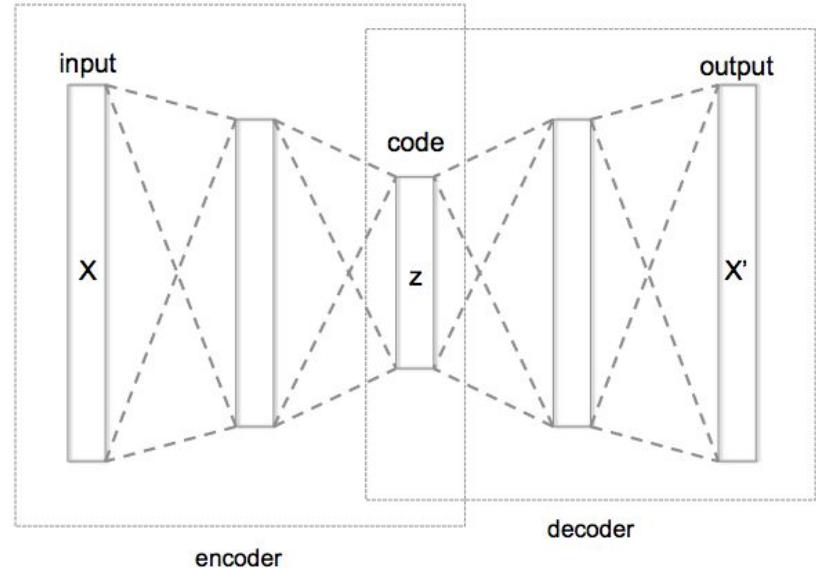

Variational Autoencoder

William Hu

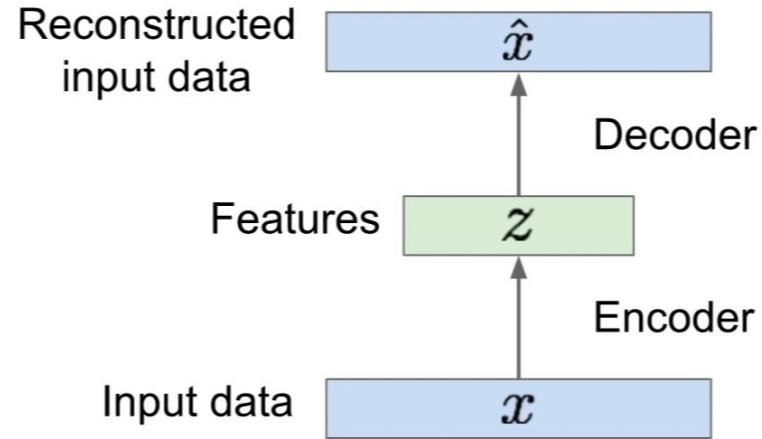
Autoencoder

- A type of neural network used to learn efficient data encodings in unsupervised manner.
- Consists of two networks, encoder and decoder.
- Dimensionality reduction
 - Transform data in high-dimensional space to low-dimensional space data.

