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ABSTRACT
Labeling text data is quite time-consuming but essential for
automatic text classification. Especially, manually creating
multiple labels for each document may become impractical
when a very large amount of data is needed for training
multi-label text classifiers. To minimize the human-labeling
efforts, we propose a novel multi-label active learning ap-
proach which can reduce the required labeled data with-
out sacrificing the classification accuracy. Traditional active
learning algorithms can only handle single-label problems,
that is, each data is restricted to have one label. Our ap-
proach takes into account the multi-label information, and
select the unlabeled data which can lead to the largest re-
duction of the expected model loss. Specifically, the model
loss is approximated by the size of version space, and the
reduction rate of the size of version space is optimized with
Support Vector Machines (SVM). An effective label predic-
tion method is designed to predict possible labels for each
unlabeled data point, and the expected loss for multi-label
data is approximated by summing up losses on all labels
according to the most confident result of label prediction.
Experiments on several real-world data sets (all are pub-
licly available) demonstrate that our approach can obtain
promising classification result with much fewer labeled data
than state-of-the-art methods.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval; I.5.2 [Design Methodology]: Classifier Design and
Evaluation

General Terms
Algorithms, Performance, Experimentation
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1. INTRODUCTION
As text data becomes a major information source in our

daily life, many research efforts have been conducted in text
classification to better organize text data, in applications
like document filtering, email classification, Web search, etc.
In particular, multi-label text classification problems have
received considerable attention, since many text classifica-
tion tasks are multi-labeled, i.e., each document can belong
to more than one category. Take news classification as an ex-
ample, one news article talking about the effect of Olympic
games on tourism industry might belong to the following
topic categories: sports, economy and travel.

In the literature, supervised learning algorithms are widely
used in text classification. It requires a sufficient amount of
labeled data for training a high quality model. However,
labeling is usually a time-consuming and expensive process
done by domain experts. Active learning is an approach to
reduce the labeling cost. The active learner iteratively se-
lects a sample of data to label based on some selection strate-
gies suggesting that the data most deserves to be labeled.
Thus it can achieve comparable performance with supervised
learners while using much less labeled data. Active learning
is particularly important for the multi-label text classifica-
tion task. The reason is that, in the single-label case, a
human judge can stop labeling an instance once its category
is identified. But in the multi-label case, human judges need
to decide all possible categories for each instance. Thus the
effort of assigning labels for multi-label data is much larger
than for the single-label data.

Despite the value and significance of this problem, there
is very limited research on multi-label active learning. Most
of the active learning research focuses on the single-label
classification problem [10, 21, 14, 22]. The sample selec-
tion strategy strictly follows the assumption that each in-
stance has only one label, and thus cannot directly applied
in multi-label active learning. The reason can be explained
by the following example. Suppose there are three categories
c1, c2, c3 in the multi-label classification task. The popu-
lar one-versus-all technique [3] is used and the classification
probabilities on all possible classes are given. Assume the
probabilities on instance x1 are [c1:0.8, c2:0.5, c3:0.1] and on
x2 is [c1:0.7, c2:0.1,c3:0.1]. x1 actually has two labels c1 and
c2, and x2 has one label c1. It can be found that correctly
predicting labels for x1 is harder than x2. However, if we
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assume each instance only has one label and take the most
uncertainty strategy, x2 would be considered to be harder to
classify, since the probability score on the predicted label of
x2 is 0.7, which is lower than that of x1 0.8. Thus consider-
ing multi-label information in the sample selection strategy
is very important.

In this paper, we propose a novel multi-label active learn-
ing approach for text classification. The sample selection
strategy aims to label data which can help maximize the
reduction rate of the expected model loss. To measure the
loss reduction, we use Support Vector Machines (SVM) in
terms of version space [21] due to the effectiveness of SVM
active learning on text classification. In the original work,
the loss is modeled for single-label case, and here we ex-
tend it to multi-label case. We also propose an effective
method to predict labels for multi-label data. The expected
loss is approximated with the loss associated with the most
confident result of label prediction. We will show that a
proper label prediction method is critical in measuring loss
for multi-label data.

We empirically evaluate the effectiveness of the proposed
approach using several real-world data sets that are pub-
licly available. The results demonstrate that our method
is superior to the state-of-the-art active learning algorithms
for multi-label text classification, and can significantly re-
duce the demand of labeled data while maintaining promis-
ing classification results.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 presents the defi-
nition of multi-label active learning problem. Section 4 in-
troduces our SVM-based active learner, including the loss
optimization framework and the sample selection strategy.
Section 5 shows experimental results of our algorithm on
several real-world data sets compared with other baseline
methods. Section 6 presents conclusions and future work.

