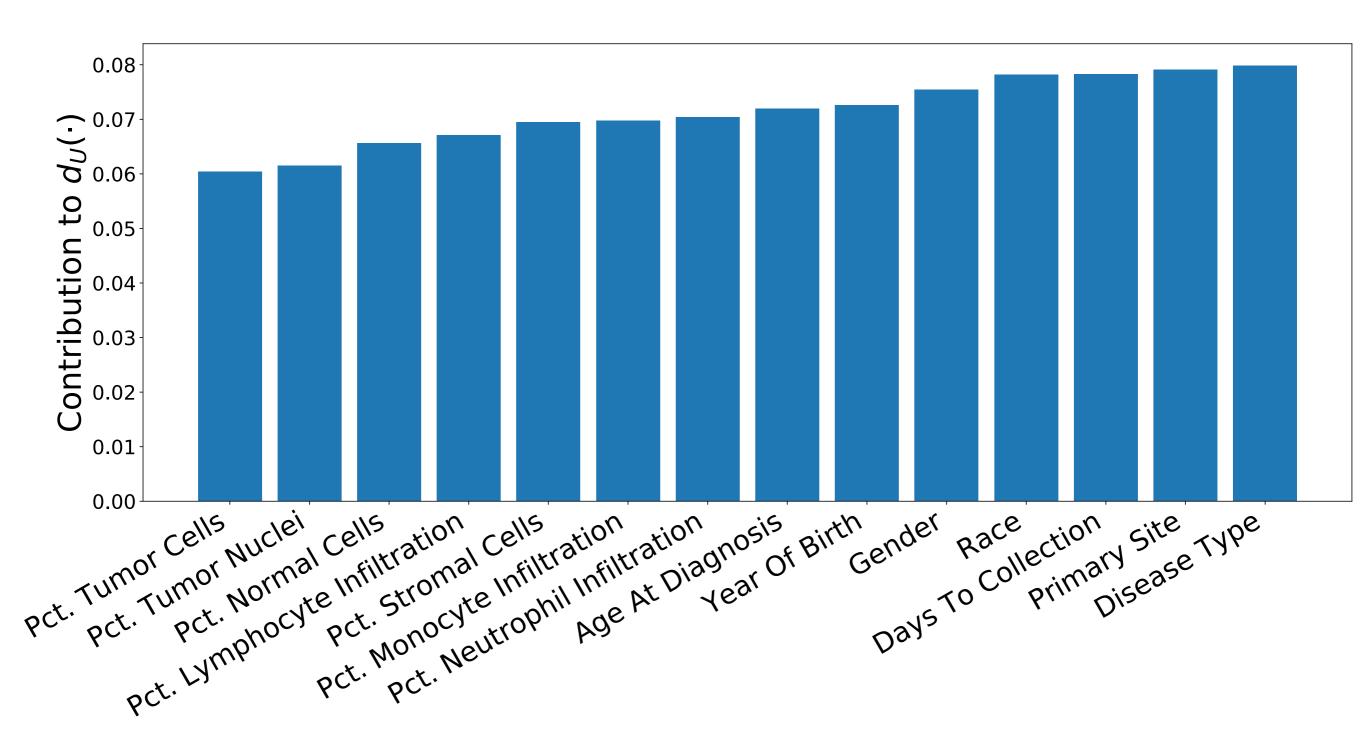
Morgan et al. Cancer Research 1986 Scafoglio et al. PNAS 2015

Ben Lengerich | ISMB 2018


Gel...

