
  

The Value of a Usability-Supporting Architectural Pattern 
in Software Architecture Design:  A Controlled Experiment 

 
 

Elspeth Golden Bonnie E. John Len Bass 
Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University 

Human-Computer Interaction 
Institute 

Human-Computer Interaction 
Institute 

Software Engineering Institute 

Pittsburgh, PA 15213 Pittsburgh, PA 15213 Pittsburgh, PA 15213 
egolden@cs.cmu.edu bej@cs.cmu.edu ljb@sei.cmu.edu 

 
 
ABSTRACT 
Design patterns have been claimed to facilitate modification and 
improve understanding in software design. A controlled 
experiment was performed to assess the usefulness of portions of 
a Usability-Supporting Architectural Pattern (USAP) in 
modifying the design of software architectures to support a 
specific usability concern.  Software engineering and information 
technology graduate students received different subsets of a 
USAP supporting cancellation functionality.  They then studied a 
software architecture design and made modifications to add the 
ability to cancel commands.  Results showed that participants who 
received a usability scenario, a list of general responsibilities, and 
a sample solution thought of significantly more key issues than 
participants who saw only the scenario. Implications for software 
development are that usability concerns can be included at 
architecture design time, and that USAPs can significantly help 
software architects to consider responsibilities inherent from 
usability concerns.  

Categories and Subject Descriptors 
H.5.2 [Information Interfaces and Presentations]: User 
Interfaces – evaluation/methodology, theory and methods. 
D.2.11 [Software Engineering]: Software Architectures – 
domain-specific architectures, patterns.  

General Terms 
Design, Experimentation. 

Keywords 
Controlled experiment, usability, software architecture, design 
pattern, modification. 

1. INTRODUCTION 
Usability is an important quality attribute of interactive software 
systems, but it has gotten little attention in the architecture design 
phase of software development. Since the 1980s, usability has 
been treated as a subset of modifiability, that is, architects 
commonly separate the user interface from the functionality of the 
system and assume that usability issues that arise during user 
testing can be handled with localized modifications. As recently 
as 1999, usability has been labeled not “discernable” at 
architecture design time [12]. 

Unfortunately, simply separating the interface from the 
functionality does not support all usability concerns. In fact, many 
usability concerns reach deeply into a system’s architecture design 
[4]. Therefore, when usability is not considered early in the design 
process and support for them is not designed into the architecture, 
usability problems found in user testing often require extensive 
and costly re-architecting of software systems. When this happens, 
projects often cannot afford the additional cost and ship products 
that are not as usable as they could be. 

Our research on the relationship between usability and software 
architecture has lead to the development of Usability-Supporting 
Architecture Patterns (USAPs), each of which addresses a 
usability concern that is not addressed by separation alone [3]. 
Each USAP consists of  
� an architecturally sensitive usability scenario,  
� a list of general responsibilities derived from forces inherent 

in the task and environment, human capabilities and desires, 
and software state, which must be considered by any 
software implementation for which the usability scenario is 
relevant, and  

� a sample solution implemented in a larger separation-based 
design pattern such as J2EE MVC.   

An early version of USAPs were applied in the design of the 
architecture of the MERBoard, a wall-sized tool that supports 
shoulder-to-shoulder collaboration of the engineers and scientists 
on NASA’s Mars Exploration Rover mission [1]. Tutorials on the 
application of USAPs to software architecture design have also 
been given at the ICSE and CHI conferences [6, 9, 10].   

These patterns could prove of great benefit to software architects 
responsible for developing large-scale software systems, and to 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
ICSE’05, May 15–21, 2005, St. Louis, Missouri, USA. 
Copyright 2005 ACM 1-58113-963-2/05/0005...$5.00. 
 

460



  

the enterprises of all kinds for which these software systems are 
developed.  Software architects may find it beneficial to have 
specific sets of responsibilities through which to address usability 
issues at architectural design time, both to avoid errors of 
omission, and to facilitate analysis of tradeoffs. However, USAPs 
are quite detailed and complex, which might make them difficult 
for software architects to apply to their own design problems.  
Since software architects are already burdened with complex tasks 
and extensive methodologies, it is important to determine whether 
all parts of a USAP are useful or necessary before widely 
disseminating USAPs to these professionals.  

In this paper, we describe a controlled experiment designed to 
assess the value of the different parts of a USAP in modifying a 
software architecture design. We investigate a single USAP that 
supports an important usability concern: canceling a long-running 
command, and asked software engineers to apply it to the redesign 
of an architecture that had not originally considered the ability to 
cancel. The experiment measured whether the architectural 
solutions produced as a result of using all three components of a 
USAP more fully supported the needs of a usable cancellation 
facility than those produced by using certain subsets of the USAP 
components. 

