
TECHNICAL REPORT
CMU/SEI-2001-TR-005

ESC-TR-2001-005

Achieving Usability
Through Software
Architecture

Len Bass
Bonnie E. John
Jesse Kates

June 2001

Pittsburgh, PA 15213-3890

Achieving Usability
Through Software
Architecture
CMU/SEI-2001-TR-005
ESC-TR-2001-005

Len Bass
Bonnie E. John
Jesse Kates

June 2001

Architecture Tradeoff Analysis Initiative

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Joint Program Office
HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

FOR THE COMMANDER

Norton L. Compton, Lt Col., USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2001 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 52.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

IBM, ViaVoice, Adobe, PhotoShop, Microsoft are registered trademarks of their respective organizations.

CMU/SEI-2001-TR005 i

Table of Contents

Abstract xi

1 Introduction 1

2 General Usability Scenarios 5
2.1 Aggregating Data 5
2.2 Aggregating Commands 5
2.3 Canceling Commands 5
2.4 Using Applications Concurrently 6
2.5 Checking for Correctness 6
2.6 Maintaining Device Independence 6
2.7 Evaluating the System 6
2.8 Recovering from Failure 6
2.9 Retrieving Forgotten Passwords 7
2.10 Providing Good Help 7
2.11 Reusing Information 7
2.12 Supporting International Use 7
2.13 Leveraging Human Knowledge 8
2.14 Modifying Interfaces 8
2.15 Supporting Multiple Activities 8
2.16 Navigating Within a Single View 8
2.17 Observing System State 9
2.18 Working at the User’s Pace 9
2.19 Predicting Task Duration 9
2.20 Supporting Comprehensive Searching 9
2.21 Supporting Undo 10
2.22 Working in an Unfamiliar Context 10
2.23 Verifying Resources 10
2.24 Operating Consistently Across Views 10
2.25 Making Views Accessible 11
2.26 Supporting Visualization 11

3 Details of the Usability Benefit Hierarchy 13
3.1 Increases Individual User Effectiveness 14

3.1.1 Expedites routine performance 14

ii CMU/SEI-2001TR-005

Accelerates error-free portion of
routine performance 15

Reduces the impact of routine user
errors (slips) 15

3.1.2 Improves non-routine performance 15
Supports problem-solving 15
Facilitates learning 16

3.1.3 Reduces the impact of user errors
caused by lack of knowledge
(mistakes) 16
Prevents mistakes 17
Accommodates mistakes 17

3.2 Reduces the Impact of System Errors 17
3.2.1 Prevents system errors 18
3.2.2 Tolerates system errors 18

3.3 Increases user confidence and comfort 18

4 Categorization By Usability Benefit 19
4.1 Aggregating Data 20
4.2 Aggregating Commands 20
4.3 Canceling Commands 22
4.4 Using Applications Concurrently 22
4.5 Checking for Correctness 23
4.6 Maintaining Device Independence 25
4.7 Evaluating the System 25
4.8 Recovering From Failure 26
4.9 Retrieving Forgotten Passwords 26
4.10 Providing Good Help 27
4.11 Reusing Information 27
4.12 Supporting International Use 28
4.13 Leveraging Human Knowledge 29
4.14 Modifying Interfaces 31
4.15 Supporting Multiple Activities 31
4.16 Navigating Within a Single View 32
4.17 Observing System State 32
4.18 Working at the User’s Pace 33
4.19 Predicting Task Duration 34
4.20 Supporting Comprehensive Searching 35
4.21 Supporting Undo 35
4.22 Working in an Unfamiliar Context 36
4.23 Verifying Resources 37
4.24 Operating Consistently Across Views 37
4.25 Making Views Accessible 38

CMU/SEI-2001-TR005 iii

4.26 Supporting Visualization 39

5 Software Engineering Hierarchy 41
5.1 Separation 42

5.1.1 Encapsulation of function 42
5.1.2 Data from commands 42
5.1.3 Data from the view of that data 42
5.1.4 Authoring from execution 43

5.2 Replication 43
5.2.1 Data 43
5.2.2 Commands 44

5.3 Indirection 44
5.3.1 Data 44
5.3.2 Function 44

5.4 Recording 45
5.5 Preemptive Scheduling 45
5.6 Models 46

5.6.1 Task 46
5.6.2 User 46
5.6.3 System 46

6 Architectural Patterns and Categorization 47
6.1 Aggregating Data 47

6.1.1 Pattern 47
6.1.2 Allocation to mechanism hierarchy 49

6.2 Aggregating Commands 49
6.2.1 Pattern 49
6.2.2 Allocation to mechanism hierarchy 51

6.3 Canceling Command 51
6.3.1 Pattern 51
6.3.2 Allocation to mechanism hierarchy 54

6.4 Using Applications Concurrently 55
6.4.1 Pattern 55
6.4.2 Allocation to mechanism hierarchy 55

6.5 Checking for Correctness 56
6.5.1 Pattern 56
6.5.2 Allocation to mechanism hierarchy 57

6.6 Maintaining Device Independence 57
6.6.1 Pattern 57
6.6.2 Allocation to mechanism hierarchy 58

6.7 Evaluating the System 58
6.7.1 Pattern 58
6.7.2 Allocation to mechanism hierarchy 59

iv CMU/SEI-2001TR-005

6.8 Recovering from Failure 59
6.8.1 Pattern 60
6.8.2 Allocation to mechanism hierarchy 60

6.9 Retrieving Forgotten Passwords 61
6.9.1 Pattern 61
6.9.2 Allocation to mechanism hierarchy 61

6.10 Providing Good Help 61
6.10.1 Pattern 61
6.10.2 Allocation to mechanism hierarchy 62

6.11 Reusing Information 63
6.11.1 Pattern 63
6.11.2 Allocation to mechanism hierarchy 64

6.12 Supporting International Use 64
6.12.1 Pattern 64
6.12.2 Allocation to mechanism hierarchy 66

6.13 Leveraging Human Knowledge 66
6.13.1 Pattern 66

Platform standards 66
Multiple interfaces 66

6.13.2 Allocation to mechanism hierarchy 67
6.14 Modifying Interfaces 67

6.14.1 Pattern 67
6.14.2 Allocation to mechanism hierarchy 67

6.15 Supporting Multiple Activities 68
6.15.1 Pattern 68
6.15.2 Allocation to mechanism hierarchy 68

6.16 Navigating Within a Single View 69
6.16.1 Pattern 69
6.16.2 Allocation to mechanism hierarchy 69

6.17 Observing System State 69
6.17.1 Patterna 70
6.17.2 Allocation to mechanism hierarchy 70

6.18 Working at the User’s Pace 71
6.18.1 Pattern 71
6.18.2 Allocation to mechanism hierarchy 71

6.19 Predicting Task Duration 72
6.19.1 Pattern 72
6.19.2 Allocation to mechanism hierarchy 72

6.20 Supporting Comprehensive Searching 72
6.20.1 Pattern 73
6.20.2 Allocation to mechanism hierarchy 73

6.21 Supporting Undo 74
6.21.1 Pattern 74

CMU/SEI-2001-TR005 v

6.21.2 Allocation to mechanism hierarchy 75
6.22 Working in an Unfamiliar Context 75

6.22.1 Pattern 75
6.22.2 Allocation to mechanism hierachy 75

6.23 Verifying Resources 76
6.23.1 Pattern 76
6.23.2 Allocation to mechanism hierarchy 76

6.24 Operating Consistently Across Views 76
6.24.1 Pattern 77
6.24.2 Allocation to mechanism hierarchy 78

6.25 Making Views Accessible 78
6.25.1 Pattern 78
6.25.2 Allocation to mechanism hierarchy 78

6.26 Supporting Visualization 78
6.26.1 Pattern 79
6.26.2 Allocation to mechanism hierarchy 79

7 Cross-Referencing Benefits and
Mechanisms 81

8 Further Work 83

References/Bibliography 85

vi CMU/SEI-2001TR-005

CMU/SEI-2001-TR005 vii

List of Figures

Figure 1. Usability is One Attribute of System
Design Among Many 1

Figure 2. Aggregation of Data Architecture
Pattern 47

Figure 3. Authoring of Aggregation of
Commands Architecture Pattern 50

Figure 4. Module View of Cancellation
Architecture Pattern 52

Figure 5. Cancellation Pattern - Thread View 53

Figure 6. Module View of Concurrent
Application Use 55

Figure 7. Correctness 56

Figure 8. Virtual Device Layer 58

Figure 9. Data Recording 59

Figure 10. Perform Checkpoint 60

Figure 11. Context Dependent Help 62

Figure 12. Information Re-Use 64

Figure 13. Internationalization 65

Figure 14. Navigation 69

Figure 15. Search 73

Figure 16. Undo 75

Figure 17. Consistent Operation 77

Figure 18. Benefit and Mechanism Matrix 82

viii CMU/SEI-2001TR-005

CMU/SEI-2001-TR005 ix

List of Tables

Table 1. Usability Benefits Heirarchy 14

Table 2. Usability Benefits Heirarchy 19

Table 3. Software Engineering Hierarchy 41

x CMU/SEI-2001TR-005

CMU/SEI-2001-TR-005 xi

Abstract

In this report, we present an approach to improving the usability of software systems by
means of software architectural decisions. We identify specific connections between aspects
of usability, such as the ability to "undo," and software architecture. We also formulate each
aspect of usability as a scenario with a characteristic stimulus and response. For every sce-
nario, we provide an architecture pattern that implements its aspect of usability. We then or-
ganize the usability scenarios by category. One category presents the benefits of these aspects
of usability to users or their organizations. A second category presents the architecture
mechanisms that directly relate to the aspects of usability. Finally, we present a matrix that
correlates these two categories with the general scenarios that apply to them.

The information in this report can benefit software architecture designers and evaluators.
Evaluators can use the scenarios as a checklist to determine whether a particular architecture
supports necessary usability features. Designers can use the information in three fashions:

1. The scenarios can serve as a checklist to show whether important usability features have
been considered in the requirements.

2. The architecture patterns can help guide the designer in supporting the scenarios.

3. The matrix enables a designer to determine what additional aspects of usability can be
supported for minimal cost, since the necessary mechanisms, at least potentially, are in
place.

CMU/SEI-2001-TR-005 1

1 Introduction

The goal of this work is to achieve better system usability through design decisions embodied
in the software architecture. These decisions are the most difficult to change as the design
progresses through the life cycle. Hence, understanding the relationship between software
architecture and usability is important to ensure that the system ultimately achieves it.
Equally important, however, is expressing this relationship in terms that can be understood by
both software engineers and usability specialists. Usability specialists determine which as-
pects of usability are appropriate for a given task or application. Software engineers evaluate
these aspects of usability within the context of the architecture and implement them within
time, cost, performance, availability, security, and other constraints (Figure 1).

Figure 1. Usability is One Attribute of System Design Among Many

Architecture is one aspect of a system to be designed, as well as the presentation of informa-
tion and the functionality of the system. Achieving better usability through software archi-
tecture is not a new goal. For the last twenty years, both researchers and practitioners have
been concerned with the software architecture design techniques required to support usability.
These techniques have focused on selecting the correct overall system structure, then show-
ing how this structure will deliver the modifiability needed, while still supporting perform-
ance and other functionality. A review of these techniques can be found in Chapter 6 of Soft-
ware Architecture in Practice [Bass 1998].

Performance Availability

System Design

Security Usability

Presentation Functionality Architecture

2 CMU/SEI-2001-TR-005

The architectures of the 1980s and early 1990s assumed that usability was primarily a prop-
erty of the presentation of information. Therefore, simply separating the presentation from
the dialog and the application made it easy to modify that presentation after user testing.
However, that assumption proved insufficient to achieve usable systems. A more popular be-
lief in the 1990s was that usability concerns greatly affected system functionality (applica-
tion) as well as presentation. This new emphasis took away attention from architectural sup-
port (beyond separation of presentation and application). Achieving the correct functionality
for a given system became paramount.

It is our observation that even if system presentation and functionality are designed extremely
well, system usability can be greatly compromised if the underlying architecture does not
support human concerns beyond modifiability. Many modifications only come to the fore
after an initial design and implementation. As is well known to software engineers, the later
in the life cycle that a problem is detected, the more expensive it is to fix. Furthermore, the
architectural separation of presentation from application is insufficient to achieve usability
because many usability concerns reach deep into the application, beyond the presentation
layer. Cost and schedule pressures, then, often prevent many modifications from being im-
plemented.