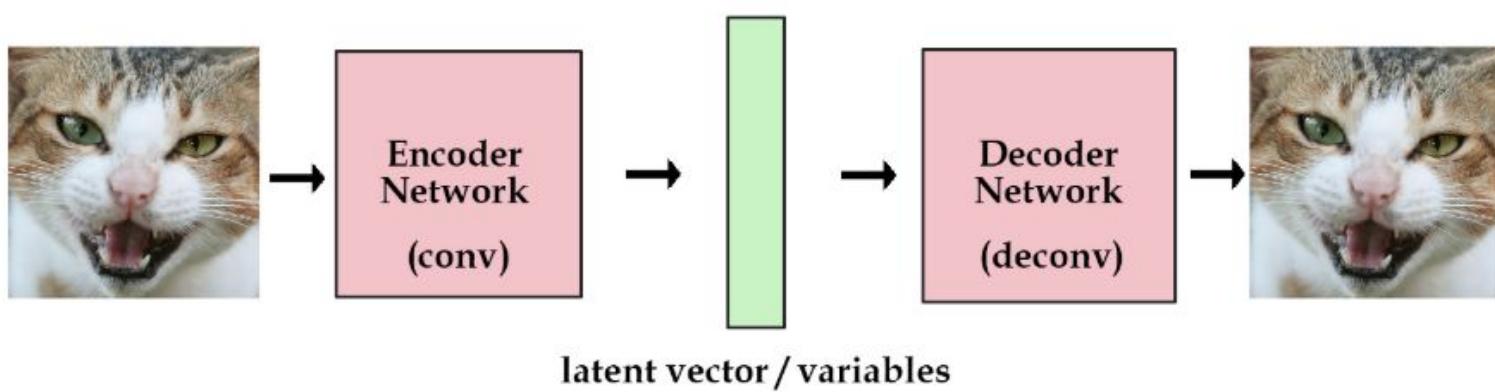


Autoencoder

- Input as data in high dimensional space.
- Encoder to reduce its dimension.
- Decoder to reconstruct the original data.
- Possible networks, including:
 - Linear layers connected with nonlinearity (activation functions).
 - Dense, fully connected layers.
 - Conv and DeConv
 - LSTM, RNN, GRU etc.
- L2 loss to measure the difference between the input and the output.
- Can be very useful when we are trying to extract important features.

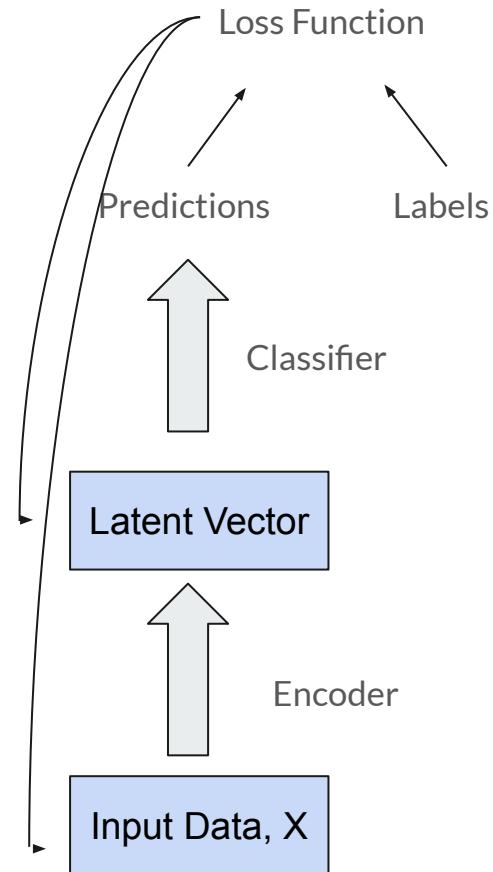


Autoencoder



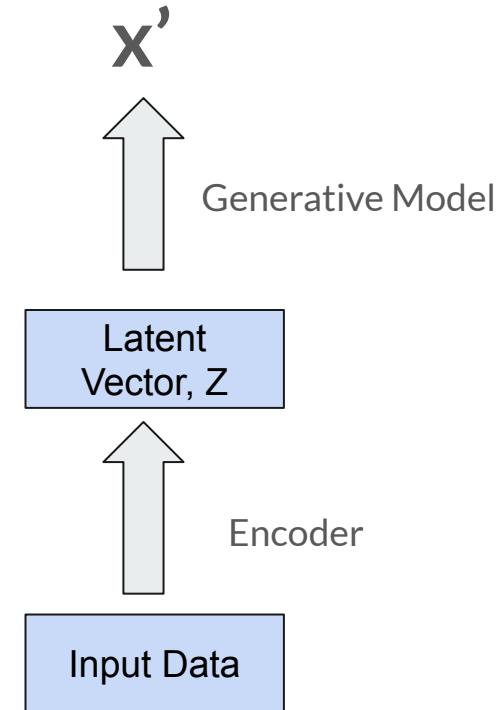
Autoencoder

- Can be also applied in supervised learning problem.
- Remove the decoder part, use only the encoder as feature extractor.
- Combine with supervised models, fine-tune them jointly.
- Large amount of unlabeled data together with labelled data.



What AE is not good at

- What if we want to generate new data, for example, new images?
- Given the input, we generate a latent representation z .
- What we trying to do is to sample x' from prior z .
 - z is a latent vector that contains some factors of the desired x .
 - If we are generating human faces, then z might contain the information about the eyebrow, about how high the nose is.