2. RELATED WORK
Active learning on text classification has been well re-

searched. Based on the adopted sample selection strategy,
they can be grouped into three types: 1) Uncertainty sam-
pling [10, 14]. The active learner iteratively labels the un-
labeled data on which the current hypothesis is most uncer-
tain. 2) Expected-error reduction [2, 18, 22]. The strategy
aims to label data to minimize the expected error on the
unlabeled data. Usually it requires expensive computational
effort on estimating the expected error, since each of the un-
labeled data associated with each possible labeling needs to
be evaluated. 3) Committee-based active learner. It has the
similar idea with uncertainty sampling strategy. The active
learner selects data to label that have the largest disagree-
ment among several committee members (classifiers) from
the version space. The work of query by committee [19] is
the first algorithm of this kind. In [21], the idea is extended
to Support Vector Machine active learning, and it models
the reduction of version space size with SVM.

However, most of the previous research targets single-label
classification problems. The sample selection strategy eval-
uates each unlabeled data by assuming it has only one label.
For instance, the uncertainty sampling strategy will focus on
measuring the confidence of the most likely class, and the
error reduction strategy will estimate the expected error by
just considering single-label cases. Thus these strategies can
not be directly applied in multi-label text classification.

There is very limited research on multi-label active learn-
ing. The research work of [9] is the one most related to our
paper with respect to the studied problem. It decomposes
the multi-label classification problem to several binary ones
using one-versus-all approach. The selection strategy mini-
mizes the smallest SVM margin among all binary classifica-
tion problems. The approach does not consider the multi-
label information, and treats all classes equally. In [12], an
SVM active learning method was proposed for multi-label
image classification. It selects unlabeled data which has the
maximum mean loss value over the predicted classes. The
multi-label classification problem is also viewed as several
binary classification tasks. A threshold of loss value is esti-
mated for each binary classifier, and then used to decide the
predicted classes for unlabeled data. According to our exper-
iments, this threshold cutting method is not effective on the
text classification data sets we used. Also for image classifi-
cation, [16, 17] developed a two-dimensional active learning
algorithm, which selects sample-label pairs to minimize the
Bayesian classification error bound. It is reasonable to label
picture-category pairs since judging a picture’s label is very
efficient. However, this method is not suitable for text clas-
sification task. Because it will introduce much additional
cost if a document is read several times. Obviously, the cost
of reading a document and judging its label is much bigger
than that of a picture. Recently, [4] proposed several active
learning strategies for multi-label text classification. Each
selection strategy consists of one rule to combine the output
of individual binary classifiers, including three orthogonal
dimensions: ”evidence”, ”class” and ”weight”. Also, they do
not take account of the label prediction result for each in-
stance in the selection strategy.

3. PROBLEM DEFINITION
Multi-label text classification is the task of automatically

classifying text documents into a subset of predefined classes.
Denote training examples as x1, ...,xn and the k classes as
1, ..., k. We represent the label set of xi by a binary vector
yi = [y1

i , ..., yk
i ], yj

i ∈ {−1, +1}, where yj
i = 1 if xi belongs

to class j, otherwise yj
i = −1. Denote the set of all pos-

sible class combinations as Y (|Y| = 2k). The multi-label
classifier can be expressed as a decision function f : X → Y.

In our active learning study, we consider SVM as the ba-
sic multi-label classifier, since SVM has demonstrated sig-
nificant success on text classification tasks [7, 23]. Usu-
ally, multi-label SVM adopts the one-versus-all approach,
which trains a separate binary classifier for each possible
class against the rest of classes, and combines the output of
all the binary classifiers to determine the final labels of the
given data. In binary classification, SVM tries to find the
hyperplane that can separate the training data by a max-
imal margin. Denote f i as the binary classifier associated
with target class i. Given a test instance x′, if f i(x′) > 0,
then x′ belongs to class i, otherwise, the labels of x′ will not
include class i.

In this paper, we adopt the pool-based active learning ap-
proach which is usually used in the literature. Assume we
are given a pool of partially labeled data. Denote the data
with labels by Dl, which is typically small in size, and the
remaining data without labels by Du. At the beginning, a
classifier is trained using the initial labeled set Dl. Based
on this classifier, the learner selects a sample from Du and
queries for its true labels according to some criterion. Then
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the newly labeled data is incorporated into Dl. The training
and labeling process runs iteratively after a certain number
of iterations or when the classifier reaches a sufficient accu-
racy.

The key issue of active learning is how to select the most
informative data examples to label, which is also called sam-
ple selection strategy. So, the research problem studied in
this work can be described as follows: in order to train an
effective multi-label active learner, how to design the sam-
ple selection strategy to reduce the human labeling cost as
much as possible?