2. DESCRIPTION OF THE EXPERIMENT 
2.1 Participants 
18 computer science graduate students at the Carnegie Mellon 
West Coast campus participated in the experiment.  All 18 
participants had completed work for a master’s degree in software 
engineering and/or information technology, and were working 
toward an additional practice-based Professional Development 
Certificate.   The 15 male and 3 female participants ranged in age 
from 23 to 30.  Fifteen of the participants averaged 25.7 months 
of industrial programming experience, with a range from 6 to 48 
months; the other 3 had no programming experience in industry.  
Fourteen of the participants averaged 15.3 months of software 
design in industry, with a range of 4 to 36 months; the other 4 
participants had no industrial experience in software design.   
Participants reported currently spending between 5 and 50 hours 
per week programming, with an average of 22.9 hours per week, 
and from 0 to 30 hours per week on software design, with an 
average of 11.4 hours per week. 

2.2 Experiment Design and Materials 
We used a between-subjects design with participants randomly 
assigned to one of three experimental conditions.  Participants in 
each condition received a different version of a “Training 
Document,” and all participants received the same architecture 
redesign task.  In creating the materials for this experiment, all 
instructional and task materials were evaluated by eight academic 
and industry software architecture experts for correctness and 
completeness with respect to software architecture. 

The Training Document received by participants in the first 
condition contained only a usability scenario describing 
circumstances under which a user might need to cancel an active 

command [Fig. 1].   This scenario is similar to what would 
typically be contained in a report that a usability expert would 
submit to a development organization, recommending that 
cancellation capability be added to an application. 

 

Usability Scenario: Canceling a Command 

The user issues a command, then changes his or her 
mind, wanting to stop the operation and return the 
software to its pre-operation state. It doesn’t matter why 
the user wants to stop; he or she could have made a 
mistake, the system could be unresponsive, or the 
environment could have changed.  

Figure 1. Usability Scenario in Training Document 

 

Participants in the second condition received a Training 
Document that contained the same usability scenario, plus a list of 
general responsibilities that should be considered in any software 
design implementation of a cancel command [Table1]. This list of 
responsibilities was derived from an analysis of forces generated 
by characteristics of the task and environment, the desires and 
capabilities of the user, and the state of the software itself [11]. 
Since this was a list of general responsibilities designed to be 
considered in any implementation of cancel functionality, the 
Training Document stipulated that not all responsibilities might 
apply to the solution of any specific problem. 

Participants in the third condition received the scenario, the list of 
general responsibilities, and a sample solution for adding 
cancellation to a software architecture design, based on J2EE 
MVC.  The sample solution contained a “before and after” 
Component Diagrams of the J2EE-MVC architecture without 
considering cancellation (Figure 2) and with considering 
cancellation (Figure 3). The numbers in the components in Figure 
2 correspond to a numbered list of the responsibilities allocated to 
the J2EE MVC components.  Figure 3 allocated the cancellation 
responsibilities (CRs) in the numbered list to the J2EE-MVC 
components and added new components as required to fulfill the 
cancellation responsibilities. Although the example solution is not 
the only arrangement of components and responsibilities that 
would support cancellation, it is a reasonable solution, as judged 
by our eight external expert architects. 

Thus, the Training Document for the first condition consisted of a 
single paragraph, the general cancellation scenario. The Training 
Document for the second condition was three printed pages of 
prose: the scenario and the list of cancellation responsibilities.  
The Training Document for the third condition was eight pages of 
both prose and software architecture diagrams that related to the 
prose. 

 

461



  

Table 1. General Responsibilities of Cancel 

CR1 A button, menu item, keyboard shortcut and/or other means must be provided, by which the user may 
cancel the active command. 

CR2 The system must always listen for the cancel command or changes in the system environment. 

CR3 The system must always gather information (state, resource usage, actions, etc.) that allow for recovery 
of the state of the system prior to the execution of the current command. 

CR4 

The system must acknowledge receipt of the cancellation command appropriately within 150 ms. 
Acknowledgement must be appropriate to the manner in which the command was issued  i. For 
example, if the user pressed a cancel button, changing the color of the button will be seen. ii. If the user 
used a keyboard shortcut, flashing the menu that contains that command might be appropriate. 