In this report, we take a proactive approach. Specifically, we present a series of connections
between specific aspects of usability, such as the ability for a user to “undo,” and software
architecture. Our contribution is to couple specific aspects of usability and architecture, rather
than attempting to come up with the software architecture that satisfies all aspects of usabil-
ity. Designers can use this information both to generate solutions to those aspects of usability
required for their systems and to evaluate their systems for specific aspects of usability.

In addition to identifying the connections between aspects of usability and software archi-
tecture, we identify “general scenarios” (Section 2) that define those architecturally sensitive
aspects of usability [Bass 2000]. We also categorize these scenarios into a hierarchy of hu-
man benefits (Sections 3 and 4) so that the design teams or stakeholders can evaluate their
applicability to the system being constructed. We take a similar approach to architectural
patterns. We provide a hierarchy of architectural mechanisms and then, for each scenario, we
provide an architecture pattern that implements the scenario. We categorize these patterns
according to their appropriate architecture mechanisms (Sections 5 and 6). Finally, we posi-
tion the scenarios within a matrix of benefits and architecture mechanisms (Section 7).

The architecture patterns we provide will enable usability specialists to evaluate the impact of
the proposed solution on other quality attributes, such as performance, availability, and secu-
rity. In this way, we hope to give these specialists the tools necessary to decide which aspects
of usability should be included in the beginning of the design process. We also hope to give
software engineers the tools necessary to understand particular aspects of usability and their
impact on total system quality.

CMU/SEI-2001-TR-005 3

Caveats: Collaboration and Ubiquitous Computing
Thus far, we have only applied usability benefit categories for individuals performing tasks
on a desktop computer. However, increasing numbers of systems are being built to support
collaborative groups. As a result, the benefits and general scenarios we describe need to be
re-examined within the context of collaborative applications. In addition, increasing numbers
of systems, such as laptops, personal digital assistants (PDAs), wearable computers, white-
boards, and other devices are being built to support ubiquitous computing. As a result, the
benefits and general scenarios that we generated need to be reconsidered in non-desktop sys-
tems and applications. New general scenarios or benefits that arise in this context also need to
be generated and cataloged. Suggestions are most welcome. This work is being done in an
attempt to understand architectural mechanisms and to categorize software quality attributes.
While it represents our thinking at this point, our ideas may evolve over time.

4 CMU/SEI-2001-TR-005

CMU/SEI-2001-TR-005 5

2 General Usability Scenarios

This section enumerates the usability scenarios that we have identified as being architectur-
ally sensitive. A general usability scenario describes an interaction that some stakeholder
(e.g., end user, developer, system administrator) has with the system under consideration
from a usability point of view.

We generated the list of usability scenarios by surveying the literature, by personal experi-
ence, and by asking colleagues [Gram 1996, Newman 1995, Nielsen 1993]. We also screened
the list so that all entries have explicit software architectural implications and solutions. Sec-
tion 5 provides an architectural pattern that implements each scenario given in this report.

2.1 Aggregating Data

A user may want to perform one or more actions on more than one object. For example, an
Adobe® Illustrator® user may want to enlarge many lines in a drawing. It could become te-
dious to perform these actions one at a time. Furthermore, the specific aggregations of actions
or data that a user wishes to perform cannot be predicted; they result from the requirements
of each task. Systems, therefore, should allow users to select and act upon arbitrary combina-
tions of data.

2.2 Aggregating Commands

A user may want to complete a long-running, multi-step procedure consisting of several
commands. For example, a psychology researcher may wish to execute a batch of commands
on a data file during analysis. It could become tedious to invoke these commands one at a
time, or to provide parameters for each command as it executes. If the computer is unable to
accept the required inputs for this procedure up front, the user will be forced to wait for each
input to be requested. Systems should provide a batch or macro capability to allow users to
aggregate commands.

2.3 Canceling Commands

A user invokes an operation, then no longer wants the operation to be performed. The user
now wants to stop the operation rather than wait for it to complete. It does not matter why the
user launched the operation. The mouse could have slipped. The user could have mistaken
one command for another. The user could have decided to invoke another operation. For
these reasons (and many more), systems should allow users to cancel operations.

6 CMU/SEI-2001-TR-005

2.4 Using Applications Concurrently

A user may want to work with arbitrary combinations of applications concurrently. These
applications may interfere with each other. For example, some versions of IBM® ViaVoice
and Microsoft® Word contend for control of the cursor with unpredictable results. Systems
should ensure that users can employ multiple applications concurrently without conflict.

(See: Supporting Multiple Activities)

2.5 Checking for Correctness

A user may make an error that he or she does not notice. However, human error is frequently
circumscribed by the structure of the system; the nature of the task at hand, and by predict-
able perceptual, cognitive, and motor limitations. For example, users often type “hte” instead
of “the” in word processors. The frequency of the word “the” in English and the fact that
“hte” is not an English word, combined with the frequency of typing errors that involve
switching letters typed by alternate hands, make automatically correcting to “the” almost al-
ways appropriate. Computer-aided correction becomes both possible and appropriate under
such circumstances. Depending on context, error correction can be enforced directly (e.g.,
automatic text replacement, fields that only accept numbers) or suggested through system
prompts.

2.6 Maintaining Device Independence

A user attempts to install a new device. The device may conflict with other devices already
present in the system. Alternatively, the device may not function in certain specific applica-
tions. For example, a microphone that uses the Universal Serial Bus (USB) may fail to func-
tion with older sound software. Systems should be designed to reduce the severity and fre-
quency of device conflicts. When device conflicts occur, the system should provide the
information necessary to either solve the problem or seek assistance. (Devices include print-
ers, storage/media, and I/O apparatus.)

2.7 Evaluating the System

A system designer or administrator may be unable to test a system for robustness, correct-
ness, or usability in a systematic fashion. For example, the usability expert on a development
team might want to log test users’ keystrokes, but may not have the facilities to do so. Sys-
tems should include test points and data gathering capabilities to facilitate evaluation.

2.8 Recovering from Failure

A system may suddenly stop functioning while a user is working. Such failures might include
a loss of network connectivity or hard drive failure in a user’s PC. In these or other cases,

CMU/SEI-2001-TR-005 7

valuable data or effort may be lost. Users should be provided with the means to reduce the
amount of work lost from system failures.

2.9 Retrieving Forgotten Passwords

A user may forget a password. Retrieving and/or changing it may be difficult or may cause
lapses in security. Systems should provide alternative, secure mechanisms to grant users ac-
cess. For example, some online stores ask each user for a maiden name, birthday, or the name
of a favorite pet in lieu of a forgotten password.

2.10 Providing Good Help

A user needs help. The user may find, however, that a system’s help procedures do not adapt
adequately to the context. For example, a user’s computer may crash. After rebooting, the
help system automatically opens to a general table of contents rather than to a section on re-
storing lost data or searching for conflicts. Help content may also lack the depth of informa-
tion required to address the user’s problem. For example, an operating system’s help area
may contain an entry on customizing the desktop with an image, but may fail to provide a list
of the types of image files that can be used. Help procedures should be context dependent and
sufficiently complete to assist users in solving problems.

2.11 Reusing Information

A user may wish to move data from one part of a system to another. For example, a telemar-
keter may wish to move a large list of phone numbers from a word processor to a database.
Re-entering this data by hand could be tedious and/or excessively time-consuming. Users
should be provided with automatic (e.g., data propagation) or manual (e.g., cut and paste)
data transports between different parts of a system. When such transports are available and
easy to use, the user’s ability to gain insight through multiple perspectives and/or analysis
techniques will be enhanced.

2.12 Supporting International Use

A user may want to configure an application to communicate in his or her language or ac-
cording to the norms of his or her culture. For example, a Japanese user may wish to config-
ure the operating system to support a different keyboard layout. However, an application de-
veloped in one culture may contain elements that are confusing, offensive, or otherwise
inappropriate in another. Systems should be easily configurable for deployment in multiple
cultures.

8 CMU/SEI-2001-TR-005

2.13 Leveraging Human Knowledge

People use what they already know when approaching new situations. Such situations may
include using new applications on a familiar platform, a new version of a familiar applica-
tion, or a new product in an established product line.

New approaches usually bring new functionality or power. When, however, users are unable
to apply what they already know, a corresponding cost in productivity and training time is
incurred. For example, new versions of applications often assign items to different menus or
change their names. As a result, users skilled in the older version are reduced to the level of
novices again, searching menus for the function they know exists.

System designers should strive to develop upgrades that leverage users’ knowledge of prior
systems and allow them to move quickly and efficiently to the new system.

2.14 Modifying Interfaces

Iterative design is the lifeblood of current software development practice, yet a system devel-
oper may find it prohibitively difficult to change the user interface of an application to reflect
new functions and/or new presentation desires. System designers should ensure that their user
interfaces can be easily modified.

2.15 Supporting Multiple Activities

Users often need to work on multiple tasks more or less simultaneously (e.g., check mail and
write a paper). A system or its applications should allow the user to switch quickly back and
forth between these tasks.

2.16 Navigating Within a Single View

A user may want to navigate from data visible on-screen to data not currently displayed. For
example, he or she may wish to jump from the letter “A” to the letter “Q” in an online ency-
clopedia without consulting the table of contents. If the system takes too long to display the
new data or if the user must execute a cumbersome command sequence to arrive at her or his
destination, the user’s time will be wasted. System designers should strive to ensure that us-
ers can navigate within a view easily and attempt to keep wait times reasonably short.

(See: Working at the User’s Pace)

CMU/SEI-2001-TR-005 9

2.17 Observing System State

A user may not be presented with the system state data necessary to operate the system (e.g.,
uninformative error messages, no file size given for folders). Alternatively, the system state
may be presented in a way that violates human tolerances (e.g., is presented too quickly for
people to read. See: Working at the User’s Pace). The system state may also be presented in
an unclear fashion, thereby confusing the user. System designers should account for human
needs and capabilities when deciding what aspects of system state to display and how to pre-
sent them.

A special case of Observing System State occurs when a user is unable to determine the level
of security for data entered into a system. Such experiences may make the user hesitate to use
the system or avoid it altogether.

2.18 Working at the User’s Pace

A system might not accommodate a user’s pace in performing an operation. This may make
the user feel hurried or frustrated. For example, ATMs often beep incessantly when a user
“fails” to insert an envelope in time. Also, Microsoft Word’s scrolling algorithm does not take
system speed into account and becomes unusable on fast systems (the data flies by too
quickly for human comfort). Systems should account for human needs and capabilities when
pacing the stages in an interaction. Systems should also allow users to adjust this pace as
needed.

2.19 Predicting Task Duration

A user may want to work on another task while a system completes a long running operation.
For example, an animator may want to leave the office to make copies or to eat while a com-
puter renders frames. If systems do not provide expected task durations, users will be unable
to make informed decisions about what to do while the computer “works.” Thus, systems
should present expected task durations.

2.20 Supporting Comprehensive Searching

A user wants to search some files or some aspects of those files for various types of content.
For example, a user may wish to search text for a specific string or all movies for a particular
frame. Search capabilities may be inconsistent across different systems and media, thereby
limiting the user’s opportunity to work. Systems should allow users to search data in a com-
prehensive and consistent manner by relevant criteria.

10 CMU/SEI-2001-TR-005

2.21 Supporting Undo

A user performs an operation, then no longer wants the effect of that operation. For example,
a user may accidentally delete a paragraph in a document and wish to restore it. The system
should allow the user to return to the state before that operation was performed. Furthermore,
it is desirable that the user then be able to undo the prior operation (multi-level undo).

2.22 Working in an Unfamiliar Context

A user needs to work on a problem in a different context. Discrepancies between this new
context and the one the user is accustomed to may interfere with the ability to work. For ex-
ample, a clerk in business office A wants to post a payment for a customer of business unit B.
Each business unit has a unique user interface, and the clerk has only used unit A’s previ-
ously. The clerk may have trouble adapting to business unit B’s interface (same system, un-
familiar context.) Systems should provide a novice (verbose) interface to offer guidance to
users operating in unfamiliar contexts.

2.23 Verifying Resources

An application may fail to verify that necessary resources exist before beginning an opera-
tion. This failure may cause errors to occur unexpectedly during execution. For example,
some versions of Adobe® PhotoShop® may begin to save a file only to run out of disk space
before completing the operation. Applications should verify that all necessary resources are
available before beginning an operation.