4. SVM-BASED ACTIVE LEARNING FOR
MULTI-LABEL TEXT CLASSIFICATION

In this section, we will first introduce the optimization
framework for multi-label active learning. Next we will de-
scribe our sample selection strategy with SVM.

4.1 Optimization Framework for Multi-label
Active Learning

The optimization goal of our multi-label active learner is
to label data which can contribute the largest reduction of
the expected model loss.

Let P (x) be the input distribution. Denote the multi-
label prediction function given training set Dl as fDl . The
predicted label set of x is fDl(x). Suppose the true label
set of x is y, then the estimated loss on x can be writ-
ten as L(fDl(x),y) (we will simplify L(fDl(x),y) by writing
L(fDl) in the following discussion), and the expected loss of
the learner can be expressed as follows:

σ̂Dl =

∫

x

(
∑
y∈Y

L(fDl)P (y|x))P (x)dx (1)

As it is rather difficult to estimate P (x) directly, a practical
way to estimate σ̂Dl is to measure it over all the examples
in Du. Therefore we have

σ̂Dl =
1

|Du|
∑

x∈Du

∑
y∈Y

L(fDl)P (y|x) (2)

The active learner will evaluate each possible set of unla-
beled data Ds to find the optimal query set D∗

s . When Ds

obtains its labels, it can be incorporated to the training set.
Denote the new training set as D′

l = Dl + Ds, and the ex-
pected loss for the classifier trained on D′

l as σ̂D′
l
. The opti-

mization problem is to find the optimal query set D∗
s , which

once added, will generate the largest reduction on expected
loss.

D∗
s = arg max

Ds

(σ̂Dl − σ̂D′
l
)

= arg max
Ds

(
∑

x∈Du

∑
y∈Y

(L(fDl)− L(fD′
l
))P (y|x))

(3)

As in [1], we assume that any x in Du−Ds has equal impact
on the learner trained from Dl and D′

l. Then we will have

D∗
s = arg max

Ds

(
∑

x∈Ds

∑
y∈Y

(L(fDl)− L(fD′
l
))P (y|x)) (4)

4.2 Sample Selection Strategy with SVM
According to Equation 4, the optimization problem can be

divided into two parts: how to measure the loss reduction of

the multi-label classifier and how to provide a good proba-
bility estimation for the conditional probability p(y|x). We
will address these two issues respectively in the following
subsections.

4.2.1 Estimate Loss Reduction
As discussed in Section 3, we decompose the multi-label

problem to one-versus-all subproblems and use SVM as the
base binary classifier in active learning. By decomposing
the classifier into several binary ones, the overall model loss
can be measured by gathering the model loss of all binary
classifiers.

L(f) =

k∑
i=1

l(f i), (5)

where l(f i) is the model loss of binary classifier f i. So the
problem becomes how to estimate the model loss of each
binary classifier. As suggested by S. Tong et al. [21], we
measure the model loss by the size of version space of a
binary SVM. According to [21], the version space of SVM
can be defined as follows:

V = {w ∈ W | ‖w‖ = 1, yi(w · xi) > 0, i = 1, ..., n} (6)

where W denotes the parameter space. The size of a version
space is defined as the surface area of the hypersphere ‖w‖ =
1 in W .

Based on the work in [21], we can use SVM margin as
the measure of the version space size. When a new labeled
example is added, we can approximate the new version space
size by computing the SVM margin of the updated classifier.
However, it is too expensive in computation when each data
in the unlabeled pool associated with each possible label set
needs to be evaluated. To make it more practical, we apply
the heuristics idea in [20] to simplify the approximation by
mapping the SVM margin of the current classifier to the size
of the new version space.

In multi-label settings, denote V i
Dl

as the size of version

space of the binary classifier f i
Dl

associated with target class
i and learnt from labeled data Dl. After adding new data
point (x, yi), where yi ∈ {−1, +1} is the true label for data
x on class i, the new model loss versus the old one on the
binary classifier f i

Dl
, can be approximated by:

l(f i
Dl+(x,yi))

l(f i
Dl

)
≈

V i
Dl+(x,yi)

V i
Dl

≈ 1 + yif i
Dl

(x)

2
(7)

Then the loss reduction part in Equation 4 can be re-written
by:

L(fDl)− L(fD′
l
) =

k∑
i=1

(l(f i
Dl

)− l(f i
D′

l
))

=

k∑
i=1

(l(f i
Dl

) · (1−
l(f i

D′
l
)

l(f i
Dl

)
))

(8)