CR5 
If the command itself is able to cancel itself directly at the time of cancellation, the command must 
respond by canceling itself (i.e., it must fulfill responsibilities CR9-CR19 below (e.g., an object-
oriented system would have a cancel method in each object)). 

CR6 If the command itself is not able to cancel itself directly at the time of cancellation, an active portion of 
the system must ask the infrastructure to cancel the command, or must fulfill responsibility CR7 below. 

CR7 
If the command itself is not able to cancel itself directly at the time of cancellation, the infrastructure 
itself must provide a means to request the cancellation of the application (e.g., task manager on 
Windows, force quit on MacOS), or must fulfill responsibility CR6 above. 

CR8 
If either CR6 or CR7 are fulfilled, then the infrastructure must also have the ability to cancel the active 
command with whatever help is available from the active portion of the application (i.e., it must fulfill 
Responsibilities CR9-CR19 below). 

CR9 

If the command has invoked any collaborating processes, the collaborating processes must be informed 
of the cancellation of the invoking command (these processes have their own responsibilities that they 
must perform in response to this information, possibly treat it as a cancellation.). The information given 
to collaborating processes may include the request for cancellation, the progress of cancellation, and/or 
the completion of cancellation. 

CR10 If the system is capable of rolling back all changes to the state prior to execution of the command, the 
system state must be restored to its state prior to execution of the command. 

CR11 
If the system is not capable of rolling back some of the changes made during the operation of the 
command prior to cancellation, the system must be restored to a state as close to the state prior to 
execution of the command as possible. 

CR12 
If the system is not capable of rolling back some of the changes made during the operation of the 
command prior to cancellation, the system must inform the user of the difference, if any, between the 
prior state and the restored state. 

CR13 The system must free all resources that it can that were consumed to process the command. 

CR14 If some resources has been irrevocably consumed and cannot be restored, the system must inform the 
user of the partially-restored resources in a manner that they can see it. 

CR15 If the command takes longer than 1 second to cancel, control must be returned to the user, if appropriate 
to the task. 

CR16 If control cannot be returned to the user, the system must inform the user of this fact (and ideally, why 
control cannot be returned). 

CR17 The system must estimate the time it will take to cancel within 20%. 

CR18 

The system must inform the user of this estimate.  i. If the estimate is between 1 and 10 seconds, 
changing the cursor shape is sufficient.  ii. If the estimate is more than 10 seconds, and time estimate is 
within 20%, then a progress indicator is better.   iii. If estimate is more than 10 seconds but cannot be 
estimated accurately, provide other form of feedback to the user. 

CR19 
Once the cancellation has finished, the system must provide feedback to the user that cancellation is 
finished (e.g., if cursor was changed to busy indicator, change it back to normal; if progress bar was 
displayed was displayed, remove it; if dialog box was provided, close it). 

462



  

 
 

Figure 2. J2EE-MVC before Cancel is added 
 

 
Figure 3. J2EE-MVC after Cancel is added 

 
 
 

The software architecture redesign task given to all participants 
was to redesign an existing architecture that was not designed to 
support cancellation, so that it did support cancellation. For this 
task, we chose the Plug-in Architecture for Mobile Devices 
(PAMD), an architecture designed by students in the Master of 
Software Engineering program at Carnegie Mellon University in 
2002 for a plug-in controller for the Palm OS4. PAMD has also 
been used in a software architecture design and analysis course at 
the Software Engineering Institute at CMU [8]. This architecture 
design was chosen for several reasons. First, PAMD is simple 
enough that a participant already trained in software architecture 
can understand it in a relatively short period of time. Additionally, 
since the Palm OS4 is a single-threaded architecture, adding the 
ability to cancel a long-running command is a nontrivial task. 
PAMD was also sufficiently different from J2EE MVC that the 
participants who received the J2EE MVC-based sample solution 
had to extrapolate and generalize in order to create a specific 

solution for adding cancel to PAMD. That is, the sample solution 
required deep understanding of the concepts rather than simply 
giving the solution away. 

The Task Instructions included seven elements:  
(1) a general description of the PAMD architecture;  
(2) an example scenario of how PAMD works;  
(3) a numbered list of responsibilities of the PAMD components 

for normal operation; 
(4) a numbered list of Component Interaction Steps detailing the 

run-time operation of PAMD while calling a plug-in; 
(5) a Component Interaction Diagram, showing the components 

and connectors involved in the PAMD architecture, and 
assigning numbered responsibilities from element (3), and 
numbered steps from element (4), to each component [Fig. 
4]; 

(6) a Sequence Diagram of PAMD run-time component 
interaction while calling a plug-in, utilizing the numbered 

463



  

steps from element (4) and the components from element (5) 
[Fig. 5];  

(7) a final page instructing the participant to add the ability to 
cancel a plug-in to the PAMD architecture design.  The final 
page instructed participants to only modify the architecture 
to address cancellation, without considering or preserving 
other usability concerns or quality attributes.  They were 
instructed to indicate their changes by modifying diagrams 
and written materials on the Answer Paper provided. 