2.24 Operating Consistently Across Views

A user may become confused by functional deviations between different views of the same
data. Commands that had been available in one view may become unavailable in another or
may require different access methods. For example, users cannot run a spell check in the
Outline View utility found in a mid-90’s version of Microsoft Word. Systems should make
commands available based on the type and content of a user’s data, rather than the current
view of that data, as long as those operations make sense in the current view.

For example, allowing users to perform operations on individual points in a scatter plot while
viewing the plot at such a magnification that individual points cannot be visually distin-
guished does not make sense. A naïve user is likely to destroy the underlying data. The sys-
tem should prevent selection of single points when their density exceeds the resolution of the
screen, and inform the user how to zoom in, access the data in a more detailed view, or oth-
erwise act on single data points.

(See: Providing Good Help and Supporting Visualization)

CMU/SEI-2001-TR-005 11

2.25 Making Views Accessible

Users often want to see data from other viewpoints. For example, a user may wish to see the
outline of a long document and the details of the prose. If certain views become unavailable
in certain modes of operation, or if switching between views is cumbersome, the user’s abil-
ity to gain insight through multiple perspectives will be constrained.

(See: Supporting Visualization)

2.26 Supporting Visualization

A user wishes to see data from a different viewpoint. Systems should provide a reasonable set
of task-related views to enhance users’ ability to gain additional insight while solving prob-
lems. For example, Microsoft Word provides several views to help users compose docu-
ments, including Outline and Page Layout modes.

12 CMU/SEI-2001-TR-005

CMU/SEI-2001-TR-005 13

3 Details of the Usability Benefit Hierarchy

To create usable systems, designers must first ensure that their proposed products provide the
functionality their users actually need to perform work as opposed to the functionality that
the marketing or development team imagines they need. In other words, systems must pro-
vide functionality that fits the individual, organizational, and social structure of the work
context. Although specifying and identifying needed functionality are fundamental steps in
the development process, these design phases do not typically involve architectural concerns.
Thus, we will not discuss them here. (We refer readers interested in these issues to Contextual
Design [Beyer 1998].)

Assuming that the functionality needed by a system’s users is correctly identified and speci-
fied, the usability of such a system can still be seriously compromised by architectural deci-
sions that hinder or even prevent the required benefits. In extreme cases, the resulting system
can become virtually unusable.

This section organizes and presents scenarios by their usability benefits. We arrived at the
hierarchy of usability benefits presented in Table 1 using a bottom-up process called the af-
finity process [Beyer 1998]. We took this approach rather than taking an existing definition of
usability and sorting the scenarios into it because it was not clear that architecturally sensitive
scenarios would cover the typical range of usability benefits. However, the resulting hierar-
chy does not differ significantly from organizations of usability given by other authors [e.g.,
Newman 1995; Nielsen 1993; Shneiderman 1998], and we view this as partial confirmation
that our set of architecturally sensitive scenarios covers, in some sense, the usability space.
Each scenario occurs in one or more positions in the hierarchy.

The entries in this chapter discuss each item of the usability benefit hierarchy. One premise of
this work has been that the design of a system embodies tradeoffs between benefits (usabil-
ity) and cost (software engineering). Hence in each section, we discuss the appropriate mes-
sages for each benefit. This will enable the usability engineer to better argue the potential
benefits of each scenario and the software engineer to know what instrumentation should be
embedded into the system to support the benefit calculations.

14 CMU/SEI-2001-TR-005

Table 1. Usability Benefits Heirarchy

Increases individual user effectiveness
Expedites routine performance

Accelerates error-free portion of routine performance
Reduces the impact of routine user errors (slips)

Improves non-routine performance
Supports problem-solving
Facilitates learning

Reduces the impact of user errors caused by lack of knowledge (mistakes)
Prevents mistakes
Accommodates mistakes

Reduces the impact of system errors
Prevents system errors
Tolerates system errors

Increases user confidence and comfort

3.1 Increases Individual User Effectiveness

If addressed properly, the scenarios included in this category will improve the performance of
individual users. Such increases in productivity, though seemingly small when considered
discretely, can aggregate to produce substantial benefits for an organization as a whole.

3.1.1 Expedites routine performance

In a routine task, a user recognizes a situation, knows what the next goal should be, and
knows what to do to accomplish that goal. No problem-solving is necessary. All that remains
is for the user to recall and execute the commands necessary to complete the task.

When performing routine tasks, even skilled users will become faster but will probably not
develop new methods to complete their tasks [Card 1983]. This is in contrast to a problem-
solving or learning situation where the user is likely to discover or learn a new method while
performing a task. (For an example of learning and problem-solving behavior, see non-
routine performance.)

Although users know what to do to accomplish routine tasks, they will still make errors. In
fact, observations of skilled users performing routine tasks reveal that about 20% of a user’s
time may be consumed by making, then recovering from, mistakes. These “routine errors”
result from “slips” in execution (e.g., hitting the wrong key or selecting the menu item next to
the one desired), rather than from a lack of knowledge (i.e., not knowing which command to

CMU/SEI-2001-TR-005 15

use). Slips can never be totally prevented if there are multiple actions available to a user, but
some system designs accommodate these errors more successfully than others.

Accelerates error-free portion of routine performance

Routine tasks take time for a user to recognize the situation, recall the next goal and the
method used to accomplish it, and to mentally and/or physically execute the commands to
accomplish the goal. We call the minimum required time to accomplish a task, assuming no
slips, the error-free portion of routine performance.

In practice, the actual performance time is the sum of this minimum time and the time it takes
to make and recover from slips. Systems can be designed to maximize error-free performance
time, thereby reducing time to perform routine tasks and increasing individual effectiveness.

Reduces the impact of routine user errors (slips)

The negative impact of routine user errors can be reduced in two ways. First, since users will
always slip, reducing the number of opportunities for error (roughly corresponding to the
number and difficulty of steps in a given procedure) will usually reduce its occurrence. Sec-
ond, systems can be designed to better accommodate user slips by providing adequate recov-
ery methods.

3.1.2 Improves non-routine performance

In a non-routine task, a user does not know exactly what to do. In this situation, the user may
experiment within the interface by clicking on buttons either randomly or systematically to
observe the effects. The user might guess at actions based on previous experience. He or she
might also use a tutorial, a help system, or documentation. Success in these “weak methods”
of dealing with a new situation can be helped or hindered through system design.

Supports problem-solving

Users employ problem-solving behavior when they do not know exactly what to do. This be-
havior can be described as a search through a problem space [Newell and Simon 1972].
When confronted with a new problem, people guess at solutions based on previous experi-
ence, try things at random to see what happens, or search for the desired effect.

For this discussion, we assume that the user understands the goal of the task (e.g., I would
like to replace all occurrences of “bush” with “shrub”), but the user may have to search
through the system’s available commands to achieve the desired outcome.

Measures of how well a system supports problem-solving include

• the time it takes to accomplish a novel task

16 CMU/SEI-2001-TR-005

• the number of incorrect paths the user takes while accomplishing a novel task

• the type of incorrect paths the user takes while accomplishing a novel task (e.g., paths
that have unforeseen and permanent side effects or benign paths that change nothing but
simply add to the problem-solving time)

• the time necessary to recover from incorrect paths (Systems that support UNDO usually
score well on this measure.)

In addition to reducing time spent on incorrect paths, well-designed systems may actually
enhance users’ problem-solving capabilities, further improving productivity.

Facilitates learning

Humans continuously learn as they perform tasks. Even in routine situations, humans con-
tinue to speed up with each repetition, eventually reaching a plateau where further improve-
ments in performance become nearly imperceptible. In non-routine situations, people learn by
receiving training, consulting instructions (using a help system, documentation, or asking a
friend), by exploring the system, by applying previous experience to the new situation, and/or
by reasoning based on what they know (or think they know) about a system. They may also
learn by making a mistake, observing that the erroneous action does not produce the desired
result, and by remembering not to perform this action again.

Measures of how well a system supports learning typically include

• the number of times a task must be performed by a user before it is completed without
error. (Often investigators include a repetition requirement to avoid the “luck” factor; for
example, a user must perform a task n times without error.)

• the time before a user fulfills the error-free repetition requirement (defined above)

• incidental learning measures, in which a user first performs a task until some level of
mastery is reached. The user then performs a different task that he or she has not prac-
ticed. The problem-solving and learning measures associated with this second task are
measures of incidental learning.

3.1.3 Reduces the impact of user errors caused by lack of
knowledge (mistakes)

In addition to the errors people make even when they know how to accomplish their tasks
(slips, discussed above), people make errors when they do not know what to do in the current
situation. In a typical scenario, a user does not understand that the current situation differs in
important ways from previously encountered situations, and therefore he or she misapplies

CMU/SEI-2001-TR-005 17

knowledge of procedures that have worked before.1 Errors due to lack of knowledge are
called mistakes.

Design cannot prevent all mistakes, but careful design can prevent some of them. For exam-
ple, a typical technique to help prevent mistakes is to gray out inapplicable menu items. Since
some mistakes will still occur, systems should also be designed to accommodate them.

Prevents mistakes

The following are typical measures of how well a system helps to prevent mistakes:

• the number of mistaken actions that a user could make while completing a task

• the type of mistakes the user could make while accomplishing a task (e.g., paths that have
unforeseen and permanent side effects, or benign paths that change nothing)

(While these measures appear similar to those associated with problem-solving; that case fo-
cuses on how well the system guides the user back to the correct path. Preventing mistakes
focuses on how well the system guides the user away from an incorrect path. The difference
is subtle.)

Accommodates mistakes

Since mistakes will occur if the user has the freedom to stray from a correct path, the system
should accommodate these errors. The most telling measures of such accommodation are

• the degree to which the system can be restored to the state prior to the mistake

• the time necessary to recover from mistakes (Systems that support UNDO usually score
well on this measure.) This duration includes the time needed to restore all data and re-
sources to the state before the error.

3.2 Reduces the Impact of System Errors

Systems will always operate with some degree of error. Networks will go down, power fail-
ures will occur, and applications will contend for resources and conflict. Design cannot pre-
vent all system errors, but careful design can prevent some of them. All systems should be
designed to tolerate system errors. This section differs from section 3.1. “Reduces the impact
of routine user errors” only in the source of the error discussed. Here, we address system

1 It is often difficult to distinguish a mistake from an exploratory problem-solving action.

Typically, a mistake is when the user “knows” what to do and is wrong; while problem-
solving is when the user doesn’t know what to do and is trying to find the correct way.
Therefore, the difference can only be detected through means other than the observation
of actions – think-aloud protocols or interviews about what a person intended when tak-
ing an action, or his or her response when the action does not have the intended result
(which indicates a mistake) typically allow observers to make this distinction. However,
for architecture design, this distinction is not important; some users may be problem-
solving and others making mistakes, but the architecture should support both.

18 CMU/SEI-2001-TR-005

error, not user error. The measures stay the same but the object of measurement becomes the
system.

3.2.1 Prevents system errors

As with preventing mistakes, the measures associated with preventing system errors are the
number and type of error that occur as a user performs a task.

3.2.2 Tolerates system errors

Since system errors will occur, systems should be set up to tolerate them. Again, as with ac-
commodating mistakes, the most telling measures of error tolerance are

• the degree to which the system state can be restored to the state before the error.

• the time necessary to recover from errors. This duration includes the time needed to re-
store all data and resources to the system state before the error.

3.3 Increases user confidence and comfort

In the scenarios included in this category, the benefits do not involve users’ efficiency, prob-
lem-solving processes, ability to learn, or propensity to make mistakes. The benefits do in-
volve how they feel about the system; for some architectural decisions do facilitate or inhibit
capabilities that increase user confidence and comfort, and this may be of value to an organi-
zation. Measures of confidence and comfort are more indirect than the time- and error-based
metrics in the preceding categories, and typically involve questionnaires or interviews, or
analysis of buying behavior (e.g., return customers and referrals).

CMU/SEI-2001-TR-005 19

4 Categorization By Usability Benefit

As stated in Section 3, we organized the general usability scenarios into a hierarchy by bene-
fit to the user. The hierarchy that results was presented in Table 1, is shown again as Table 2.

Table 2. Usability Benefits Heirarchy

Increases individual user effectiveness
Expedites routine performance

Accelerates error-free portion of routine performance
Reduces the impact of routine user errors (slips)

Improves non-routine performance
Supports problem-solving
Facilitates learning

Reduces the impact of user errors caused by lack of knowledge (mistakes)
Prevents mistakes
Accommodates mistakes

Reduces the impact of system errors
Prevents system errors
Tolerates system errors

Increases user confidence and comfort

This hierarchy is of benefit as a screening mechanism for the scenario. That is, if you are a
system designer or evaluator, you can characterize the usability requirements for your system
in terms of the categories in the hierarchy. The scenarios that appear are those that may be
necessary to achieve your requirements.