Note that l(f i
Dl

) has nothing to do with the selected unla-
beled example x, so we can focus on optimizing the reduction
rate, which can be approximated as

k∑
i=1

(
1− yif i

Dl
(x)

2
) (9)

Intuitively, the idea of the above estimation can be ex-
plained as follows. Consider an unlabeled data example x,
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if x can be correctly predicted by the binary classifier f i,
then the smaller the value of |f i(x)| is, the more uncertain
the classifier is on x, and x deserves more to label. This is
consistent with the result of the above measure, since x will
contribute more in reducing the size of the version space.
On the other hand, if the classifier provides wrong predic-
tion result for x, then the larger |f i(x)| is, the more mistake
the classifier will make, and in another view, adding x will
greatly help reduce the size of the version space.

4.2.2 Label Prediction
Now we come to the issue of estimating the conditional

probability p(y|x), y ∈ Y. Note that for k labels, there
are 2k possible label combinations. It is intractable for ac-
tive learner to provide estimation on all these possibilities.
Particularly, it will become harder when the training data
is quite limited, which is common in active learning. To
simplify the estimation, we approximate the expected loss
with the loss on the most possible label combination, since
the predicted labels with the largest confidence will be most
likely to be correct. Thus the problem becomes how to pro-
duce better label prediction on the unlabeled data. We pro-
pose a novel prediction approach to address this problem.
Instead of directly estimating the possible labels for each
data, we first try to decide the possible label number each
data may have, and then determine the final labels based on
the probability on each label obtained by the corresponding
binary classifier.

Suppose there are k classes. Using the one-versus-all ap-
proach, we can have k binary classifiers. Given data x, de-
note p(yi = 1|x) as the probability of x belonging to class i.
We can obtain k classification probabilities on x produced by
the k binary classifiers. Sort these k probabilities in decreas-
ing order. If x actually has m labels, the first m probabilities
are expected to be large while the other k−m probabilities
are expected to be small. Based on this assumption, we
want to predict the number of labels for each data based on
the probabilities output by the binary classifiers.

Specifically, we predict the number of labels by tackling a
multi-class classification problem. Logistic regression (LR)
algorithm is used to train a multi-class model and predict
the probabilities of having different number of labels for each
data. For k classes, there are k possible number of labels :
1, ..., k. So we have k classes in the multi-class classification
problem. Before LR is used, we transform the decision out-
put on the training data to classification probabilities. Here,
we use the sigmoid function [13] to transform the SVM out-
put to probability values. For a data example x, we have

p(yi = 1|x) =
1

1 + exp(Af i(x) + B)

where f i is the binary SVM classifier associated with class
i, A and B are scalar values fit by maximum likelihood es-
timation.

The process of predicting number of labels can be de-
scribed as follows:

1. Use the SVM classifier to assign classification proba-
bilities for all data examples.

2. For each instance x, sort the classification probabil-
ities in decreasing order, p(yi1 = 1|x) ≥ p(yi2 =
1|x) ≥ ... ≥ p(yik = 1|x). Normalize the classifi-
cation probabilities and obtain q1(x), ..., qk(x), where

qp(x) = p(yip=1|x)
k∑

t=1
p(yit=1|x)

.

3. Train logistic regression classifier. For each training
data x, present [1 : q1(x), 2 : q2(x), ..., k : qk(x)] as
the training features for LR model. The number of
labels of x is used as the category to train a multi-
class classifier.

4. For each data in the unlabeled pool, apply the LR
classifier to predict the probabilities of having different
number of labels, and output the label with the largest
probability to be the predicted number of labels for the
data.

Suppose the most possible number of labels for data x is m,
and i1, ..., im are the m classes associated with the largest
probabilities produced by the m corresponding binary SVM
classifiers. Then the predicted label vector ŷ can be rep-
resented by the binary vector [ŷi1 = 1, .., ŷij = 1, ŷij+1 =
−1, ..., ŷik = −1]. We call this approach LR − based label
prediction.

By incorporating the predicted label vector into the ex-
pected loss estimation, we obtain our data selection strategy,
Maximum loss reduction with Maximal Confidence(MMC).
It can be written as

D∗
s = arg max

Ds

(
∑

x∈Ds

k∑
i=1

(
1− ŷif i(x)

2
)), (10)

Based on the above discussion, the proposed active learn-
ing algorithm is described in Algorithm 1.