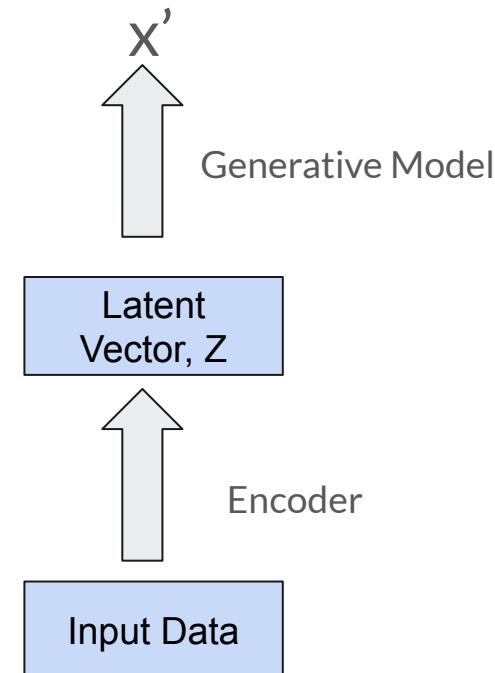


Generative Model using AE

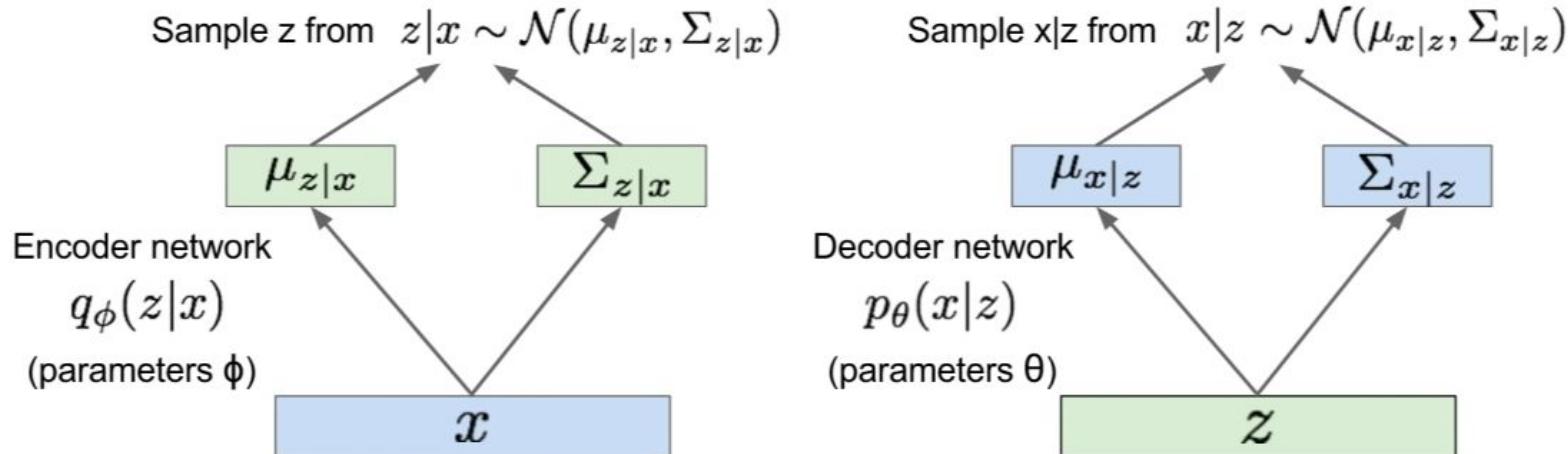
- We want to estimate the true parameter θ^* of this generative model.
- Assume that prior $p(z)$ is just gaussian distribution.
- The conditional probability of $p(x'|z)$, this we will use a network to represent.
- Learn the parameters that maximize the likelihood of the training data.

$$p_{\theta}(x) = \int p_{\theta}(z)p_{\theta}(x|z)dz$$

- **Problem:** it is intractable to compute $p(x|z)$ for every z .