1	Symbiont Process Regulation of Cellular Catabolic Process Protein Modification Process	2.62e-3 1.96c-2 3.43e-2
	DNA repair RNA splicing, via Transesterification	3.21e-12
2	Reactions with Bulged Adenosine as Nucleophile	3.64c-7
	Extracellular Processes - Antige	n .00e-6
	Symbiont Process	1.4c-3
3	Antigen Processing and Presentation of Peptide Antigen Antigen Processing and Presentation of Exogenous Antigen	1.06e-2 1.08e-2
	DNA Metabolic Process	3.83e-8
4	DNA repair	1.68e-6
	Extracellular Processes - Membra	ne ic-6
5	Plasma Membrane Bounded Cell Projection Morphogenesis	1.45e-2
.)	Neuron Projection Development	3.02e-2
	mRNA Catabolic Process	8.78e-4
6	Gene Expression	6.02c-4
	Macromolecule Biosynthetic Process	3.32e-2
7		0.020 2
<u>. </u>	Cellular Metabolism None	
	Cellular Metabolism None Generation of Precursor Metabolites and Energy	
8		N/A 4.75e-5
	Generation of Precursor Metabolites and Energy	N/A 4.75e-5 4.52c-5
	Generation of Precursor Metabolites and Energy Oxidation-Reduction Process	N/A 4.75e-5 4.52c-5
	Generation of Precursor Metabolites and Energy Oxidation-Reduction Process Citrate Metabolic Process	N/A 4.75e-5 4.52c-5 9.84e-3 3.96e-10
8	Generation of Precursor Metabolites and Energy Oxidation-Reduction Process Citrate Metabolic Process DNA Metabolic Process	N/A 4.75e-5 4.52c-5 9.84e-3 3.96e-10 5.57c-9
8	Generation of Precursor Metabolites and Energy Oxidation-Reduction Process Citrate Metabolic Process DNA Metabolic Process Cellular Response to DNA Damage Stimulus	N/A 4.75e-5 4.52c-5 9.84e-3
8	Generation of Precursor Metabolites and Energy Oxidation-Reduction Process Citrate Metabolic Process DNA Metabolic Process Cellular Response to DNA Damage Stimulus Protein Complex Subunit Organization	N/A 4.75e-5 4.52c-5 9.84e-3 3.96e-10 5.57c-9 1.41e-4
9	Generation of Precursor Metabolites and Energy Oxidation-Reduction Process Citrate Metabolic Process DNA Metabolic Process Cellular Response to DNA Damage Stimulus Protein Complex Subunit Organization DNA Metabolic Process	N/A 4.75e-5 4.52c-5 9.84e-3 3.96e-10 5.57c-9 1.41e-4 7.15c-8
9	Generation of Precursor Metabolites and Energy Oxidation-Reduction Process Citrate Metabolic Process DNA Metabolic Process Cellular Response to DNA Damage Stimulus Protein Complex Subunit Organization DNA Metabolic Process ncRNA Metabolic Process	N/A 4.75e-5 4.52c-5 9.84e-3 3.96e-10 5.57c-9 1.41e-4 7.15c-8 1.33e-4

Cluster


Biological Process p-value

Models Form stinct Signatures

- Pancreas
 - Skin
- Thyroid
- Prostate
- Eye
- Kidney
- Uterus
- Liver
- Bladder
- Colorectal
- Esophagus
- Head and Neck
- Lymph Nodes
- Bile Duct
- Stomach
- Breast
- Brain
- Lung
- Ovary

Personalized Regression Learns Clinical Distance Metrics

Conclusions

- Sample-specific models can give us a new perspective.
 - Unlock bottom-up in addition to traditional top-down analyses.
- Personalized Regression with Distance-Matching
 Regularization effectively learns sample-specific models.
- Personalized Regression reveals patterns in pan-cancer transcriptomic data that are overlooked by traditional analyses.

Future Work

- Biological Questions Sample-Specific Processes?
- More complex personalized models
- Personalized Regression for Single-Cell Data, Election Modeling, Stock Prediction

Thank You

Code available at:

github.com/blengerich/ personalized regression

Collaborators:

Bryon Aragam

• Eric P. Xing

Contact: {blengeri, epxing}
 @cs.cmu.edu

Travel to ISMB generously supported by ISCB

Research supported by NIH

The Gory Details

Personalized Regression: Optimization

Define pairwise distance vectors by:

$$\Delta_{\beta}^{(i,j)} = \left[d_{\beta_1}(\beta_1^{(i)}, \beta_1^{(j)}), \dots, d_{\beta_P}(\beta_P^{(i)}, \beta_P^{(j)}) \right]$$

$$\Delta_{U}^{(i,j)} = \left[d_{U_1}(U_1^{(i)}, U_1^{(j)}), \dots, d_{U_K}(U_K^{(i)}, U_K^{(j)}) \right]$$