Algorithm 1 Multi-label Active Learning

Input: Labeled set Dl

Unlabeled set Du

Number of classes k
Number of iterations T
Number of selected examples per iteration S

1: for t = 1 to T do
2: Train k binary SVM classifiers f1, ..., fk based on

training data Dl

3: for each instance x in Du do
4: Predict its label vector using the LR-based predic-

tion method described in Section 4.2.2.
5: Calculate the expected loss reduction with the

most confident label vector ŷ, score(x) =∑k
i=1(

1−ŷifi(x)
2

)
6: Sort score(x) in decreasing order for all x in Du

7: Select a set of S examples D∗
s with the largest scores,

and update the training set Dl ← Dl + D∗
s

5. EXPERIMENTS
In this section, we will evaluate our proposed multi-label

active learning approach for multi-label text classification
task on seven real-world data sets, comparing with the state-
of-the-art active learning approaches.

920



Table 1: Statistics on RCV1-V2 and Yahoo! Data
Sets

Data sets #Samples #Features #Label
RCV1-V2 3,000 47,236 101

Arts&Humanities 7,484 23,146 26
Business&Economy 11,214 21,924 30
Computers&Internet 12,444 34,096 33

Education 12,030 27,534 33
Entertainment 12,730 32,001 21

Health 9,205 30,605 32

5.1 Data Sets and Experiment Settings
The first data set1 we used is the RCV1-V2 [11] text data

set, which has been widely used as a benchmark data set to
evaluate text classification algorithms. It contains Reuters
newswire stories which are organized by three different cat-
egory sets: Topics, Industries, and Regions. Each document
is assigned with at least one label in the related category
set. A sample of 3,000 documents in the Topics category set
is chosen for our experiments, including 101 labels.

The other 6 data sets2 are web pages collected through the
hyperlinks from Yahoo!’s top directory (www.yahoo.com).
They are used in [15, 8] to evaluate multi-label text clas-
sification algorithms. Each data set is associated with one
of Yahoo!’s top categories, and each page is labeled with
one or more second level sub-categories. We choose 6 data
sets for our experiments, which are Arts&Humanities, Busi-
ness&Economy, Computers&Internet, Education, Entertain-
ment, and Health.

The details of all the 7 data sets are given in Table 1.
“#Samples”is the number of samples in each data set. “#Fea-
tures” is the feature dimension of each data set. “#Label” is
the number of labels in each data set.

On all data sets, the documents are transformed to vec-
tors with TF-IDF format, and each vector has unit modulus
with L-2 length normalization. One-versus-all classification
is conducted for each category and the multi-label classi-
fication problem is treated as several binary classification
problems, where the documents from the target category
are given positive label (i.e. y = 1), and the rest of the doc-
uments are given negative label (i.e. y = −1). SV MLight

package [7] is downloaded and used to train the binary clas-
sifier. Linear kernel is used due to its good performance in
text classification task [6]. The penalty parameter C is set
to 1.0 by default.

In our active learning experiments on each data set, we
first randomly selected a small set of documents to form the
initial labeled set, and left the remaining documents as the
unlabeled pool. Then the active learner selects a given num-
ber of examples from the unlabeled pool in each iteration,
and then add them to the labeled set with their labels. We
performed several active learning iterations on each data set
until the learner achieves sufficient accuracy. In every iter-
ation, once the selected data being incorporated, the active
learner retrained a new classifier on the expanded labeled set
and its performance was evaluated on the remaining data ex-
amples. We used Micro-Average F1 score as the evaluation

1http://trec.nist.gov/data/reuters/reuters.html
2http://www.kecl.ntt.co.jp/as/members/ueda/yahoo.tar.gz

measure, since it is a standard evaluation used in most previ-
ous text classification research. As defined in [23], micro-F1
score in multi-label case is given as follows

2
k∑

j=1

n∑
i=1

ŷj
i y

j
i

k∑
j=1

n∑
i=1

ŷj
i +

k∑
j=1

n∑
i=1

yj
i

where n is the number of test data, yi is the true label vec-
tor of the i-th data instance, yj

i = 1 if the instance belongs

to category j; otherwise yj
i = −1. ŷi is the predicted la-

bel vector. We computed the average of micro-F1 scores
for each active learning iteration based on 10 randomized
experiments.

In our experiments, we will evaluate and compare four
active learning methods:

• MMC. The active learning method proposed in this
paper.

• Random. The sample selection strategy is to randomly
select data examples from the unlabeled pool to label.

• BinMin. This is a sample selection strategy proposed
in [9], which is most related to our research work with
respect to the problem studied. In this work, one-
versus-all approach is used for multi-label classifica-
tion, and SVM is used as the basic binary classifier.
The optimal unlabeled example is selected according
to

arg min
x

min
i=1,...,k

|f i(x)|

where f i is the binary classifier on the binary problem
associated with class i. That is, it selects unlabeled
examples with respect to the most uncertain label. As
stated in Section 2, this method does not take advan-
tages of the multi-label information.