We now enumerate the scenarios again and justify placing the scenarios in particular catego-
ries. A single scenario may appear in multiple categories. For example, undo supports routine
performance (correcting slips) but it also supports exploration (the user can always recover
from a test path).

The form of each section is the same. We repeat the scenario and present its entry in the bene-
fit hierarchy. We then provide a brief argument that justifies the scenarios placement in the
hierarchy.

20 CMU/SEI-2001-TR-005

4.1 Aggregating Data

A user may want to perform one or more actions on more than one object. For example, an
Adobe® Illustrator® user may want to enlarge many lines in a drawing. It could become te-
dious to perform these actions one at a time. Furthermore, the specific aggregations of actions
or data that a user wishes to perform cannot be predicted; they result from the requirements
of each task. Systems, therefore, should allow users to select and act upon arbitrary combina-
tions of data.

Allocation to Benefit Hierarchy

Increases individual user effectiveness
Expedites routine performance

Accelerates error-free portion of routine performance

Data aggregation makes the system rather than the user responsible for iteration. This often
saves time, thereby accelerating routing performance [Bhavani 2000].

Increases individual user effectiveness
Reduces the impact of user errors caused by lack of knowledge (mistakes)

Prevents mistakes

Operating on aggregates usually requires fewer human actions (e.g., typing, mouse move-
ments) than working on each member of the aggregate in turn. Since performing more actions
introduces more opportunities for error, the presence of data aggregation functionality can
prevent slips [Miller 1987]. Some opportunities for error still exist, however, and errors
committed on aggregates can be “larger” in a sense. For instance, if you change a Microsoft
Word style to italic when you intended to enter bold, you have changed text throughout the
document instead of only in one place. Still, aggregation functionality may facilitate recovery
from such mistakes, so error analysis might be useful to understand the tradeoffs particular to
a given system. Generally, the benefits of supporting aggregation far outweigh the risks.

Increases individual user effectiveness
Reduces the impact of user errors caused by lack of knowledge (mistakes)

Accommodates mistakes (Dependant on Search)

When working with aggregates, a robust search system can help accommodate user mistakes.
In particular, a user may forget the members of an aggregate. To accommodate such errors,
the user must be able to search by aggregate. Other mistakes can be accommodated by ena-
bling the system to search by the criteria that users employed to create aggregates (type,
modification date, etc.).

4.2 Aggregating Commands

A user may want to complete a long-running, multi-step procedure consisting of several
commands. For example, a psychology researcher may wish to execute a batch of commands

CMU/SEI-2001-TR-005 21

a data file during analysis. It could become tedious to invoke these commands one at a time,
or to provide parameters for each command as it executes. If the computer is unable to accept
the required inputs for this procedure up front, the user will be forced to wait for each input to
be requested. Systems should provide a batch or macro capability to allow users to aggregate
commands.

Allocation to Benefit Hierarchy

Increases individual effectiveness
Expedites routine performance

Accelerates error-free portion

The ability to aggregate commands enhances routine performance by allowing users to work
on multiple tasks at the same time. For example, a user can get coffee while the computer
prints a queue of documents. (This is an aggregation of individual print commands.)

Increases individual effectiveness
Expedites routine performance

Reduces impact of slips

Executing a macro, batch, or script requires fewer human actions (e.g., typing, mouse move-
ments) than executing commands in turn. Since performing more actions introduces more
opportunities for error, the presence of command aggregation functionality can prevent slips.

Increases individual effectiveness
Reduces the impact of user errors caused by lack of knowledge (mistakes)

Prevents mistakes

Executing a macro, batch, or script requires little thought and presents fewer opportunities for
user mistakes than applying commands one by one in sequence. Thus, once the macro or
script is written, tested, and debugged, subsequent use of that macro or script will be virtually
error-free. Analogous to the problem with aggregation of data, there is the danger of produc-
ing an incorrect macro or script that will have far reaching consequences, but the potential for
benefit provided by this capability usually far outweighs the potential for damage.

Increases individual effectiveness
Reduces the impact of user errors caused by lack of knowledge (mistakes)

Accommodates mistakes (Dependent on Search)

When working with command aggregates, a robust search system can help accommodate user
mistakes. In particular, a user may forget the name of the macro or script. The forgetting of
the name of the macro or script is a trade-off with forgetting the elements included in the
macro or script. To accommodate the forgetting of the name of the macro or script, the user
must be able to search by whatever criteria users might employ (content, type of file it works
on, modification date, etc.) to create command aggregates.

22 CMU/SEI-2001-TR-005

4.3 Canceling Commands

A user invokes an operation, then no longer wants the operation to be performed. The user
now wants to stop the operation rather than wait for it to complete. It does not matter why the
user launched the operation. The mouse could have slipped. The user could have mistaken
one command for another. The user could have decided to invoke another operation. For
these reasons (and many more), systems should allow users to cancel operations.

Allocation to Benefit Hierarchy

Increases individual effectiveness
Expedites routine performance

Reduces impact of slips

Cancellation reduces the impact of slips by allowing users to revoke accidental commands.

Increases individual effectiveness
Improves non-routine performance

Supports problem-solving

Cancellation facilitates problem-solving by allowing users to apply commands and explore
without fear, because they can always abort their actions.

Increases individual effectiveness
Reduces the impact of user errors caused by lack of knowledge (mistakes)

Accommodates mistakes

Cancellation accommodates user mistakes by allowing users to abort commands they invoke
through lack of knowledge.

Reduces the impact of system errors
Tolerates system errors

Cancellation helps users tolerate system error by allowing users to abort commands that
aren’t working properly (for example, a user cancels a download because the network is
jammed).

4.4 Using Applications Concurrently

A user may want to work with arbitrary combinations of applications concurrently. These
applications may interfere with each other. For example, some versions of IBM® ViaVoice
and Microsoft® Word contend for control of the cursor with unpredictable results. Systems
should ensure that users can employ multiple applications concurrently without conflict.

(See: Supporting Multiple Activities)

CMU/SEI-2001-TR-005 23

Allocation to Benefit Hierarchy

Increases individual effectiveness
Expedites routine performance

Accelerates error-free portion

When applications interfere with each other, they disrupt routine performance. Also, when
systems are designed to support concurrent applications, users may switch more easily from
task to task or work on several tasks at the same time.

Increases individual effectiveness
Improves non-routine performance

Supports problem-solving

Interfering applications may inhibit a user’s ability to solve problems. A user may take an
action while exploring a path that has an unintended and undesirable result because of an ap-
plication interaction, rather than because the action itself was incorrect. This may cause the
user to abandon paths of exploration that would have led to solutions.

Increases individual effectiveness
Improves non-routine performance

Facilitates learning

When applications interfere with each other, users may learn superstitious behavior. For ex-
ample, a user may think that a system crash was caused by a personal mistake, when in fact
two applications interfered with each other.

Increases individual effectiveness
Reduces the impact of user errors caused by lack of knowledge (mistakes)

Prevents mistakes

Application interference is an instance of a system error. Systems that are designed to support
concurrent applications prevent this problem.

4.5 Checking for Correctness

A user may make an error that he or she does not notice. However, human error is frequently
circumscribed by the structure of the system, the nature of the task at hand, and by predict-
able perceptual, cognitive, and motor limitations. For example, users often type “hte” instead
of “the” in word processors. The frequency of the word “the” in English and the fact that
“hte” is not an English word, combined with the frequency of typing errors that involve
switching letters typed by alternate hands, make automatically correcting to “the” almost al-
ways appropriate. Computer-aided correction becomes both possible and appropriate under
such circumstances. Depending on context, error correction can be enforced directly (e.g.,
automatic text replacement, fields that only accept numbers) or suggested through system
prompts.

24 CMU/SEI-2001-TR-005

Allocation to Benefit Hierarchy

Increases individual effectiveness
Expedites routine performance

Reduces impact of slips

When systems are designed to correct very predictable slips (e.g., typing “hte” instead of
“the”), the effects of user slips can be reduced.

Increases individual effectiveness
Improves non-routine performance

Supports problem-solving

Since undetected human errors can lead users down paths in the problem space that have
nothing to do with solutions, correctness checking can help keep users on a more context-
appropriate and direct path when problem-solving.

Increases individual effectiveness
Improves non-routine performance

Facilitates learning

As described above, undetected human errors can lead users down paths in the problem space
that have nothing to do with solutions. Correctness checking can help keep users on a more
context appropriate and direct path when problem solving. Direct paths are easier to learn.
Furthermore, a system that corrects errors and informs users of their mistakes can facilitate
learning by providing additional feedback, and sometimes even the correct answer. For ex-
ample, a person can learn the correct spelling of a word from a spell checker.

Increases individual effectiveness
Reduces the impact of user errors caused by lack of knowledge (mistakes)

Prevents mistakes

When systems are designed to correct errors, user mistakes can be prevented. For example, a
system could ensure that only certain numerals are entered into the ID search field of a
document.

Increases individual effectiveness
Reduces the impact of user errors caused by lack of knowledge (mistakes)

Accommodates mistakes

As with slips, when systems are designed to correct errors, the effects of user mistakes can be
reduced. Finding and fixing mistakes also can be much easier. For instance, a user can spell a
word by guessing, use the automatically generated suggestions of a spell-checker to find the
correct spelling, and insert it.

CMU/SEI-2001-TR-005 25

4.6 Maintaining Device Independence

A user attempts to install a new device. The device may conflict with other devices already
present in the system. Alternatively, the device may not function in certain specific applica-
tions. For example, a microphone that uses the Universal Serial Bus (USB) may fail to func-
tion with older sound software. Systems should be designed to reduce the severity and fre-
quency of device conflicts. When device conflicts occur, the system should provide the
information necessary to either solve the problem or seek assistance. (Devices include print-
ers, storage/media, and I/O apparatus.)

Allocation to Benefit Hierarchy

Increases individual effectiveness
Expedites routine performance

Accelerates error–free portion of routine performance

If the user swaps peripherals frequently, (for example, swapping a CD-ROM drive for a 3.5”
drive) then device independence will accelerate routine performance.

Increases individual effectiveness
Improves non-routine performance

Supports problem-solving

If a user encounters an unfamiliar or undesirable device in an occasional situation, device
independence will allow the user easily to switch to a more familiar or desirable device. For
example, a user with Repetitive Stress Injury may have a special keyboard. If it can be trans-
ported and installed to any system easily, the user will be able to type anywhere.

Reduces impact of system errors
Prevents system errors

Device errors are system errors. Systems that are designed to support multiple, independent
devices prevent these errors from occurring.

4.7 Evaluating the System

A system designer or administrator may be unable to test a system for robustness, correct-
ness, or usability in a systematic fashion. For example, the usability expert on a development
team might want to log test users’ keystrokes, but may not have the facilities to do so. Sys-
tems should include test points and data gathering capabilities to facilitate evaluation.

Allocation to Benefit Hierarchy

Increases individual effectiveness
Expedites routine performance

Accelerates error-free portion of routine performance

26 CMU/SEI-2001-TR-005

Testing is a routine part of programming. Systems that are easy to evaluate are easier to test.
This, in turn, can accelerate the routine performance of software developers.

Increases individual effectiveness
Improves non-routine performance

Supports problem solving

When testing uncovers a bug, software developers must problem-solve. Systems that are easy
to evaluate enable programmers quickly to see the results of the changes they make at various
checkpoints.

4.8 Recovering From Failure

A system may suddenly stop functioning while a user is working. Such failures might include
a loss of network connectivity or hard drive failure in a user’s PC. In these or other cases,
valuable data or effort may be lost. Users should be provided with the means to reduce the
amount of work lost from system failures.

Allocation to Benefit Hierarchy

Reduces impact of system errors
Tolerates system errors

System failure is the most extreme case of system error. Though systems that support failure
recovery are no less prone to failure, they at least help users tolerate such mishaps by facili-
tating data restoration.

4.9 Retrieving Forgotten Passwords

A user may forget a password. Retrieving and/or changing it may be difficult or may cause
lapses in security. Systems should provide alternative, secure mechanisms to grant users ac-
cess. For example, some online stores ask each user for a maiden name, birthday, or the name
of a favorite pet in lieu of a forgotten password.