Construction of the covariate distance tensor can be amortized

Avoiding Degenerate Solutions

- Add priors to distance metrics
- From:

$$\varrho_{\gamma}^{(i)}(d_{\beta}, d_{U}) = \gamma \sum_{j \neq i} \left(\underbrace{d_{\beta}(\beta^{(i)}, \beta^{(j)})}_{\text{parameter distance}} - \underbrace{d_{U}(U^{(i)}, U^{(j)})}_{\text{covariate distance}} \right)^{2}$$

• To:

$$\varrho_{\gamma}^{(i)}(d_{\beta},d_{U}) = \gamma \sum_{j \neq i} \left(\underbrace{d_{\beta}(\beta^{(i)},\beta^{(j)})}_{\text{parameter distance}} - \underbrace{d_{U}(U^{(i)},U^{(j)})}_{\text{covariate distance}} \right)^{2} + \psi_{\alpha}(d_{\beta}) + \psi_{v}(d_{U})$$

Avoiding Degenerate Solutions

Add priors to distance metrics

$$\varrho_{\gamma}^{(i)}(d_{\beta},d_{U}) = \gamma \sum_{j \neq i} \left(\underbrace{d_{\beta}(\beta^{(i)},\beta^{(j)})}_{\text{parameter distance}} - \underbrace{d_{U}(U^{(i)},U^{(j)})}_{\text{covariate distance}} \right)^{2} + \psi_{\alpha}(d_{\beta}) + \psi_{v}(d_{U})$$

where

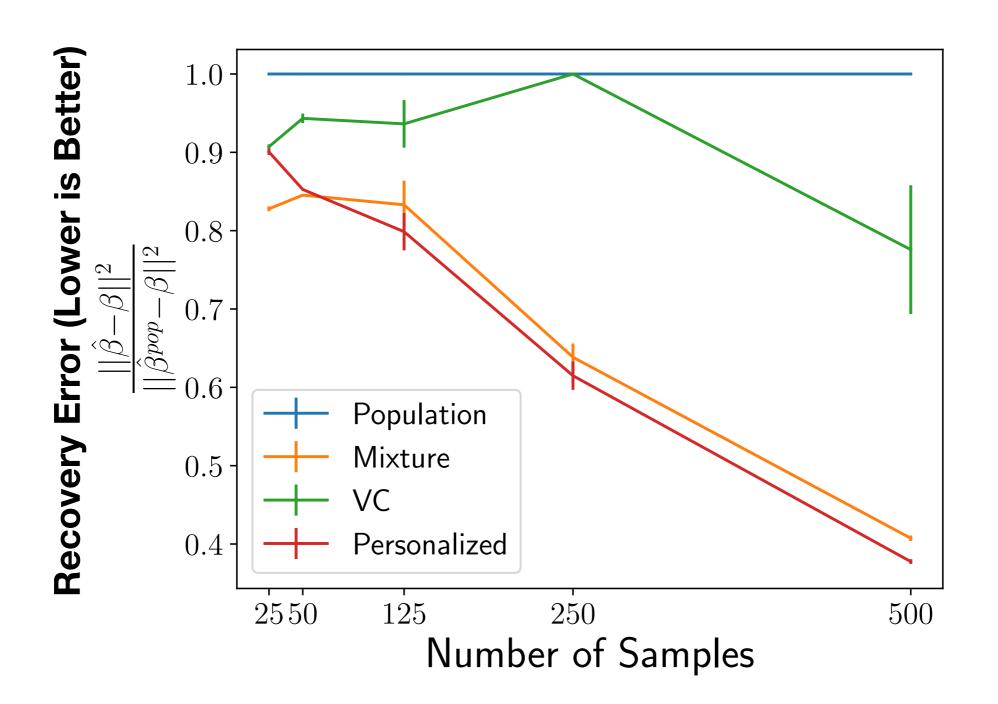

$$\psi_{\alpha}(d_{\beta}) = \alpha ||\phi_{\beta} - \phi_{beta}^{0}||^{2}$$

$$\psi_{\nu}(d_{U}) = \nu ||\phi_{U} - \phi_{U}^{0}||^{2}$$

• and we project loadings into the non-negative reals.