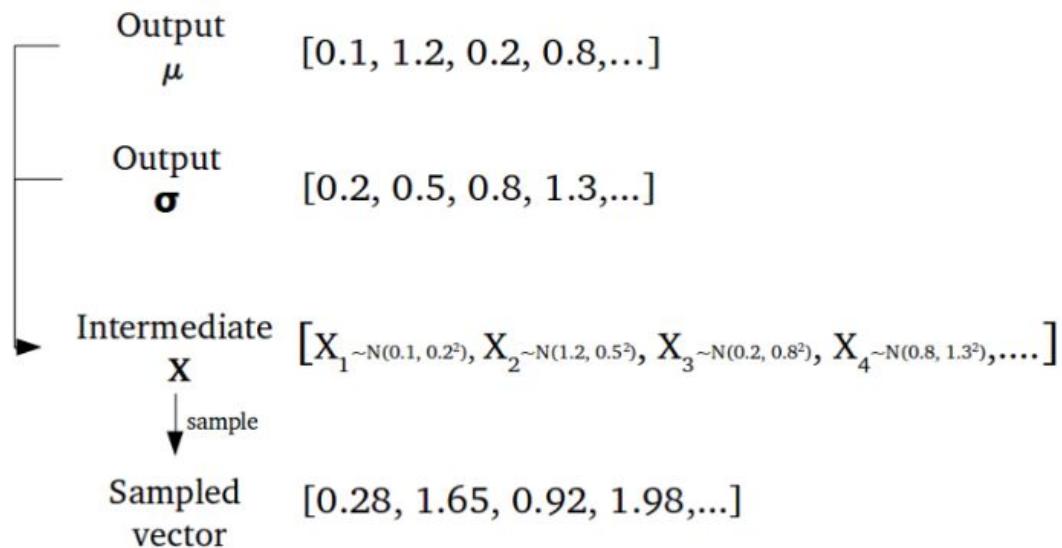


Variational Autoencoder



Variational Autoencoder

- We are sample from the distribution, everytime we will get different x .



Kullback Leibler divergence, also known as KL term, is used to measure the difference of two probability distribution.

How the problem is fixed

$$\begin{aligned}\log p_\theta(x^{(i)}) &= \mathbf{E}_{z \sim q_\phi(z | x^{(i)})} \left[\log p_\theta(x^{(i)}) \right] \quad (p_\theta(x^{(i)}) \text{ Does not depend on } z) \\ &= \mathbf{E}_z \left[\log \frac{p_\theta(x^{(i)} | z) p_\theta(z)}{p_\theta(z | x^{(i)})} \right] \quad (\text{Bayes' Rule}) \\ &= \mathbf{E}_z \left[\log \frac{p_\theta(x^{(i)} | z) p_\theta(z)}{p_\theta(z | x^{(i)})} \frac{q_\phi(z | x^{(i)})}{q_\phi(z | x^{(i)})} \right] \quad (\text{Multiply by constant}) \\ &= \mathbf{E}_z \left[\log p_\theta(x^{(i)} | z) \right] - \mathbf{E}_z \left[\log \frac{q_\phi(z | x^{(i)})}{p_\theta(z)} \right] + \mathbf{E}_z \left[\log \frac{q_\phi(z | x^{(i)})}{p_\theta(z | x^{(i)})} \right] \quad (\text{Logarithms}) \\ &= \mathbf{E}_z \left[\log p_\theta(x^{(i)} | z) \right] - D_{KL}(q_\phi(z | x^{(i)}) || p_\theta(z)) + D_{KL}(q_\phi(z | x^{(i)}) || p_\theta(z | x^{(i)}))\end{aligned}$$

Can compute estimate of this term through sampling.

This KL term has nice closed-form solution (between two Gaussian distribution)