Allocation to Benefit Hierarchy

Increases individual effectiveness
Reduces the impact of user errors caused by lack of knowledge (mistakes)

Accommodates mistakes

When users forget passwords, they lack the knowledge to access their accounts in the normal
way. Providing alternative methods of entering protected sites, or means to retrieve forgotten
passwords, helps to accommodate such errors.

CMU/SEI-2001-TR-005 27

4.10 Providing Good Help

A user needs help. The user may find, however, that a system’s help procedures do not adapt
adequately to the context. For example, a user’s computer may crash. After rebooting, the
help system automatically opens to a general table of contents rather than to a section on re-
storing lost data or searching for conflicts. Help content may also lack the depth of informa-
tion required to address the user’s problem. For example, an operating system’s help area
may contain an entry on customizing the desktop with an image, but may fail to provide a list
of the types of image files that can be used. Help procedures should be context dependent and
sufficiently complete to assist users in solving problems.

Allocation to Benefit Hierarchy

Increases individual effectiveness
Improves non-routine performance

Supports problem solving

Feedback is essential to human problem-solving. Thus, users may solve problems more ef-
fectively by seeking additional feedback from context dependent help systems. If the help is
correct, understandable, and delivered in the right context, it can simply tell the user what to
do to solve the problem.

Increases individual effectiveness
Improves non-routine performance

Facilitates learning

As with problem solving, feedback is an essential component of human learning processes.
Users may learn more effectively by seeking additional feedback from context–dependent
help systems. If the help is correct, understandable, and delivered in the right context, the
user can learn the correct concept or procedure from the help material.

4.11 Reusing Information

A user may wish to move data from one part of a system to another. For example, a telemar-
keter may wish to move a large list of phone numbers from a word processor to a database.
Re-entering this data by hand could be tedious and/or excessively time-consuming. Users
should be provided with automatic (e.g., data propagation) or manual (e.g., cut and paste)
data transports between different parts of a system. When such transports are available and
easy to use, the user’s ability to gain insight through multiple perspectives and/or analysis
techniques will be enhanced.

Allocation to Benefit Hierarchy

Increases individual effectiveness
Expedites routine performance

Accelerates error-free portion of routine performance

28 CMU/SEI-2001-TR-005

In most cases, it is more efficient for systems to transport information from place to place
than it is for users to re-enter this information by hand. Thus, systems that support informa-
tion reuse accelerate routine performance.

Increases individual effectiveness
Expedites routine performance

Reduces impact of slips

Automatic data transportation and/or re-entry require fewer human actions (e.g., typing,
mouse movements) than re-entering data by hand. Since performing more actions introduces
more opportunities for error, systems that support information reuse can prevent slips.

Increases individual effectiveness
Improves non-routine performance

Supports problem-solving

When users can import and export data from one place to another easily, they may try differ-
ent applications to gain additional insight while solving problems. For example, a user may
export data from a traditional text–based statistics application to a data visualization applica-
tion. Thus, systems that support information reuse facilitate problem-solving.

4.12 Supporting International Use

A user may want to configure an application to communicate in his or her language or ac-
cording to the norms of his or her culture. For example, a Japanese user may wish to config-
ure the operating system to support a different keyboard layout. However, an application de-
veloped in one culture may contain elements that are confusing, offensive, or otherwise
inappropriate in another. Systems should be easily configurable for deployment in multiple
cultures.

Allocation to Benefit Hierarchy

Increases individual effectiveness
Expedites routine performance

Accelerates error-free portion of routine performance

Systems that support internationalization accelerate users’ performance by allowing them to
communicate with the system in the language that they know best.

Increases individual effectiveness
Expedites routine performance

Reduces impact of slips

Systems that support internationalization help accommodate users’ slips by presenting error
messages in the language that they know best.

CMU/SEI-2001-TR-005 29

Increases individual effectiveness
Improves non-routine performance

Supports problem-solving

Systems that support internationalization facilitate problem-solving by allowing users to re-
ceive feedback from the system in the language that they know best.

Increases individual effectiveness
Improves non-routine performance

Facilitates learning

Systems that support internationalization facilitate learning by allowing users to receive feed-
back from the system in the language that they know best.

Increases individual effectiveness
Reduces the impact of user errors caused by lack of knowledge (mistakes)

Prevents mistakes

Systems that support internationalization help users avoid linguistic mistakes by allowing
them to communicate with the system in the language that they know best.

Increases individual effectiveness
Reduces the impact of user errors caused by lack of knowledge (mistakes)

Accommodates mistakes

Systems that support internationalization help accommodate user mistakes by presenting er-
ror messages in the language that they know best. Incomprehensible error messages can
compound existing misunderstanding.

Increases confidence and comfort

Being able to communicate with a system in the language that a user knows best reduces
frustration and increases user satisfaction by affirming the importance of the user’s national
or cultural identify.

4.13 Leveraging Human Knowledge

People use what they already know when approaching new situations. Such situations may
include using new applications on a familiar platform, a new version of a familiar applica-
tion, or a new product in an established product line.

New approaches usually bring new functionality or power. When, however, users are unable
to apply what they already know, a corresponding cost in productivity and training time is
incurred. For example, new versions of applications often assign items to different menus or

30 CMU/SEI-2001-TR-005

change their names. As a result, users skilled in the older version are reduced to the level of
novices again, searching menus for the function they know exists.

System designers should strive to develop upgrades that leverage users’ knowledge of prior
systems and allow them to move quickly and efficiently to the new system.

Allocation to Benefit Hierarchy

Increases individual effectiveness
Expedites routine performance

Accelerates error-free portion of routine performance

Leveraging human knowledge can directly benefit both software developers and users. For
example, reusing the code for a search engine’s interface leverages the end-user’s knowledge
of how to use the search engine. At the same time, it reduces the amount of new code that has
to be written.

Increases individual effectiveness
Improves non-routine performance

Supports problem solving

When problem solving, users first apply the methods that they have used successfully in
other parts of a system. By leveraging human knowledge, designers increase the likelihood
that a user’s early explorations will be effective.

Increases individual effectiveness
Improves non-routine performance

Facilitates learning

By leveraging human knowledge, designers reduce the amount of information that users must
acquire to operate their systems. Thus, users can devote their time to learning more advanced
techniques, techniques that match their interests. The quality of their learning is therefore
increased.

Increases individual effectiveness
Reduces the impact of user errors caused by lack of knowledge (mistakes)

Prevents mistakes

If the system is designed so that old methods are recognized as legitimate (rather than as “er-
rors”), leveraging human knowledge can prevent errors. It is not necessary for the new sys-
tem to react the same way as the old system did. Rather, the system could be designed to do
something sensible with old methods (for example., bring up context sensitive help that di-
rects the user to the new way of accomplishing the goal). Thus, using old methods becomes a
learning opportunity rather than an “error” from which the user must recover.

CMU/SEI-2001-TR-005 31

4.14 Modifying Interfaces

Iterative design is the lifeblood of current software development practice, yet a system devel-
oper may find it prohibitively difficult to change the user interface of an application to reflect
new functions and/or new presentation desires. System designers should ensure that their user
interfaces can be easily modified.

Allocation to Benefit Hierarchy

Increases individual effectiveness
Expedites routine performance

Accelerates error-free portion of routine performance

Developers must routinely modify the appearance and functionality of visual interfaces. Sys-
tems that reduce the overhead involved in making such changes accelerate the routine per-
formance of programmers.

Increases individual effectiveness
Reduces the impact of routine user errors (slips)

Accommodates mistakes

The need to modify a user interface can arise from a lack of knowledge on the part of the de-
velopment team regarding user needs and expectations. In such cases, systems that reduce the
overhead involved in making interface changes help to reduce the impact of mistakes.

4.15 Supporting Multiple Activities

Users often need to work on multiple tasks more or less simultaneously (e.g., check mail and
write a paper). A system or its applications should allow the user to switch quickly back and
forth between these tasks.

Allocation to Benefit Hierarchy

Increases individual effectiveness
Expedites routine performance

Accelerates error-free portion of routine performance

During the course of routine work, users may want to tackle several tasks at once, or to open
several applications concurrently to complete a single task. Users may also wish to work on a
different task while waiting for the computer to complete an operation. For example, a user
may want to read email while a Web page loads. Systems that support multiple activities fa-
cilitate and increase routine performance.

32 CMU/SEI-2001-TR-005

4.16 Navigating Within a Single View

A user may want to navigate from data visible on-screen to data not currently displayed. For
example, he or she may wish to jump from the letter “A” to the letter “Q” in an online ency-
clopedia without consulting the table of contents. If the system takes too long to display the
new data or if the user must execute a cumbersome command sequence to arrive at her or his
destination, the user’s time will be wasted. System designers should strive to ensure that us-
ers can navigate within a view easily and attempt to keep wait times reasonably short.

(See: Working at the User’s Pace)

Allocation to Benefit Hierarchy

Increases individual effectiveness
Expedites routine performance

Accelerates error-free portion of routine performance

This is a ubiquitous routine activity in complex computer systems with data sets of any size
(e.g., a paper more than a page long, a spreadsheet larger than the screen). Making such navi-
gation possible, easy, and fast, speeds routine performance of almost any task.

4.17 Observing System State

A user may not be presented with the system state data necessary to operate the system (e.g.,
uninformative error messages, no file size given for folders). Alternatively, the system state
may be presented in a way that violates human tolerances (e.g., is presented too quickly for
people to read. See: Working at the User’s Pace). The system state may also be presented in
an unclear fashion, thereby confusing the user. System designers should account for human
needs and capabilities when deciding what aspects of system state to display and how to pre-
sent them.

A special case of Observing System State occurs when a user is unable to determine the level
of security for data entered into a system. Such experiences may make the user hesitate to use
the system or avoid it altogether.

Allocation to Benefit Hierarchy

Increases individual effectiveness
Expedites routine performance

Reduces impact of slips

When the inevitable slip happens, if the system state is readily and easily observed, the user
will know how to correct the slip before continuing further down an incorrect path.

Increases individual effectiveness

CMU/SEI-2001-TR-005 33

Improves non-routine performance
Supports problem solving

Human problem-solving depends on knowledge of current state (where you are), the goal
state (where you want to be), and awareness of the range of available actions. Thus, being
able to observe the current system state is central to the process of problem solving.

Increases individual effectiveness
Improves non-routine performance

Facilitates learning

Learning correct actions depends on knowing the system state when the action produced a
desired response. Thus, if the system state is obscured or unobservable, the user’s ability to
learn will be inhibited.

Increases individual effectiveness
Reduces the impact of user errors caused by lack of knowledge (mistakes)

Prevents mistakes

A common type of mistake occurs when a user applies knowledge and procedures appropriate
to one system state to a different, inappropriate, system state. Making the system state easily
available to users reduces the likelihood of this type of mistake.

Increases individual effectiveness
Reduces the impact of user errors caused by lack of knowledge (mistakes)

Accommodates mistakes

If the system state is readily and easily observed, the user will know how to correct the mis-
take before continuing further down an incorrect path.

Increases confidence and comfort

This applies to the special case of the user being unable to determine the level of security for
data entered into a system. Such experiences may make the user hesitate to use the system or
avoid it altogether. Thus, systems that prominently display security policies and security lev-
els (both of which are features of system state) increase user confidence and comfort.

4.18 Working at the User’s Pace

A system might not accommodate a user’s pace in performing an operation. This may make
the user feel hurried or frustrated. For example, ATMs often beep incessantly when a user
“fails” to insert an envelope in time. Also, Microsoft Word’s scrolling algorithm does not take
system speed into account and becomes unusable on fast systems (the data flies by too
quickly for human comfort). Systems should account for human needs and capabilities when
pacing the stages in an interaction. Systems should also allow users to adjust this pace as
needed.

34 CMU/SEI-2001-TR-005

Allocation to Benefit Hierarchy

Increases individual effectiveness
Expedites routine performance

Accelerates error-free portion of routine performance

Systems that move either too slowly or too swiftly (as in the scrolling example above) inter-
fere with routine performance. The user may actually change to a less-efficient method to
work around the pace mismatch.

Increases individual effectiveness
Expedites routine performance

Reduces impact of slips

Systems that move too quickly may push users to, or past, their perceptual limits and increase
the likelihood of slips. For example, scrollbars that do not take system speed into account
may move too quickly on fast systems and cause users to make errors when navigating
documents.