 
We designed an Answer Paper where the participants could easily 
and efficiently record the information relevant to their redesign. 
Because we didn’t want the participants to waste time drawing 
boxes and moving them around, or to struggle with computer-
based tools they might not be familiar with, the Answer Paper was 
paper-based and contained a Component Interaction Diagram, a 
Sequence Diagram, and a list of Component Interaction Steps, all 
with sufficient white space for the participants to insert their 
designs. The participants were also given several blank sheets of 
paper to use as they wished. The Component Interaction Diagram 
and the Component Interaction Steps were identical to those 
provided in the Task Instructions, except that the assignments of 
numbered PAMD responsibilities and run-time steps were 
removed from the Answer Paper.  The Sequence Diagram in the 
Answer Paper showed unnumbered execution steps only up 
through calling a plug-in [Fig. 6], instead of continuing through 
the completion of normal plug-in termination as in the Task 
Instructions, because the user’s request for cancellation would 
appear in the Sequence Diagram after the plug-in was called.  The 
participants were instructed to use these diagrams as the bases for 
their designs, to add any components, responsibilities, or steps as 
needed to express their ideas for supporting cancellation. They 

were asked to make the diagrams correspond with each other, just 
as the PAMD diagrams corresponded with each other. 
 

2.3 Procedure 
Participants were randomly assigned to one of the three 
experimental conditions, and run in individual sessions. 
Participants were allowed unlimited time to complete the 
experiment, which resulted in sessions lasting between one and 
three hours. In an introduction to the experiment, the participants 
were told that they were participating in a study about fixing one 
kind of usability problem in a specific software architecture 
design.  They were informed that they would be given a handout 
to read, describing a usability scenario relevant to system 
architecture, that we would then read through a description of a 
system architecture needing the information described in the 
handout, and finally, that they would be asked to understand and 
modify the sample software architecture to meet the requirements 
of the usability scenario. 

Participants were then given the appropriate Training Document 
for their experimental condition, and asked to read and understand 
it. After reading their Training Document, participants were given 
the Task Instructions.  To minimize variation in time and 
comprehension level during this portion of the experiment, the 
experimenter read the Task Instructions aloud, while the 
participant read along silently, and interrupted with any questions. 
During the reading of the final page of the Task Instructions, 
participants were given the Answer Packet. Each participant was 
allowed unlimited time in which to complete the redesign task.  
After completing their solution, the participant was asked to 
explain the details of the solution to the experimenter to 
disambiguate any hand-writing or diagrammatic difficulties.

 
Figure 4. Component Interaction Diagram in Task Instructions 

 

464



  

 
Figure 5. Sequence Diagram in Task Instructions 

  
 
 

 
Figure 6. Sequence Diagram in Participant Answer Paper 

465



  

3. RESULTS 
Two dependent variables will be presented here: time on task, and 
cancellation responsibilities considered in the participant solution.  
Additional analysis related to the quality of the participant 
solutions is ongoing and will be discussed in Section 5. 

The time to complete the redesign task varied from 39 to 138 
minutes, with an average of 86 minutes [Fig. 7]. A one-way 
ANOVA revealed no statistical main effect of condition on this 
measure.  

Similarly to the method used in Prechelt et al. for counting the 
degree of requirements fulfillment within subtasks of a 
programming maintenance task [14], we developed a scoring 
system that counted the union of all cancellation responsibilities 
found to have been considered in elements of the participant 
solution. That is, we counted a responsibility as having been 
considered if it appeared in the Component Interaction Diagram, 
or the Sequence Diagram, or the Component Interaction Steps, or 
in any list of Additional Responsibilities added by the 
participants. Each specific cancellation responsibility that 
appeared in the participant solution was counted only once, 
irrespective of the number of solution elements in which it 
appeared. A lower number of cancellation responsibilities 
appearing in a participant solution indicates a narrower 
consideration of cancellation responsibilities; a broader 
consideration of cancellation responsibilities produces a higher 
number of such responsibilities in the participant solution. 