• Mean Max Loss(MML).This strategy is to select un-
labeled data which has the maximum mean loss value
over all the predicted labels [12]. For each predicted
label j, the loss is measured as

k∑
i=1

max[(1−mijf
i(x)), 0]

where mij = 1 if i = j, else mij = −1, and f i is the
binary SVM classifier on class i. The algorithm uses
a threshold cutting method to decide the predicted la-
bels. However, according to our experiments on the
text data sets, this method is usually unable to pick out
predicted labels correctly. Thus we replace the label
prediction part with our LR-based prediction method
in Section 4.2.2, and focus on evaluating the effective-
ness of the loss optimization.

5.2 Results and Discussions
In this section, we will present and discuss the experiment

results on the RCV1-V2 data set as well as the 6 Yahoo! data
sets.
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Figure 1: Comparison between label prediction
methods on RCV1-V2 data set (no active learning)

Experimental Results with RCV1-V2 data set.
In the first experiment, we would like to verify whether

our method of label prediction (presented in Section 4.2.2)
is effective when only a small amount of training data is
available, as this is very typical in active learning. Two
popular prediction methods for multi-label classification are
implemented for comparison purposes. In previous studies,
the SCut method is widely used and proved very effective
for predicting labels in multi-label classification tasks [11].
In [11], a binary classifier is first trained for each label. A
threshold score is tuned for each binary classification task
and then used to decide if an unlabeled data example be-
longs to the corresponding class or not. The second pre-
diction method is simply setting the threshold score to be
zero for each binary problem. If the classification score is
positive, then the data belongs to this class, and vice versa.
This simple method has its theoretical foundation, as when
SVM is used, zero score corresponds with the classification
hyperplane induced from statistical learning theory.

In order to verify the effectiveness of the LR-based method
in predicting labels, we varied the number of training data
from 100 to 1,000 (with 100 as step size). The correspond-
ing micro-F1 curves for predicting labels are plot in Fig-
ure 1. We can observe that, as the number of training data
varies, the LR-based method achieves substantially better
performance than both baseline methods. When less train-
ing data is available, the advantage of LR is more obvious.
This demonstrates that the LR-based method is more effec-
tive for label prediction in multi-label active learning frame-
work.

In the following we will report the active learning experi-
ment results. We randomly selected 500 examples as the ini-
tial labeled data. Active learning was iteratively performed
for 50 iterations, selecting 20 examples from the unlabeled
pool each time. Figure 2 and Table 2 show the experimen-
tal results of micro-F1 scores averaging over 10 random tri-
als. The proposed MMC strategy outperforms other base-
line methods by a large margin. Surprisingly, we can see
that MML performs even worse than Random at the begin-
ning, and worse than MMC and BinMin for all cases. Since
MML adopts the same label prediction approach as MMC,
the observation above indicates that the loss optimization
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Figure 2: Micro-F1 score on RCV1-V2 data set

Table 2: Micro-F1 score at different iterations on
RCV1-V2 data set(%)

K MMC BinMin MML Random
100 68.02 67.35 66.38 67.10
200 70.28 69.08 68.05 68.77
300 72.62 70.68 69.39 70.26
400 74.62 71.69 70.72 71.33
500 76.33 72.66 71.75 72.29
600 77.81 73.76 73.04 72.99
700 79.07 74.61 74.23 73.69
800 80.32 75.37 74.84 74.27
900 81.62 76.25 75.47 74.89
1000 82.88 77.19 75.77 75.12

approach used in MML is not effective on multi-label text
data. Instead, our approach optimizes the loss reduction
rate over all labels based on the most confident label vec-
tor, and it can successfully pick out useful data examples
to label. We can also find that our proposed method out-
performs all baseline methods more significantly than Bin-
Min. An explanation is that the BinMin strategy does not
take advantage of the multi-label information, while our ap-
proach effectively estimates possible labels for each instance
and incorporates the multi-label information to optimize the
expected loss reduction.

Table 2 shows the performance results with the number
of training samples added. We can find that as the number
of selected data increases, the improvement becomes more
and more significant. For example, when 1,000 examples are
added, the micro-F1 score of our method achieves 82.88%,
while that of BinMin, MML and Random are 77.19%, 75.77%
and 75.12% respectively. We can find that MMC achieves
the similar performance with BinMin by using about 600 se-
lected examples, while BinMin needs to select 1,000 exam-
ples. It indicates that MMC can save about 40% labeling
effort compared with BinMin.