Increases confidence and comfort

Even in cases where errors are not introduced, systems that do not support pace tolerance
may make users feel frustrated or hurried.

4.19 Predicting Task Duration

A user may want to work on another task while a system completes a long running operation.
For example, an animator may want to leave the office to make copies or to eat while a com-
puter renders frames. If systems do not provide expected task durations, users will be unable
to make informed decisions about what to do while the computer “works.” Thus, systems
should present expected task durations.

Allocation to Benefit Hierarchy

Increases individual effectiveness
Expedites routine performance

Accelerates error-free portion of routine performance

If performing long tasks is part of routine performance, allowing the user to do other things
instead of waiting accelerates overall performance.

Increases individual effectiveness
Reduces the impact of user errors caused by lack of knowledge (mistakes)

Prevents mistakes

CMU/SEI-2001-TR-005 35

If the system accurately predicts the time it will take to accomplish an operation, the user will
not assume that inactivity indicates that the system is “hung.” Thus, the user will not make
the mistake of canceling the operation or rebooting the machine.

4.20 Supporting Comprehensive Searching

A user wants to search some files or some aspects of those files for various types of content.
For example, a user may wish to search text for a specific string or all movies for a particular
frame. Search capabilities may be inconsistent across different systems and media, thereby
limiting the user’s opportunity to work. Systems should allow users to search data in a com-
prehensive and consistent manner by relevant criteria.

Allocation to Benefit Hierarchy

Increases individual effectiveness
Expedites routine performance

Accelerates error-free portion of routine performance

During routine work, using a search feature is often more efficient than perusing a large
amount of material. Thus, systems that support search accelerate routine performance.

Increases individual effectiveness
Improves non-routine performance

Supports problem solving

People solve problems more easily if the path to success is straightforward. Systems that
support search can facilitate problem-solving by helping users stay on track. For example,
users often employ searches in online help systems to find relevant information.

Increases individual effectiveness
Improves non-routine performance

Facilitates learning

People learn more easily if the path to success is straightforward. Systems that support search
can facilitate learning by helping users stay on track. (See example above.)

Increases individual effectiveness
Reduces the impact of user errors caused by lack of knowledge (mistakes)

Prevents mistakes

Automated searching is much more accurate than visually searching a lot of material. There-
fore, supporting search prevents mistakes attributed to overlooking a target item.

4.21 Supporting Undo

A user performs an operation, then no longer wants the effect of that operation. For example,
a user may accidentally delete a paragraph in a document and wish to restore it. The system

36 CMU/SEI-2001-TR-005

should allow the user to return to the state before that operation was performed. Furthermore,
it is desirable that the user then be able to undo the prior operation (multi-level undo).

Allocation to Benefit Hierarchy

Increases individual effectiveness
Expedites routine performance

Reduces impact of slips

Undo reduces the impact of user slips by allowing users to return to the state prior to any ac-
cidental actions.

Increases individual effectiveness
Improves non-routine performance

Supports problem solving

Undo facilitates problem-solving by allowing users to apply commands and explore without
fear, because they can always return to the previous state.

Increases individual effectiveness
Reduces the impact of user errors caused by lack of knowledge (mistakes)

Accommodates mistakes

Undo accommodates user mistakes by allowing users to return to the state prior to any acci-
dental actions.

4.22 Working in an Unfamiliar Context

A user needs to work on a problem in a different context. Discrepancies between this new
context and the accustomed one may interfere with the user’s ability to work. For example, a
clerk in business office A wants to post a payment for a customer of business unit B. Each
business unit has a unique user interface, and the clerk has only used unit A’s previously. The
clerk may have trouble adapting to business unit B’s interface (same system, unfamiliar con-
text). Systems should provide a novice (verbose) interface to offer guidance to users operat-
ing in unfamiliar contexts.

Allocation to Benefit Hierarchy

Increases individual effectiveness
Improves non-routine performance

Supports problem solving

A novice or verbose interface can support problem-solving by giving the user the additional
or enhanced feedback needed to consider various options.

Increases individual effectiveness
Reduces the impact of user errors caused by lack of knowledge (mistakes)

CMU/SEI-2001-TR-005 37

Prevents mistakes

A novice or verbose interface can give the user additional or enhanced feedback. This infor-
mation will increase the user’s knowledge and reduce the likelihood of mistakes.

4.23 Verifying Resources

An application may fail to verify that necessary resources exist before beginning an opera-
tion. This failure may cause errors to occur unexpectedly during execution. For example,
some versions of Adobe® PhotoShop® may begin to save a file only to run out of disk space
before completing the operation. Applications should verify that all necessary resources are
available before beginning an operation.

Allocation to Benefit Hierarchy

Increases individual effectiveness
Expedites routine performance

Accelerates error-free portion of routine performance

Routine performance can be compromised if a system wastes the user’s time by invoking a
sequence of actions that cannot be completed. Systems that verify resources sidestep this
problem.

Reduces impact of system errors
Prevents system errors

Some system errors result when one or more components or applications vie for a given re-
source. Systems that verify resources avoid this problem.

4.24 Operating Consistently Across Views

A user may become confused by functional deviations between different views of the same
data. Commands that had been available in one view may become unavailable in another or
may require different access methods. For example, users cannot run a spell check in the
Outline View utility found in a mid-90’s version of Microsoft Word. Systems should make
commands available based on the type and content of a user’s data, rather than the current
view of that data, as long as those operations make sense in the current view.

For example, allowing users to perform operations on individual points in a scatter plot while
viewing the plot at such a magnification that individual points cannot be visually distin-
guished does not make sense. A naïve user is likely to destroy the underlying data. The sys-
tem should prevent selection of single points when their density exceeds the resolution of the
screen, and inform the user how to zoom in, access the data in a more detailed view, or oth-
erwise act on single data points.

38 CMU/SEI-2001-TR-005

(See: Providing Good Help and Supporting Visualization)

Allocation to Benefit Hierarchy

Increases individual effectiveness
Expedites routine performance

Accelerates error-free portion of routine performance

If all views in an application afford the same operations, routine performance will be en-
hanced; users will no longer need to navigate to a specific view to perform some action.

Increases individual effectiveness
Improves non-routine performance

Supports problem solving

When problem solving, users first apply the methods that they have used successfully in
other parts of a system. By making all views operate consistently, designers increase the like-
lihood that a user’s early explorations in a given view will be effective, thereby enhancing the
user’s ability to solve problems.

Increases individual effectiveness
Improves non-routine performance

Facilitates learning

By making all views operate consistently, designers reduce the amount of information that a
user must learn to operate a given system.

Increases individual effectiveness
Reduces the impact of user errors caused by lack of knowledge (mistakes)

Prevents mistakes

When faced with a new or infrequently used view, users will attempt to apply the methods
that have been successful with other parts of the system. When discrepancies between the
operations afforded by different views are reduced, the likelihood that users will make such
mis-application mistakes is also reduced.

4.25 Making Views Accessible

A user may want to see data from another point of view. For example, a user may wish to see
the outline of a long document and the details of the prose. If certain views become unavail-
able in certain modes of operation, or if switching between views is cumbersome, the user’s
ability to gain insight through multiple perspectives will be constrained.

Allocation to Benefit Hierarchy

Increases individual effectiveness
Expedites routine performance

CMU/SEI-2001-TR-005 39

Accelerates error-free portion of routine performance

If users cannot easily and consistently switch from one view to another in an application and
switching is frequently needed to do the task, routine performance will be compromised.

Increases individual effectiveness
Improves non-routine performance

Supports problem solving

If switching between views is easy and fast, users are more likely to look at their work from
different viewpoints and may gain additional insight while solving problems. Thus, systems
that make views accessible enhance problem-solving.

4.26 Supporting Visualization

A user wishes to see data from a different viewpoint. Systems should provide a reasonable set
of task-related views to enhance users’ ability to gain additional insight while solving prob-
lems. For example, Microsoft Word provides several views to help users compose docu-
ments, including Outline and Page Layout modes.

Allocation to Benefit Hierarchy

Increases individual effectiveness
Improves non-routine performance

Supports problem solving

Users can employ multiple views to gain additional insight while solving problems. These
multiple perspectives can effectively increase both the quality and quantity of the feedback
the user receives. Thus, systems that support visualization enhance problem solving.

40 CMU/SEI-2001-TR-005

CMU/SEI-2001-TR-005 41

5 Software Engineering Hierarchy

This chapter gives the software engineering hierarchy and describes the software engineering
mechanisms used in the list of usability scenarios. The hierarchy, in brief, is given in Table 3
and each mechanism listed is described in subsequent sections.

Table 3 Software Engineering Hierarchy

Separation

- Encapsulation of function

- Data from commands

- Data from the view of that data

- Authoring from execution
 Replication

- Data

- Commands
Indirection

- Data

- Function
Recording

Preemptive scheduling

Models

- Task

- User

- System

An item that affects the range of these mechanisms is how broadly they are shared. That is, a
mechanism that is embedded in the infrastructure and available to any application is more far
reaching than a mechanism that is kept within a single application or within a set of applica-
tions. We do not capture this range consideration within the description of the mechanisms.

42 CMU/SEI-2001-TR-005

5.1 Separation

Separation is a standard engineering technique for dealing with complicated problems. It in-
volves breaking a complicated problem into two or more distinct portions, solving each por-
tion and then unifying the solution. The success of this technique depends on the difficulty of
the unification. If the concerns addressed by each element of the decomposed problem are
truly different, then the unification is simple. If not, a large amount of communication be-
tween the distinct portions is required to solve the total problem, and the separation technique
may have been incorrect. The term coupling is used to describe the amount of communication
and cooperation necessary to unify the two separated portions. Low coupling indicates that
the separation is achieving the goal of making the total problem easier to solve. High cou-
pling indicates that the separation is not achieving that goal.

The essence of separation, then, is to choose portions of the problem that deal with different
concerns. The following specific mechanisms describe different portions that may be sepa-
rated. We begin by describing encapsulation of function. All of the forms of separation we
identify actually encapsulate function, but we reserve the term to describe other forms of
separation than separation of data from command, data from the view of data, and authoring
from execution.

5.1.1 Encapsulation of function

Encapsulation is probably the most basic software engineering mechanism. It means enclos-
ing functionality within a module, exposing only what is necessary to achieve that function-
ality, and returning results. Everything else is hidden within the module. This is separation
because the encapsulated functionality is separated from other functionality. Encapsulation
enables a developer to modify the algorithms within the module without changing other por-
tions of the system.

5.1.2 Data from commands

Separating data from function is a mechanism that allows a number of distinct commands to
be performed on a set of data, or a single command to be performed on a number of distinct
data sets. When using this mechanism, the data (or sets of data) are encapsulated separately
from the command or commands. The commands are user-specified commands (or maybe
abbreviations or aggregations of user commands). This mechanism is most appropriate when
either the set of commands or the set of data are dynamic. That is, the data being operated on
by the commands may be highly changeable and the set of commands that the user can spec-
ify may be highly changeable.

5.1.3 Data from the view of that data

Separating data from the view of that data is a mechanism that allows distinct perspectives to
be placed on a set of data. The data is itself encapsulated into an area with various access and

CMU/SEI-2001-TR-005 43

modification functions, as above. The description of how a user might wish to see that data is
also maintained as a distinct collection. It specifies items such as units, language, filters for
data items, methods for combined data items, style sheets, and so forth. Separating the data
from a description of the view of that data allows different users to express different prefer-
ences, allows data to be hidden from certain users, and allows users to view the data differ-
ently depending on the platform they are currently using.

5.1.4 Authoring from execution

Separation of the authoring of a specification of an action from the execution of that specifi-
cation is a basic element of all software development. This separation is an example of the
separation of concerns in that the support necessary for authoring a specification is distinct
from the support necessary to interact with the result of an execution of that specification. We
are interested in a much more restrictive meaning of this separation. We are interested in the
aspect of authoring that allows an end user to specify the behavior of a software system
within that system. This may be as simple as choosing settings on a menu or as complicated
as using a scripting language. The specification may also persist across executions of the
system or it may exist for only the current execution. The specification may also be a sched-
ule of particular activities to executed after terminating the current execution.

Authoring incurs a cost in human behavior. That is, it takes time and effort. Any analysis of
the costs and benefits of allowing the end user to author behavior should consider the cost of
authoring as well as the benefits that result.

5.2 Replication

Replication is the mechanism of having duplicate copies or variants within the software sys-
tem of some entity. This entity can be data or it can be function. The general reasons why one
would replicate either data or function are to increase performance, to increase reliability, or
to provide alternative routes for the achievement of a particular result.