Participants who were given only the USAP scenario considered 
between 2 and 4 cancellation responsibilities in their solutions out 
of a possible 19, with an average of 3.17.  Those who received the 
USAP scenario and list of 19 general responsibilities averaged 7.7 
cancellation responsibilities in their solution, with a range from 4 
to 15.  Participants who received the USAP scenario, list of 19 
general responsibilities, and a sample solution, considered from 5 
to 15 cancellation responsibilities in their solutions, with an 
average of 9.5.  Responsibilities considered for all groups are 
shown in Table 2 and Figure 8. 

 

 
Figure 7. Time on Task by USAP Subset 

Table 2. Cancellation Responsibilities Considered 

Cancellation 
Responsibilities 
Considered Scenario 

Scenario & 
General 
Responsibilities 

Scenario & 
General 
Responsibilities 
& Sample 
Solution 

Mean 3.17 7.67 9.50 
Std Dev 0.75 4.41 4.04 
Lowest 2 4 5 
Highest 4. 15 15 

 
 

 
Figure 8. Responsibilities Considered by USAP Subset 

 
Analysis of variance showed a significant main effect of the 
USAP subset given to participants on the number of cancellation 
responsibilities considered (F(2,15) = 5.26, p < .05). Pairwise 
comparisons made using Tukey’s HSD indicated significant mean 
difference between giving the scenario alone (Scenario) and 
giving the full USAP (Scenario & General Responsibilities & 
Sample Solution), while mean difference between other pairs of 
conditions was not significant.  

Analysis of variance between groups showed that time on task had 
no significant effect on number of cancellation responsibilities 
considered (F(2,15) = .21, p < .10).  Pearson’s correlation 
between groups did not find significant correlation between the 
number of responsibilities considered by participants, and any 
factor other than the experimental condition, such as industrial 
experience in programming or software design, age, or gender.  
We are continuing further analysis of our data, and any other 
findings of interest will be reported in future work. 
 

4. DISCUSSION 
The experiment showed a strong main effect of providing the full 
USAP on the number of responsibilities participants considered in 
redesigning a software architecture to add the ability to cancel a 
command. Participants who received only the cancellation 
scenario considered, on average, only a third of the 
responsibilities considered by participants who were given the full 

466



  

USAP. This indicates that the full USAP provided significant help 
to the participants in remembering the responsibilities they needed 
to consider when modifying software to add command 
cancellation functionality.   

The absence of significant correlation between time on task and 
task performance between conditions indicates that the gains in 
responsibilities considered were made without an associated 
speed/accuracy tradeoff.  In many cases, giving additional 
information causes people to spend more time on a task, and then 
the gains in performance cannot be unambiguously attributed to 
the materials themselves in light of the additional time on task. 
However, our results are clean: the additional information in the 
full USAP increases performance with no additional time. This is 
especially gratifying because, as discussed in the introduction, the 
full USAP is quite detailed and complex. The additional 
information in the sample solution and its relationship to the 
cancellation responsibilities, might have been so difficult to apply 
that it might have increased time while increasing coverage. 
However, administering the full USAP materials allowed the 
participants to create a far more complete solution than 
administering a general cancellation scenario, in nearly the same 
amount of time. 

The lack of significant interaction effects of moderator variables 
implies that the USAP was valuable to people with varied levels 
of experience. Factors such as self-reported experience (e.g., 
programming, software design) or familiarity with related 
technologies (e.g. component diagrams, design patterns) did not 
interact with the experimental conditions, indicating that the 
usefulness of a USAP was not tied to whether the participant was 
a novice or an expert programmer and/or software designer.  
However, because we have only a small number of participants in 
each condition, this indication is suggestive and not conclusive.  
To have confidence in this result would require many more 
experimental participants. 

The size of the main effect we discovered is a strong indication of 
the usefulness of full USAPs. However, checklists alone are 
commonly accepted memory aids used in software development 
practice.  Therefore, prior to this experiment, we had hypothesized 
that participants who received the list of general responsibilities 
would produce a solution that considered more responsibilities 
than the solutions produced by recipients of the scenario alone. 
Our results show a trend in this direction, but it did not reach 
statistical significance with our small number of participants (n=6 
in each condition). In adding a sample solution in the third 
condition, we considered that positive effects gained from 
learning from an example [2] might be limited by difficulties in 
extrapolating and generalizing from an example in J2EE-MVC to 
a solution for the single-threaded Palm OS4. Our results indicate 
that the improvement gains in working with a checklist and a 
sample solution, taken together with the absence of a 
speed/accuracy tradeoff, outweigh the costs of assimilating the 
additional information. 