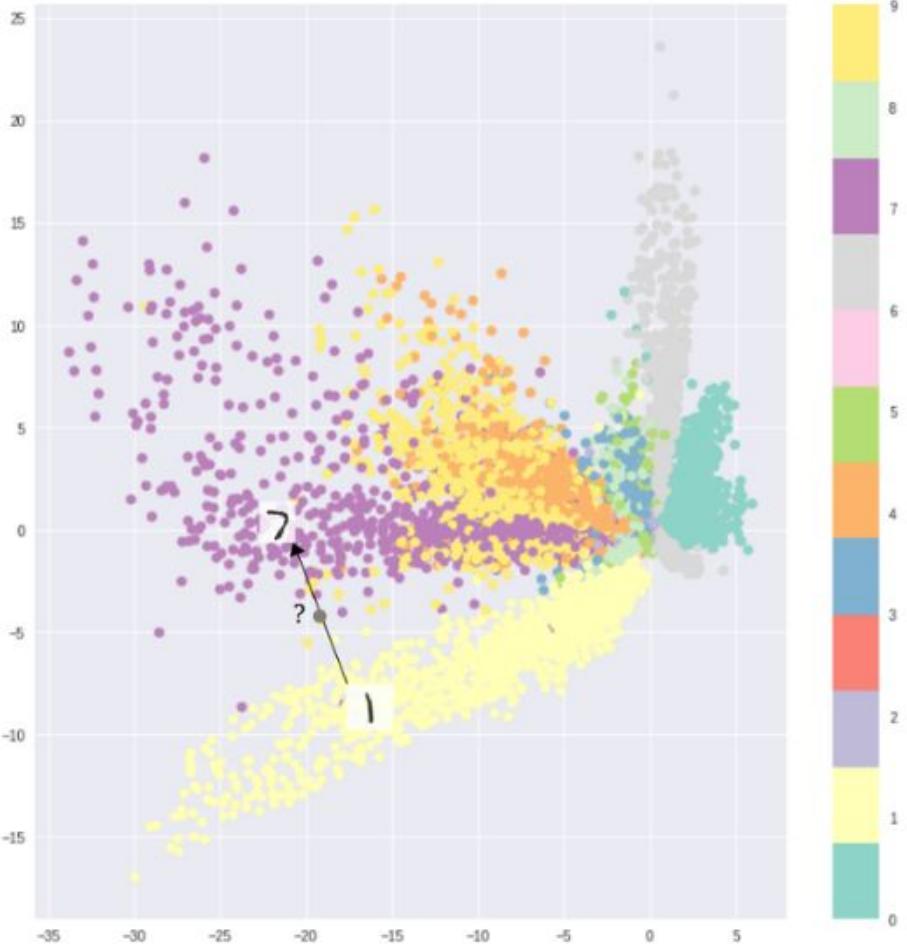
KL term by definition is always greater or equal to 0.

A more intuition way of thinking math

- Is to think through graph.

Autoencoder

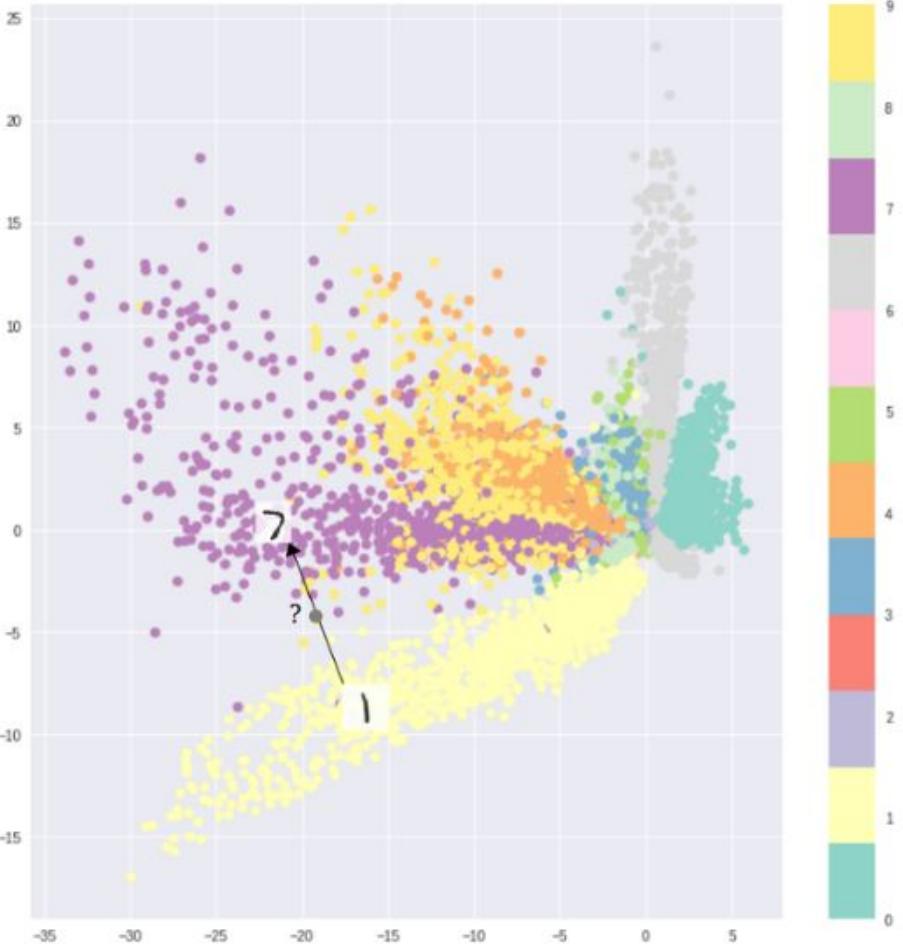
- The latent space of autoencoder may not be continuous, or allow easy interpolation.
- That is a problem for generation.