5.2.1 Data

Replication maintains data in several different locations within the system. This reason for
the replication is sometimes to increase performance and sometimes to increase availability.
One instance of this mechanism for the purpose of improving performance is to cache data in
the same structure in several different locations with different access times. For example, a
web page may be cached on a local machine to decrease retrieval time from the Internet. An-
other form of this mechanism is to maintain the data in different structures. For example,
large data sets are often maintained with index files that speed up the searching process. One
form of this mechanism to improve availability is the saving of state for the purpose of re-
starting a system in the event of failure.

44 CMU/SEI-2001-TR-005

Regardless of the reason for replication, whenever the same data is found in two locations it
is necessary to maintain consistency. That is, regardless of where it is accessed, the data
should be the same. There are a variety of schemes that maintain consistency; the important
point is to ensure consistency whenever replication is used.

5.2.2 Commands

Commands are replicated in order to provide for multiple user interfaces to achieve the same
functionality. These user interfaces could be remote versus local, or it could be that alterna-
tive paths are available for an end user to achieve a desired functionality. In any case, differ-
ent commands may be available to achieve the same goal.

5.3 Indirection

Indirection is the interposition of an intermediary between either data or control accesses. In
either case, indirection is another mechanism intended to reduce the coupling between dis-
tinct elements.

5.3.1 Data

We will use the terms “data producer” and “data consumer” to describe the data indirection
mechanism. A direct connection would have the data producer providing the data directly to
the data consumer(s). This means that there is a tight coupling between the data producer and
the data consumer(s) and that either knowledge of the consumer is embedded in the producer
or vice versa. Either type of knowledge means that the addition or deletion of a data con-
sumer will affect the data producer (or vice versa). By interposing a registration mechanism
the coupling can be reduced.

The registration mechanism works by providing a separate component to distribute the data.
A consumer would register with the distribution manager that it is interested in a particular
data item and a producer would register with the distribution manager that it produces a par-
ticular data item. The registration process can be done either at specification time or at exe-
cution time. Both the consumer and producer of data have a direct relationship with the dis-
tribution manager but not with each other. A new consumer can be added or removed by
informing the distribution manager, while the producer remains unaffected.

5.3.2 Function

Indirection consists of putting an intermediary function between various alternative methods
of accomplishing a particular service. Terms such as a “virtual device,” a “virtual tool kit,” a
“strategy pattern,” and a “factory pattern” describe this mechanism. Binding between the
service requester and the alternative service provider service may be done before or at execu-
tion time. In any case, the service requester uses a single interface to interact with the func-

CMU/SEI-2001-TR-005 45

tion indirection manager, and the function indirection manager translates the information re-
ceived specifically for the alternative chosen.

5.4 Recording

This mechanism records system state periodically for further use. Some of the variables that
are dependent upon the particular application of the mechanism are

• the frequency with which the state is recorded

• the actual state recorded

• the use to which the recorded state is put

• the persistence of the data recorded. Some applications require that the state is recorded
in persistent storage; others require that it be recorded in volatile storage.

• the consistency of the data recorded. In some cases, the data will be consistent because
the application interrupts its other activities in order to record data. In other cases, con-
sistency of the data may not matter. In still other cases, a transaction type mechanism
may be required in order to guarantee data consistency.

5.5 Preemptive Scheduling

Scheduling is the mechanism whereby resources are assigned to activities within the com-
puter system. The types of resources may be physical, such as memory, central processing
unit, input/output peripherals; or they may be logical, such as queues, flags, or other entities.

In general, scheduling can be done on a preemptive or a non-preemptive basis. That is, once
an activity has a resource, it may have the resource taken away (preemptive) or it may keep
that resource until it voluntarily yields it (non-preemptive). Within these two broad catego-
ries are a variety of scheduling mechanisms. The choice of a particular mechanism for a par-
ticular resource is based on several considerations including the type of resource, maximiz-
ing utilization of the resource, minimizing waiting time for the resource, and priority of one
task over another. Measures of a scheduling mechanism include utilization of the resource,
worst-case waiting time, average waiting time, and so forth.

Preemptive scheduling allows the software system to have multiple simultaneous activities.
In fact, the activities are not simultaneous when examined at a tiny time scale (measured in
terms of microseconds) but they appear simultaneous when examined at a larger time scale
(measured in terms of 10s of milliseconds). The term thread refers to a logical sequence of
activities within the computer system. At any point in time, a thread is either active (con-
suming the processor resource) or blocked (waiting for a resource or for some input). Having
multiple simultaneous activities is expressed as having multiple threads. Having multiple
threads is most often accomplished (although not exclusively) by using a preemptive proces-
sor scheduling strategy.

46 CMU/SEI-2001-TR-005

5.6 Models

The mechanism of keeping a model within the system allows the model to be used for pre-
diction. Different models can predict different types of items. Each model requires various
types of input to accomplish its prediction. Clearly identifying the models that the system
uses to predict either its own behavior or the user’s intention enables designers to tailor and
modify those models either dynamically or off-line during development.

5.6.1 Task

In this case, the model maintained is that of the task. The model of the task is used to deter-
mine context so the system can have some idea of what the user is attempting to accomplish
and can provide various kinds of assistance.

5.6.2 User

In this case, the model maintained is of the user. The model determines the user’s knowledge
of the system, the user’s behavior in terms of expected response time, and other aspects that
are specific to a user or a class of users.

5.6.3 System

In this case, the model maintained is that of the system. The model determines the expected
behavior of the system so that appropriate feedback can be given to the user. The model of
the system predicts items such as the time needed to complete current activity.

CMU/SEI-2001-TR-005 47

6 Architectural Patterns and Categorization

This chapter presents an architectural pattern for each of the general usability scenarios and
places each scenario into the software engineering hierarchy. These patterns do not represent
the only possibility for implementing the scenarios. Rather, they present one pattern and dis-
cuss many of the issues associated with its implementation. Thus, an architect may find these
patterns useful even if they are not adopted.

6.1 Aggregating Data

A user may want to perform one or more actions on more than one object. For example, an
Adobe® Illustrator® user may want to enlarge many lines in a drawing. It could become te-
dious to perform these actions one at a time. Furthermore, the specific aggregations of ac-
tions or data that a user wishes to perform cannot be predicted; they result from the require-
ments of each task. Systems, therefore, should allow users to select and act upon arbitrary
combinations of data.

6.1.1 Pattern

The module view of an architecture pattern for this scenario is shown in Figure 2.

Figure 2. Aggregation of Data Architecture Pattern

Command
Manager

User visible
Application
data

Command
Processor

Grouping
Manager

Key:
Data Flow

48 CMU/SEI-2001-TR-005

This pattern has the following components.

The command manager. This component manages the commands that the user generates. A
command has an action and one or more subjects that either provide input or accept out-
put from the command. Feedback about the command is generated by the command
manager and passed to the presentation. (The output generated by the command is out-
side of the scope of this scenario.) There are three types of commands. Some commands
are independent of groups and group management. These commands are passed directly
to the command processor and executed. These commands are outside of the scope of
this scenario. A second type of command is concerned with the management of groups –
creating a group, adding data to a group, removing data from a group, or deleting a
group. These commands are passed to the grouping manager. A third type of command is
an action in which one or more of the subjects is a group. This type of command is either
passed to the grouping manager or the command processor. The situations where it is
passed to one or the other are discussed below.

The grouping manager. This component manages the definition of groups and the addition
and deletion of data items from a group. It should, at a minimum, support commands that
create and delete groups, and add to and delete from groups. Both data points and other
groups should be able to be added and deleted from groups. In the case described below,
the grouping manager controls the iteration of commands through the command proces-
sor. It accesses the user-visible data and presents groups to support group editing com-
mands.

User-visible application data. This component provides access to the application data that is
visible to the user. The data may reside in a single repository (as we have displayed in
Figure 2) or it may be distributed through a collection of components. In any case, the
application data visible to the user is available both to those components that control data
presentation and those that manipulate the data.

There are two options for applying a command to a group, iteration and embedded grouping.
Iteration describes the case in which the particular command operates on single arguments. In
this case, the grouping manager manages the application of the command to a group. The
grouping manager repeatedly invokes the correct command processor on each item in the
group. This option assumes that applying a command to a group means applying the com-
mand to each element of the group.

The second option is embedded grouping. In this case, the command processor understands
groups and can directly operate on a group. The command and its arguments (including the
grouped arguments) are sent directly to the command processor. The grouping manager must
make available the group elements to the command processor. This can be done synchro-
nously by having the command processor query the grouping manager upon receiving the

CMU/SEI-2001-TR-005 49

command, or it can be done asynchronously by having the group identification and the group
members recorded in a location available to the command processors.

6.1.2 Allocation to mechanism hierarchy

Separation
Data from Commands

In order to allow both the grouping manager and the command processor to manipulate the
same data, this data must be kept separate from both components. Such separation also al-
lows presentation commands to read the same data that the grouping manager and command
processor manipulate.

Separation
Authoring from Execution

Users author commands for use on aggregates by issuing them to the command manager, but
the grouping manager controls iteration in such cases by generating a new set of commands
(based on the user’s input) and issuing them in sequence to the command processor. Thus, the
user’s command authoring is kept separate from its execution.

6.2 Aggregating Commands

A user may want to complete a long-running, multi-step procedure consisting of several
commands. For example, a psychology researcher may wish to execute a batch of commands
on a data file during analysis. It could become tedious to invoke these commands one at a
time, or to provide parameters for each command as it executes. If the computer is unable to
accept the required inputs for this procedure up front, the user will be forced to wait for each
input to be requested. Systems should provide a batch or macro capability to allow users to
aggregate commands.

6.2.1 Pattern

The logical view of an architecture pattern for the authoring portion of this scenario is shown
in Figure 3.

50 CMU/SEI-2001-TR-005

Figure 3. Authoring of Aggregation of Commands Architecture Pattern

There are two possibilities for authoring aggregates of commands. The first possibility is to
have a separate editor that supports this authoring. In this case, the relevant components are
the command manager and the authoring component. The command manager recognizes in-
vocation of the authoring editor and those commands that are intended for the authoring edi-
tor. The editor creates and stores the aggregated commands. Feedback to the user is through
the presentation component. The following items must be specified: Where should output
generated during the execution of the aggregated commands be written, and where does input
come from that normally would be provided by the user synchronously during execution?

The second architecture possibility is to author by demonstration. That is, the user executes
the commands that are desired synchronously. The authoring editor monitors those com-
mands and saves them as an aggregated set that can be subsequently invoked. These aggre-
gated commands are usually edited prior to final saving for execution. In this case, the com-
mand manager must communicate the commands both to the command processor for
execution and to the authoring editor for inclusion in the aggregate. The authoring editor and
the command processor may communicate if additional information about parameters or data
must be saved in the aggregated command. We do not display this communication since it
may not be necessary.

The execution of the aggregates can also be explained using Figure 3. In this case, the user
invokes the aggregated command. The command manager must communicate with the
authoring editor to retrieve the aggregated command. (This could be as simple as retrieving it
from a file where the authoring editor has stored it). This necessity for communication is the
source of the data flow from the authoring editor to the command manager. The command
manager then sends the commands one at a time to the command processor. The command
manager must be informed of the source of any required synchronous user input and the des-
tination of any generated error messages.

Presentation Authoring Editor

Command
Manager

Command
Processor

Key:
Data

CMU/SEI-2001-TR-005 51

6.2.2 Allocation to mechanism hierarchy

Separation
Authoring from Execution

Users specify aggregates by authoring them in the authoring editor. Since the command man-
ager controls the execution of the commands, authoring and execution are separated.

Replication
Commands

More than one set of aggregated commands might be applied by a user to achieve the same
goals. Commands are effectively replicated in this case.

Recording

In systems where demonstration is used to specify command aggregates (e.g., macros in Mi-
crosoft Word), the authoring editor must be able to record the user’s actions.

6.3 Canceling Command

A user invokes an operation, then no longer wants the operation to be performed. The user
now wants to stop the operation rather than wait for it to complete. It does not matter why the
user launched the operation. The mouse could have slipped. The user could have mistaken
one command for another. The user could have decided to invoke another operation. For
these reasons (and many more), systems should allow users to cancel operations.

6.3.1 Pattern

We first present the module view that enumerates the components involved and their respon-
sibilities. We then present a sequence chart that shows how the components interact.