Looking deeper, we can examine which responsibilities associated 
with canceling a command were covered by the participants who 
received only the scenario and which benefited from the greater 
detail of the other portions of the USAP. For 15 of the 19 
Cancellation Responsibilities (CRs), Chi-square tests revealed no 
significant difference between training conditions, however, four 
CRs stood out as being considered by the majority of participants 

in each condition: CR1, CR5, and CR10 [Table 1]. On the other 
hand, several important cancellation responsibilities were entirely 
ignored by participants who received only the general scenario, 
and Chi-square tests produced a significant difference (p < .05) 
between these participants and participants who received a list of 
responsibilities or a list and a sample solution: CR4, CR13, CR 17 
and CR18 [Table 1].  We will examine each of these in turn. 

CR1 requires a means to be provided for the user to cancel the 
active command.  This means could be a button, a menu item, a 
keyboard shortcut, or something else.  All participants, except 
one, received credit for considering that the user must be able to 
instigate the cancellation process.  The sole participant who failed 
to consider this responsibility received credit for only the general 
scenario. Thus, remembering to bring access to a new command 
out to the user seems to be easy for software architects. 

CR5 requires the active command to cancel itself upon request, if 
it is able to do so.  Again, nearly all participants did consider this 
responsibility, the sole exception having been in the scenario-only 
experimental condition.  However, since adding the ability to 
cancel was the task the participants were given, it is not surprising 
that most of them received credit for considering this 
responsibility. On the other hand, only 4 participants considered 
the failure case where a command is unable to cancel itself. That 
is, only 4 participants got credit for either CR6, CR7, or CR8 in 
their solutions, which require the system and/or infrastructure to 
make provisions for canceling the active command if the 
command cannot successfully cancel itself.  Provisions for these 
contingencies were made only by participants who received the 
list of responsibilities (2 participants) and those who received the 
list plus a sample solution (2 participants), and were never 
included by a participant who received only the scenario. Thus, 
remembering to provide for this failure case seems more difficult 
for software architects. 

CR10 requires that system state be restored to the state that 
existed prior to the execution of the command.  Fourteen 
participants did consider this responsibility in their solutions, and 
all who received a Training Document that included the general 
scenario, cancellation responsibilities, and sample solution, did in 
fact consider this responsibility.  Restoring state is an integral part 
of cancellation, again extremely tied to the task given to the 
participants and it is not surprising that most participants 
considered this responsibility. However, as with CR5, few 
participants considered the failure condition. No participants in 
the scenario-only condition, and only 3 participants in the other 
conditions combined, considered CR11 and CR12, which require 
the system to make provisions for partial system rollback and user 
feedback, in the case that full system state restoration is not 
possible.  Participants who received only the scenario never 
created solutions that provided for these contingencies. This is 
additional evidence that remembering to provide for failure cases 
can be difficult. 

Finally, another responsibility that provided for failure 
contingency, CR16, requires the system to notify the user in the 
event that control cannot be returned to the user during a long 
cancellation process.  This responsibility was not considered by a 
single participant.  

Now we turn to the cancellation responsibilities that were 
considered very differently between the scenario-only participants 

467



  

and those who received a list of responsibilities in their Training 
Documents.  CR4 requires the software to acknowledge receipt of 
the cancellation command to the user. This responsibility is taken 
care of by default in most new GUI builders.  This may explain 
why it was not explicitly considered by the participants, and may 
also diminish the importance of the omission. However, both 
CR4, and CR18 below, require the integration of another 
important usability heuristic, visibility of system status.  The 
failure of participants to address system visibility through the 
provision of a general scenario is an additional strong indication 
of the insufficiency of providing usability heuristics or scenarios 
without implementation guidelines. 

CR13 requires the software to free system resources used to 
process the command being cancelled.  Freeing system resources 
is an important consideration that may have serious consequences 
if it is overlooked.  Participants in a CHI tutorial given by John et 
al. [11] provided anecdotes about their experiences with 
implementing cancellation.  One participant reported that his 
company had implemented cancel in an application but had 
forgotten to release resources. The result of this omission was that 
every time the user pressed the cancel button, it left 500 MB of 
garbage on the user’s hard drive, dramatically illustrating the 
importance of remembering that software must be responsible for 
freeing any resources it has consumed. 