Optimizing purely for reconstruction loss

Autoencoder

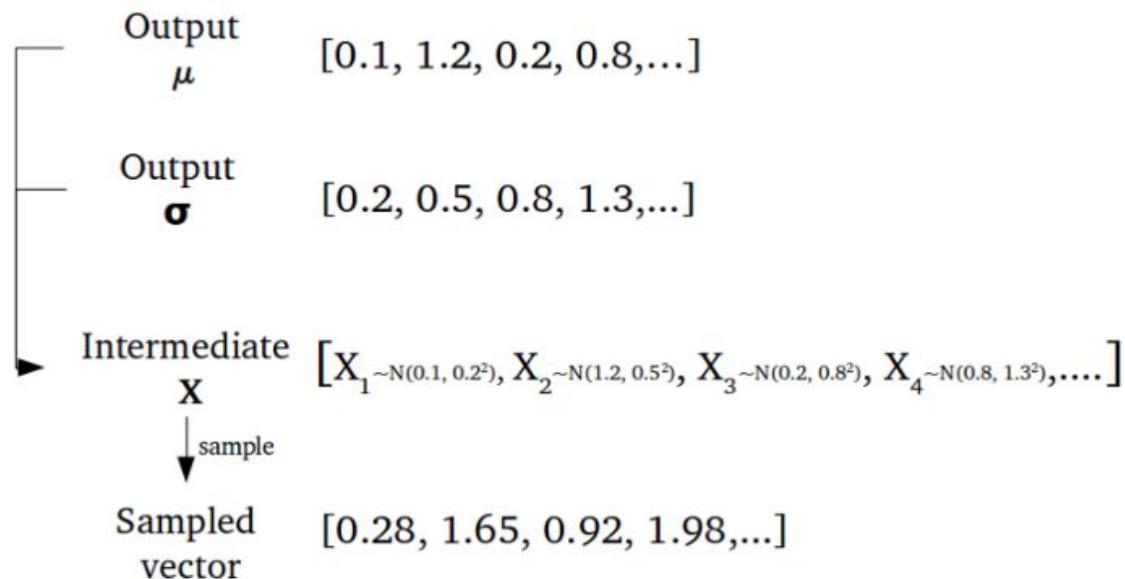
- If you generate from gap area, your generative network has no idea what to generate



Optimizing purely for reconstruction loss

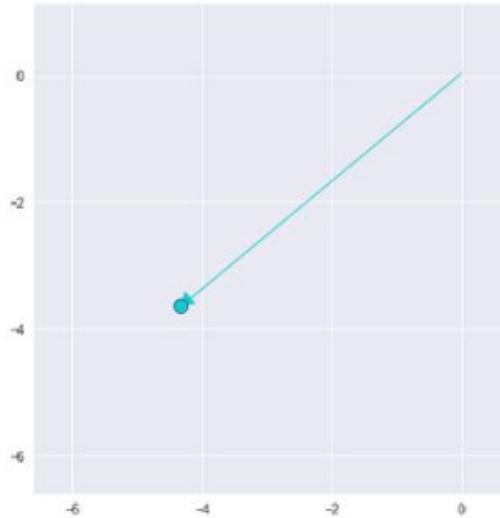
Variational Autoencoder

- Encoder network is going to give two vector of size n , one is the mean, and the other is standard deviation/variance.
- Stochastic generation, for the same input, mean and variance is the same, the latent vector is still different due to sampling.

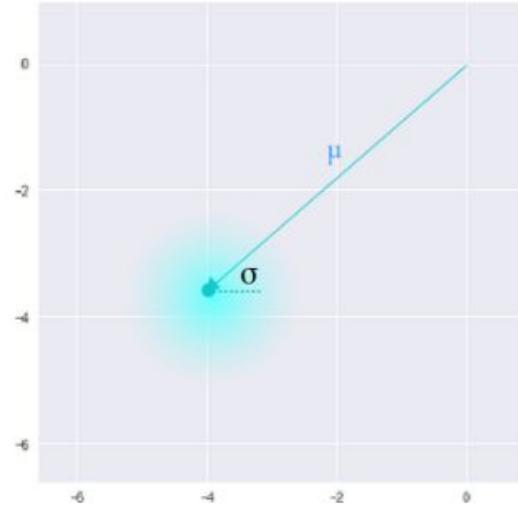


VAE VS AE

- Sample our latent space vector from a distribution.
- Less gap between each cluster.