Personalized Regression

- Initialize at population solution
- Allow each personalized model to "fine-tune" away from the central population solution (block coordinate descent)
 - Distance-matching regularization ensures the personalized models respect covariate structure


Inference Procedure

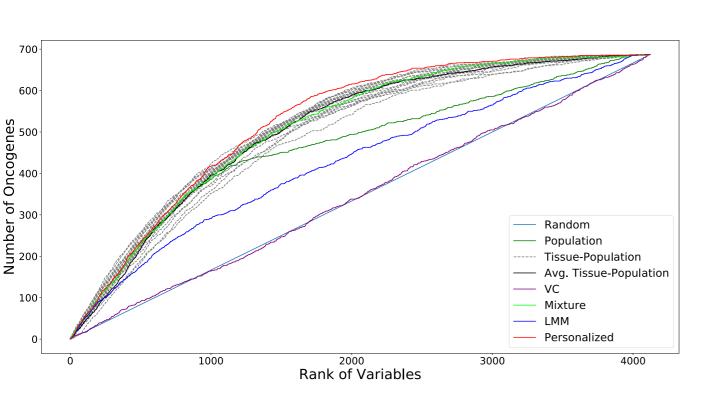
- Conveniently, we have already learned distance metrics to use for predictions.
- On test data, we identify the closest neighbors and use their sample-specific models.

Algorithm 1 Inference Procedure

```
Require: Test point (X^{(test)}, U^{(test)}), predictive model p(\cdot, \cdot), number of nearest neighbors m
distances \leftarrow \{d_U(U^{(test)}, U^{(i)}) : i \in [1, \dots, N_{train}]\}
neighbors \leftarrow \text{sort}(distances)[0 : m]
\beta^{(test)} \leftarrow \text{mean}(\{\beta^{(i)} : i \in neighbors\})
return \ p(X^{(test)}, \beta^{(test)})
```

Simulation Results

- At moderate sample sizes, personalized regression recovers parameters well.
- At low sample size, cannot learn distance metrics.


Personalized Regression Fine-Tunes Accuracy

- Here, personalized regression overfits the data but is still better than competing methods.
- Better clinical distance metrics and hyperparameter tuning will likely alleviate overfitting.

Model	Train Error (%)	Test Error (%)
Population	6.9	6.8
Tissue-Population	6.5	6.8
Mixture	6.7	6.8
VC	7.5	8.7
LMM	7.0	7.1
Personalized	6.3	6.7

Personalized Regression Does Not Merely Identify More Enriched Gene Sets

Enrichment	Analysis	of Com	nlete	Rankings
	Allalysis		DICIC	nalikiliyə.

Model	Biological Process	p-value
	mRNA Processing	2.06e-8
Population	DNA Metabolic Process	3.18e-6
	Organelle Organization	3.86e-2
	mRNA Processing	3.09e-9
Time Demokration	Metabolic Process	3.26e-5
Tissue-Population	Transcription, DNA-Dependent	9.61e-5
	DNA metabolic process	5.9e-3
	mRNA processing	1.45e-8
Mixtura	DNA Metabolic process	1.96e-5
Mixture	transcription, DNA-dependent	2.62e-4
	organelle organization	7.32e-3
VC	None	NA
LMM	DNA metabolic process	2.02e-2
	mRNA processing	5.83e-6
Personalized	metabolic process	1.1e-3
	DNA metabolic process	3.15e-2

Instead, it identifies a variety of sample-specific patterns which do not fit into a small number of mixtures