In the case of CR17, estimating the time required to cancel the 
command, and CR18, informing the user of the estimated time 
required to cancel the command, it is difficult to separate the 
consideration of concerns.  If a software engineer did not consider 
estimating the time required to cancel, this information cannot be 
provided to the user.  Alternatively, a software engineer could 
provide the facility to estimate the time for cancellation but forget 
to display that estimate to the user, and the external results would 
look the same. These two responsibilities, taken together, can be 
mapped to real world software usability flaws.  For instance, in 
the six months preceding the writing of this paper, we observed 
mis-implementation of canceling a command in half a dozen 
popular commercial software programs.  For example, the cancel 
button in well known diagramming and video editing applications 
required minutes to halt a process, during which it was impossible 
to tell whether cancellation was in progress.  The cancel button in 
a major email program did put up a cancellation progress 
indicator, but did not halt the original process, which eventually 
timed out.  We conclude that helping software architects 
remember to provide for this level of detail could make a real 
contribution to the usability of real-world software. 

The improved consideration of many of these responsibilities in 
the solutions of participants who had a list of general 
responsibilities, clearly indicates that the USAP had a positive 
impact on the attention paid to these demonstrably relevant 
usability concerns.  However, some of the responsibilities were 
handled inconsistently, and not included in the solutions even by 
participants who had received them as part of their training 
materials. This is an indication that there is still room for 
improvement in our delineation of such responsibilities for the use 
of software developers and architects.  

5. CONCLUSIONS AND FUTURE WORK 
Using a full USAP increased the number of responsibilities that 
participants considered in an architectural redesign to add 

cancellation to the existing architecture design for the PAMD 
system. 

Participants who used all three parts of the cancellation USAP 
were able to identify and address three times as many cancellation 
responsibilities, on average, as participants who received only a 
general usability scenario, in the same amount of time, and 
without having more work experience or formal training prior to 
the task.  Thus, USAP for canceling a command can already be 
considered a valuable tool for modifying software architecture 
designs to address a specific usability concern. However, more 
work needs to be done to increase the consistency with which 
software architects apply the USAPs, perhaps in the format of the 
USAP itself or in training provided with the USAP. 

In addition to counting the responsibilities considered in a 
redesign, the quality of the software architecture design that 
results from such considerations is also of concern. Additional 
analysis is currently in progress to assess the quality of the 
software architectures produced by the participants.  This 
qualitative analysis will be performed by expert software 
architects external to our research project.  Such assessment will 
allow us to examine correlations between the number of 
cancellation responsibilities considered, which specific 
responsibilities were considered, and the overall quality of the 
software architecture solution to the problem of adding 
cancellation functionality to an existing architecture design.   

Additionally, this study involved only a single usability-
supporting architectural pattern, and its effects in modifying a 
single, specific, software architecture design. In our previous work 
we have identified more than two dozen usability scenarios that 
require USAPs [5].  Therefore, future investigations will seek to 
determine how our results can be replicated and extended across 
additional USAPs, as well as other types of software architectures.  

Perhaps the greatest surprise, however, is not that USAPs help to 
produce a more complete design, but that they are necessary at all.  
There is an implicit assumption in the world of human-computer 
interaction, and perhaps more generally, that software engineers 
simply know how to implement whatever requirements are 
provided to them.  While this may be true in some areas which are 
more traditionally included in the training of either computer 
scientists or software engineers, it is not true in the case of 
software engineering for usability.  Usability issues have been 
seen to comprise more than 60% of requirements-related defects 
in some professional software development projects [16].   Our 
results cast further doubt on the validity of the assumption that 
software engineers can readily move from usability requirements 
to successful design implementations.  

One final conclusion involves the relationship between the 
field of usability and software engineering. Usability specialists 
often advise software engineers with heuristics [13] even less 
detailed than the scenario given in this experiment [Fig 1.].   
Software engineers are also currently trained to view user-related 
functionality as separate from core functionality, and to omit 
functionality that is seen as part of the user interface from all but 
the latest stages of the requirements engineering process [15]. We 
have come to believe that the implications of usability heuristics 
for software design are not obvious and should be made explicit to   

468



  

software designers as well as software engineering students. 
Indeed, this is the motivation for our work with USAPs. The 
results of this experiment lend strong support to our conviction.   

6. ACKNOWLEDGEMENTS 
We wish to thank Sara Kiesler, Lynn Carter and the PDC scholars 
at Carnegie Mellon University’s West Coast Campus, Rob J. 
Adams, Andrew Ko, Jacob Wobbrock, our expert evaluators, and 
the NASA High Dependability Computing Program under 
cooperative agreement NCC-2-1298.  The views and conclusions 
contained in this document are those of the authors and should not 
be interpreted as representing the official policies, either 
expressed or implied, of NASA or the U. S. Government. 
 