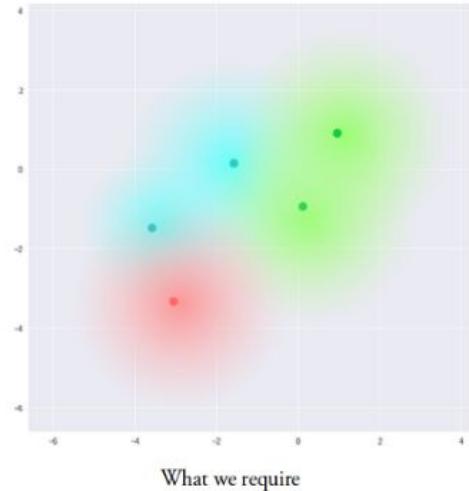
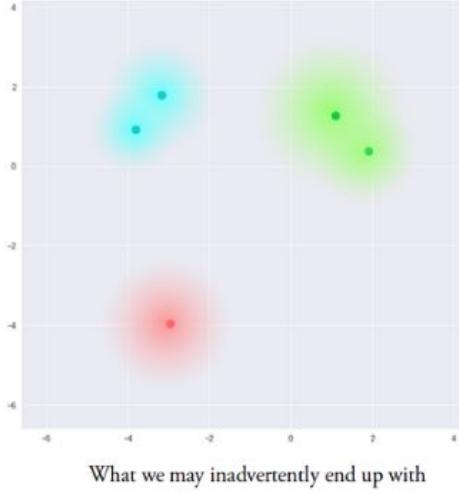
Standard Autoencoder
(direct encoding coordinates)



Variational Autoencoder
(μ and σ initialize a probability distribution)

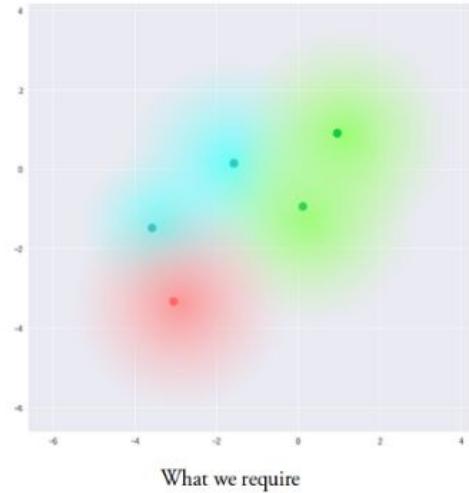
Still problem

- More smooth latent space on local scale.
- We overlap between samples that are not very similar so we can interpolate between classes.
- Discrete clusters, still have gap
- Still chance that network does not know what to generate.



Still problem

- No limitations on mean and variance.
- The encoder can learn to generate very different mean for different classes, and then minimize the variance.
- Less uncertainty for the decoder network.



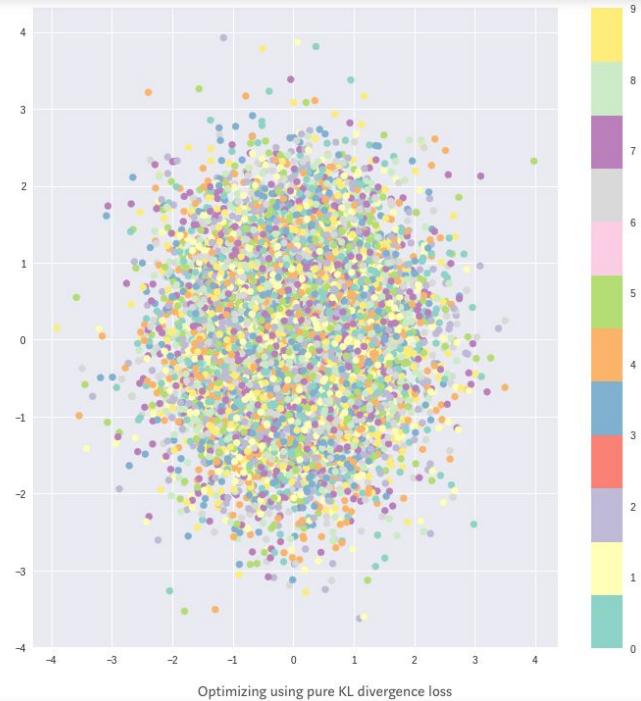
$$\sum_{i=1}^n \sigma_i^2 + \mu_i^2 - \log(\sigma_i) - 1$$

KL Divergence

- Measure the difference of two probability distribution.
- Optimize the KL divergence means to optimize probability distribution parameters to closely resemble that of the target distribution.
- KL divergence of component $X_i \sim N(\mu_i, \sigma_i^2)$ in X , and the standard normal.