In order to investigate if our MMC algorithm is sensitive
to the size of initial labeled data set, we varied the number of
initial training data from 100 to 1,000, with 100 as step size.
For each fixed initial labeled set, we applied active learning
and selected 20 examples at each iteration. Then we com-
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Figure 3: Micro-F1 score on RCV1-V2 data set after
adding 1000 examples
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Figure 4: Micro-F1 score of MMC on RCV1-V2 data
set with different sampling sizes per run

pared the performance of the final classifier after 50 active
learning iterations. Figure 3 presents the micro-F1 scores
of final classifiers with the size of initial training data set.
We can see that our proposed MMC algorithm consistently
outperforms all other methods when the initial training data
set varies in size. The consistent improvement indicates that
our MMC strategy is robust with different size of the initial
labeled data set.

We also varied the sampling size per run and investigated
its impact on the performance of the active learner. In
this experiment, we started with 500 training examples and
stopped after 1,000 examples are added. The sampling size
S was set to 1, 20, 50, 100 and 200. The results of MMC
with various sampling size are depicted in Figure 4. We can
see that generally the performance improves as the sampling
size decreases. A possible explanation is that having more
chances to query labels enables the learner to make better
evaluation on unlabeled examples, and to choose more in-
formative examples to label.

Table 3: Micro-F1 score on the Yahoo! data sets
with 2,500 training samples added (%)

Data sets MMC BinMin MML Random
Arts&Humanities 65.03 61.67 60.26 58.74
Business&Economy 80.54 78.37 77.08 75.90
Computers&Internet 77.13 75.05 74.37 73.94
Education 71.28 69.29 66.97 67.65
Entertainment 75.46 74.46 73.14 70.82
Health 81.05 79.56 74.74 74.60

Experimental Results with Yahoo! data sets.
The following experiments are conducted with the 6 Ya-

hoo! data sets. On each data set, we randomly selected
500 data instances as the initial training data, and set the
sampling size in each active learning run to 50. The learn-
ing process was repeated for 50 rounds. The active learning
results were averaged over 10 random trials. Fig 5 presents
the performance of all active learners with the number of
training data added. We can observe that our proposed
method MMC outperforms other baseline methods on all
six data sets. The most noticeable case is the Comput-
ers&Internet data set, where the BinMin method only pro-
vides slight improvement over the Random method. How-
ever, MMC achieves substantially better performance. It
can be observed that MMC only requires labeling 900 ex-
amples to achieve the similar performance with BinMin and
MML which require labeling about 1,600 and 2,100 exam-
ples respectively. We can also see that MML has worse
performance compared with Random on most of the cases.
This implies that the loss optimization framework of MML
is worse than that of MMC on multi-label text data. Com-
pared with MMC, BinMin is less effective to enhance the ac-
tive learner as the training example grows. This underscores
the importance of considering multi-label information when
evaluating unlabeled examples. The promising results of
MMC confirm that the proposed method can provide proper
evaluation on the unlabeled data examples, and select the
informative ones which can help enhance the learner more ef-
fectively. Table 3 summarizes the classification results mea-
sured by micro-F1 after 50 active learning iterations on the
six Yahoo! data sets. It shows that the proposed MMC
method provides more favorable performance than all other
baseline methods for all six data sets, and the improvement
of MMC over Random is more significant than that of Bin-
Min and MML.

From the above experiments, we can observe that MMC
provides promising performance on diverse data sets. This
indicates that it is more effective and robust for training
multi-label text classifier than the state-of-the-art active learn-
ing methods.

6. CONCLUSIONS
In this paper, we try to address the problem of multi-label

active learning for text classification. The goal is to reduce
the required size of labeled data in multi-label classifica-
tion while maintaining favorable accuracy performance. We
propose a novel multi-label active learning algorithm with
Support Vector Machines (SVM). The optimization goal is
to select data to label which can maximize the reduction in
the expected model loss. Our approach provides proper ap-
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Figure 5: Micro-F1 score on Yahoo! data sets
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proximation on the loss reduction and the expected loss in
the optimization framework. Experiments on several real-
world data sets show that our proposed method outperforms
the state-of-the art active learning techniques on multi-label
text classification by a large margin and can significantly re-
duce the labeling cost.

Note that our active learning approach should evaluate
each of the unlabeled data at every active learning itera-
tion. The computation would be expensive when the size of
unlabeled pool is very large and the number of categories is
very big. So it would be interesting to study how to evaluate
only a subset of the unlabeled pool and also be able to pick
out informative data to label. We plan to explore this exten-
sion in the future. Also, we will apply our method on other
multi-label classification tasks, e.g., image classification.

7. ACKNOWLEDGMENTS
We express our grateful thanks to Prof. Jian Pei from

Simon Fraser University for his valuable suggestions on this
work.