7. REFERENCES 
 [1] Adams, R.J., Bass, L., and B.E. John, (in press) Applying 
general usability scenarios to the design of the software 
architecture of a collaborative workspace. In A. Seffah, J. 
Gulliksen and M. Desmarais (Eds.) Human-Centered Software 
Engineering: Frameworks for HCI/HCD and Software 
Engineering Integration, Kluwer Academic Publishers. 
 
[2] Anderson, J.R. and J.M. Fincham, “Acquisition of Procedural 
Skills from Examples”, Journal of Experimental Psychology: 
Learning, Memory and Cognition, 20, 1322-1340. 
 
[3] Bass, L., Golden, E., John, B.E., Juristo, N., Moreno, A, and 
M-I. Sanchez-Segura, “Unraveling the Myths of Developing 
Usable Software”, submitted to the 27th International Conference 
on Software Engineering, ICSE 2005, St. Louis, MO, May 15-21, 
2005. 
 
[4] Bass, L. and B.E. John, “Supporting Usability Through 
Software Architecture”, IEEE Computer, 34 (10), 113-115. 
 
[5] Bass, L., John, B.E., and J. Kates, “Achieving Usability 
Through Software Architecture”, Carnegie Mellon 
University/Software Engineering Institute Technical Report No. 
CMU/SEI-TR-2001-005, 2001. 
 
[6] Bass, L., John, B.E., Juristo, N. and M-I. Sanchez-Segura, 
“Usability and Software Architecture,” tutorial materials presented 
at the 26th International Conference on Software Engineering, 
ICSE 2004, Edinburgh, Scotland, May 23-38, 2004. 
 
[7] Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., 
Little, R., Nord, R. & J. Stafford, Documenting Software 
Architectures: Views and Beyond, Addison-Wesley, 2003. 

 
[8] Eguiluz, H., Govi, V., Kim, Y.J. and A. Sia,  PAMD: 
Developing a Plug-In Architecture for Palm OS-Powered Devices 
Using Software Engineering, Technical Note CMU/SEI-2002-TN-
020, Carnegie Mellon University, Pittsburgh, PA, 2002.  
 
[9] John, B.E. and L. Bass., “Avoiding ‘We can’t change THAT!’: 
Software Architecture and Usability”, tutorial materials presented 
at CHI 2003, Ft. Lauderdale, FL, April 5-10, 2003. 
 
[10] John, B.E., Bass, L., Juristo, N., and M-I. Sanchez-Segura, 
“Avoiding ‘We can’t change THAT!’: Software Architecture and 
Usability”, tutorial materials presented at CHI 2004, Vienna, 
Austria, April 24-29, 2004. 
 
[11] John, B.E., Bass, L., Sanchez-Segura, M-I., and R.J. Adams, 
“Bringing Usability Concerns to the Design of Software 
Architecture”, Proceedings of the 9th IFIP Working Conference 
on Engineering for Human-Computer Interaction and the 11th 
International Workshop on Design, Specification and Verification 
of Interactive Systems, Hamburg, German, July 11-13, 2004. 
 
[12] Naveda, J. Fernando, “Teaching Architectural Design in an 
Undergraduate Software Curriculum”, ASEE/IEEE Frontiers in 
Education Conference Proceedings, 1999, 12b1-4. 
 
[13] Nielsen, J., Heuristic evaluation. In Nielsen, J., and Mack, 
R.L. (Eds.), Usability Inspection Methods, John Wiley & Sons, 
New York, NY, 1994. 
 
[14] Prechelt, L., Unger, B. Philippsen, M. and W. Tichy, “Two 
Controlled Experiments Assessing the Usefulness of Design 
Pattern Documentation in Program Maintenance”, IEEE 
Transactions on Software Engineering, 28, 6, 595 – 606, June 
2002. 
 
[15] Van der Veer, G. and H. van Vliet, “A Plea for a Poor Man’s 
HCI Component in Software Engineering Curricula,” Proceedings 
of the 14th Conference on Software Engineering Education and 
Training, Charlotte, NC, February 19-21, 2001. 
 
[16] Vinter, O., “Experience-Based Approaches to Process 
Improvement,” Proceedings of the Thirteenth International 
Software Quality Week, Software Research, San Francisco, CA, 
2000. 
 

 
 

469