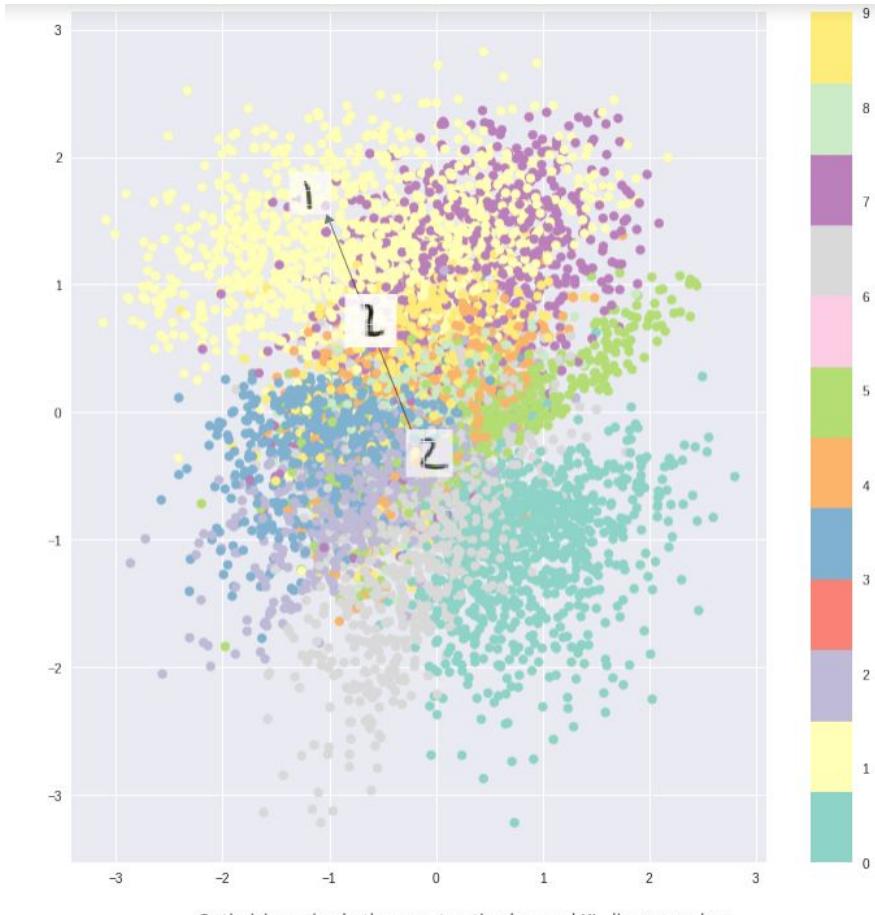
KL Divergence

- Encourage the encoder to distribute all encodings evenly around the center of the latent space.
- No difference between different classes, no similarity within the same class.



KL + Reconstruction loss

- cluster-forming nature of the reconstruction loss
- dense packing nature of the KL loss
- no sudden gaps between cluster, will be a mixture of different features that the decoder can understand.



VAE

9 9 9 9 1 8 1 0
9 8 0 0 1 8 9 0
8 8 0 0 1 8 1 1
9 9 9 9 9 8 9 8
9 9 0 9 9 9 9 9
8 8 9 8 9 8 9 9
8 9 9 1 0 0 1 8
8 1 1 9 8 1 8 9

9 3 9 6 1 8 1 0
9 3 0 3 1 8 9 0
2 9 6 0 1 6 8 1
9 7 6 5 5 8 8 3
9 9 8 7 3 6 9 6
6 3 6 8 9 4 9 9
0 7 8 1 0 0 1 5
5 7 1 7 8 5 9 9

7 3 9 6 1 8 1 0
9 8 0 3 1 2 7 0
2 9 6 0 1 6 7 1
9 7 6 5 5 8 8 3
4 4 8 7 3 6 4 6
6 3 8 8 9 9 4 4
0 7 8 1 0 0 1 8
5 7 1 7 5 5 9 9

VAE

- Celebrity face generation.