8. REFERENCES
[1] C. Campbell, N. Cristianini, and A. J. Smola. Query learning

with large margin classifiers. In Proceedings of the 7th
International Conference on Machine Learning (ICML’00),
pages 111–118, 2000.

[2] D. A. Cohn, Z. Ghahramani, and M. I. Jordan. Active learning
with statistical models. In Advances in Neural Information
Processing Systems, volume 7, pages 705–712. The MIT Press,
1995.

[3] C. Cortes and V. Vapnik. Support vector networks. In
Machine Learning, pages 273–297, 1995.

[4] A. Esuli and F. Sebastiani. Active learning strategies for
multi-label text classification. In Proceedings of the 31th
European Conference on Information Retrieval (ECIR’09),
pages 102–113, 2009.

[5] R.-E. Fan and C.-J. Lin. A study on threshold selection for
multi-label classification. Technical Report, National Taiwan
University, 2007.

[6] T. Joachims. Text categorization with support vector
machines: Learning with many relevant features. pages
137–142. Springer Verlag, 1998.

[7] T. Joachims. Learning to Classify Text Using Support Vector
Machines: Methods, Theory and Algorithms. Kluwer
Academic Publishers, Norwell, MA, USA, 2002.

[8] H. Kazawa, T. Izumitani, H. Taira, and E. Maeda. Maximal
margin labeling for multi-topic text categorization. In
Advances in Neural Information Processing Systems
(NIPS’05), pages 649–656, 2005.

[9] K. Brinker. On Active Learning in Multi-label Classification.
“FromData and Information Analysis to Knowledge
Engineering” of BookSeries “Studies in Classification, Data
Analysis, and Knowledge Or-ganization”, Springer, 2006. 1, 2.

[10] D. D. Lewis and W. A. Gale. A sequential algorithm for
training text classifiers. In Proceedings of the 17th annual
international ACM SIGIR conference on Research and
development in information retrieval(SIGIR’94), pages 3–12,
1994.

[11] D. D. Lewis, Y. Yang, T. G. Rose, G. Dietterich, F. Li, and
F. Li. Rcv1: A new benchmark collection for text
categorization research. Journal of Machine Learning
Research, 5:361–397, 2004.

[12] X. Li, L. Wang, and E. Sung. Multi-label svm active learning
for image classification. In International Conference on Image
Processing, pages 2207–2210, 2004.

[13] H.-T. Lin, C.-J. Lin, and R. C. Weng. A note on Platt’s
probabilistic outputs for support vector machines. Journal of
Machine Learning Research, 68(3):267–276, 2007.

[14] T. Luo, K. Kramer, D. B. Goldgof, L. O. Hall, S. Samson,
A. Remsen, and T. Hopkins. Active learning to recognize
multiple types of plankton. Journal of Machine Learning
Research, 6:589–613, 2005.

[15] N. Ueda and K. Saito. Single-shot detection of multiple
categories of text using parametric mixture models. In
Proceedings of the 8th ACM SIGKDD international
conference on Knowledge discovery and data
mining(KDD’02), pages 626–631, 2002.

[16] G.-J. Qi, X.-S. Hua, Y. Rui, J. Tang, and H.-J. Zhang.
Two-dimensional active learning for image classification. IEEE
Conference on Computer Vision and Pattern Recognition,
2008.

[17] G.-J. Qi, X.-S. Hua, Y. Rui, J. Tang, and H.-J. Zhang.
Two-dimensional multi-label active learning with an efficient
online adaptation model for image classification. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
99(1), 2008.

[18] N. Roy and A. McCallum. Toward optimal active learning
through sampling estimation of error reduction. In Proceedings
of the 8th International Conference on Machine
Learning(ICML’01), pages 441–448, 2001.

[19] H. S. Seung, M. Opper, and H. Sompolinsky. Query by
committee. In Proceedings of the 5th annual workshop on
Computational learning theory(COLT’92), pages 287–294,
1992.

[20] S. Tong. Active learning: Theory and Applications. PhD
thesis, Standford University, CA, 2001.

[21] S. Tong and D. Koller. Support vector machine active learning
with applications to text classification. Journal of Machine
Learning Research, 2:45–66, 2002.

[22] R. Yan, J. Yang, and A. Hauptmann. Automatically labeling
video data using multi-class active learning. In Proceedings of
the 9th IEEE International Conference on Computer
Vision(ICCV’03), page 516, 2003.

[23] Y. Yang. A study on thresholding strategies for text
categorization. In Proceedings of 24th International
Conference on Research and Development in Information
Retrieval(SIGIR’01), pages 137–145, 2001.

925