Figure 4 presents the module view of the cancellation architectural style. It has the following
components together with their responsibilities. (Note that these functions may or may not be
implemented as separate software components, such as classes or threads.)

1. Activity Component. Activity components perform the activities that may be cancelled.
They must cooperate with the controller to provide information about the resource that they
use and their collaborations. They must also have a mechanism for retaining sufficient infor-
mation about the system state be able to restore that state at any time. The mechanism will be
exercised by the cancellation component but the active components must prepare resources
so that the cancellation component can, in fact, exercise the mechanisms.

2. Cancellation Listener. This component listens for the user to request canceling the active
components. It must inform the user that it has received the cancellation request. It then in-

52 CMU/SEI-2001-TR-005

forms the cancellation controller. If necessary, it may spawn a new thread to control the op-
eration of the cancellation component.

3. Cancellation Controller. This component can terminate the active thread, return the per-
sistent resources to their state prior to invoking the active components, release non-
preemptable resources, provide feedback to the user about progress and the result of the can-
cellation, and inform collaborating components of the termination of the active thread. It is
responsible for gathering information about the resources used by the active components and
the collaborating components.

4. Collaborators. These components are responsible for receiving information about the ter-
mination of the active components.

Figure 4. Module View of Cancellation Architecture Pattern

Figure 5 shows a representation of the threads of this pattern. The following logically distinct
threads of activity exist, although they may be implemented together.

• The listener thread. This thread interacts with the user. It provides the user with a means

to indicate what is to be cancelled.

• The cancellation control thread. This thread manages the cancellation activities. It must

be independent from the active thread.

• The active thread. This is the running thread that the user wishes to cancel. The activities

running under the control of the active thread are those that are to be cancelled.

• The collaborating processes thread. This may be a collection of threads but we model it

as a single thread. This thread manages those processes that collaborate with the active

Cancellation
Listener

Activity
Components

Cancellation
Controller

Collaborators

• Listen for user cancel request
• Inform user of receipt of request
• Inform cancellation controller

• Cooperative with cancellation
 controller to provide resource
 and collaboration information
• Have mechanism for preserving
 state of system prior to invocation

• Terminate active thread
• Release resources
• Return system to prior state
• Give user progress report
• Inform collaborators of
 termination

• Be receptive to information
 about the termination of activity
 components

Data Flow

CMU/SEI-2001-TR-005 53

thread.

Figure 5. Cancellation Pattern - Thread View

We will now describe how these threads interact. The user sends a cancellation stimulus to
the cancellation listener component running in the listener thread. This thread then provides
feedback to the user that the cancel request has been received, and lets the cancellation con-
troller know that it should carry out that the cancel activity.

The cancellation controller is a thread that executes the cancellation. The active thread should
not be expected to listen for a cancel request since it may be blocked for some reason or it
may be in an infinite loop. The cancellation component carries out four activities:

1. Terminate the active thread.

2. Inform the user of the progress and results of the cancellation.

3. Return the system to its state prior to the invocation of the active thread. This involves

a. restoring any persistent resources to their state prior to the invocation of the active

thread

b. releasing non–preemptive resources acquired by the active thread

4. Inform threads collaborating with the active thread that it has been terminated.

Key:
Thread of Control
Component

Threads

Listener

Cancellation
Control

Active

Collaborating
Processes

Cancellation
Listener

Cancellation
Control

Active
Component

Collaborating
Components

Kill
Inform

54 CMU/SEI-2001-TR-005

The first of these is straightforward. Presumably, the thread control mechanisms of the oper-
ating system permit terminating a thread. The second activity is also straightforward. The
user should be informed of both the progress and the results of the cancellation. The third
activity (returning to prior state) requires that the cancellation controller be aware of the
mechanisms for restoring persistent resources to their states prior to invoking the active
thread. For example, operating system resources may need to be reallocated, files may need
to be restored, network connections may need to be re-established, etc. The cancellation con-
troller must also be aware of the resources acquired by the active components, and these re-
sources must be freed. This awareness can be achieved by a variety of mechanisms. The ac-
tivity components can report resources acquired to the cancellation controller, the
cancellation controller can intercept requests for resources, or the various resource managers
can provide this information to the cancellation controller.

The fourth activity (informing collaborating threads) also requires knowledge on the part of
the cancellation controller. The cancellation controller must be informed of collaborations,
either synchronization or data communication, that the active thread has with other threads.
The controller doesn’t necessarily need to be informed of the state of these collaborations; it
can simply inform each of the collaborating threads of the termination of the active thread.
Then it becomes the responsibility of the collaborating threads to perform the correct actions,
including providing information to the user about the progress and results of these cancella-
tion requests. This can be complicated. It depends on the type of collaboration and the extent
to which the collaborating components depend on the completion of the active components.
One possibility is to treat the information as a cancellation request for the collaborating com-
ponents. In this case, a recursive use of the pattern will achieve the desired results. Other
types of collaborations may not require cancellation. In any case, a decision must be made as
to the desired result after the collaboration components have been informed of the cancella-
tion of the active components.

6.3.2 Allocation to mechanism hierarchy

Preemptive Scheduling

To adequately implement cancellation, the cancellation listener and cancellation controller
must occupy independent threads.

Models
System

After a command has been cancelled, the system must consult an explicit model of itself in
order to predict state restoration time and to report progress.

Recording

The cancellation component must record its initial state so that the system can be returned to
the state prior to the invocation of the cancelled components.

CMU/SEI-2001-TR-005 55

6.4 Using Applications Concurrently

A user may want to work with arbitrary combinations of applications concurrently. These
applications may interfere with each other. For example, some versions of IBM® ViaVoice
and Microsoft® Word contend for control of the cursor with unpredictable results. Systems
should ensure that users can employ multiple applications concurrently without conflict.

(See: Supporting Multiple Activities).

6.4.1 Pattern

Figure 6 gives a module view of a possible pattern.

Figure 6. Module View of Concurrent Application Use

This pattern describes a system resource manager that applications must use to get shared
resources such as the cursor or memory. The applications are responsible for requesting nec-
essary resources from this resource manager and then querying for state of shared resources
when they are being used. The resource manager adjudicates conflicting requests for re-
sources and manages all system resources, whether sharable or only serially usable.

6.4.2 Allocation to mechanism hierarchy

Separation
Encapsulation of function

The resource manager is kept separate from other applications.

Models
System

Resource
Manager

Applications

Request necessary
resources
Have strategy if
resources not available

Manage system-side
resources
Adjudicate conflicting
requests

Key:
Data Flow

Component

56 CMU/SEI-2001-TR-005

The resource manager maintains an explicit model of the system to track resources and their
consumers.

6.5 Checking for Correctness

A user may make an error that he or she does not notice. However, human error is frequently
circumscribed by the structure of the system; the nature of the task at hand, and by predict-
able perceptual, cognitive, and motor limitations. For example, users often type “hte” instead
of “the” in word processors. The frequency of the word “the” in English and the fact that
“hte” is not an English word, combined with the frequency of typing errors that involve
switching letters typed by alternate hands, make automatically correcting to “the” almost al-
ways appropriate. Computer-aided correction becomes both possible and appropriate under
such circumstances. Depending on context, error correction can be enforced directly (e.g.,
automatic text replacement, fields that only accept numbers) or suggested through system
prompts.

6.5.1 Pattern

Figure 7 gives a module view of an architecture pattern for a correctness checker. The appli-
cation data is maintained separately from the application so that it is accessible to the correct-
ness checker. The correctness checker maintains a model of the correct input so that it can
determine when a potential error occurs. In the sample pattern, it reports this error to the user
through the presentation. There may be cases when errors are automatically corrected.

Figure 7. Correctness

This figure assumes that the active application and the correctness checker operate on differ-
ent threads of control. In this way, error detection can be done without user input. It also can
be done asynchronously, although this is not displayed in the module view.

Active
Application

Correctness
Checker

Application
Data

Presentation

Key:
Data Flow

CMU/SEI-2001-TR-005 57

6.5.2 Allocation to mechanism hierarchy

Separation
Data from Commands

When the correctness checker and the data operate independently, a variety of different
checking mechanisms can be turned on or off without affecting the data itself.

Preemptive Scheduling

Correctness must be checked while the user performs operations. This requires an independ-
ent thread.

Models
Task

Systems can employ a model of the task to identify when, what, and how to correct. For ex-
ample, knowing that sentences usually start with capital letters would allow an application to
correct a lower case letter that begins a sentence.

Models
User

Systems can employ a model of the user to identify when, what, and how to correct. For ex-
ample, a model of human typing is used to know that “teh” is a common mistyping of “the.”

Models
System

A system can employ a model of itself to identify when, what, and how to correct. For exam-
ple, knowing which toolbar buttons are adjacent might help the system conclude that a user
hit the wrong button when a tool selection doesn’t make sense according to context.

6.6 Maintaining Device Independence

A user attempts to install a new device. The device may conflict with other devices already
present in the system. Alternatively, the device may not function in certain specific applica-
tions. For example, a microphone that uses the Universal Serial Bus (USB) may fail to func-
tion with older sound software. Systems should be designed to reduce the severity and fre-
quency of device conflicts. When device conflicts occur, the system should provide the
information necessary to either solve the problem or seek assistance. (Devices include print-
ers, storage/media, and I/O apparatus.)

6.6.1 Pattern

Figure 8 shows a module view of a virtual device layer. Applications access physical devices
through a virtual device that defines and abstracts how the devices should be controlled. The
virtual device layer accesses devices through physical device drivers that do the actual con-

58 CMU/SEI-2001-TR-005

trol. The virtual device layer translates the virtual device into the various physical devices.
This assumes that a collection of device types has been defined and that virtual device layers
exist for each category of device types.

Figure 8. Virtual Device Layer

6.6.2 Allocation to mechanism hierarchy

Indirection
Function

Commands for interacting with various devices can be abstracted. Such indirection hides dis-
tinctions between physical devices by providing an encapsulated virtual device interface.

Models
System

The system can maintain a model of itself based on data from the virtual device interface to
identify and track device conflicts and to provide the information needed to resolve them.

6.7 Evaluating the System

A system designer or administrator may be unable to test a system for robustness, correct-
ness, or usability in a systematic fashion. For example, the usability expert on a development
team might want to log test users’ keystrokes, but may not have the facilities to do so. Sys-
tems should include test points and data gathering capabilities to facilitate evaluation.

6.7.1 Pattern

Figure 9 shows the module view of a data-recording mechanism. This module provides a
means for recording any data of interest. Recorded data may include keystrokes, errors, user
commands, or any other data of interest.

Physical Device
Driver 1

Physical Device
Driver N

VIRTUAL
DEVICE

APPLICATION

CMU/SEI-2001-TR-005 59

Figure 9. Data Recording

There should be tools that can access the recorded data and provide a variety of different
analyses, such as examining the data for patterns of errors, user confusion, or critical inci-
dents. The analysis tools associated with the recording of data are not shown.

6.7.2 Allocation to mechanism hierarchy

Indirection
Data

When evaluating a system, test data may need to “masquerade” as user data for simulation
purposes. Data indirection can be used to facilitate this process.

Recording

The data recorder records the data needed to analyze the results of test cases and other
evaluations.

6.8 Recovering from Failure

A system may suddenly stop functioning while a user is working. Such failures might include
a loss of network connectivity or hard drive failure in a user’s PC. In these or other cases,
valuable data or effort may be lost. Users should be provided with the means to reduce the
amount of work lost from system failures.

Module with

Data to Record

Data Recorder

60 CMU/SEI-2001-TR-005

Figure 10. Perform Checkpoint

6.8.1 Pattern

There are elaborate mechanisms to automatically recover from failures that involve redundant
computations. These mechanisms are intended to reduce down time for systems that require
high availability. We here describe a mechanism that is intended to apply in situations in
which the availability requirement is less stringent.

The mechanism maintains periodic checkpoints of application state. That is, the data neces-
sary for the application to execute is recorded when the system is in a consistent state. The
system then has a restart mode in which it reads the recorded data and resumes computation
from the last state recorded. Figure 10 above shows the key components. Each component is
responsible for checking its data and restoring its state from the checked data. This can be
done individually by the components or globally through a data repository or some mixture.
The important aspect is that the checked data be consistent. This is the role of the checkpoint
synchronizer. It informs the components that maintain application data when it is time for a
checkpoint and ensures that this action is performed with consistent data.

6.8.2 Allocation to mechanism hierarchy

Recording

The checkpoint synchronizer informs components to record all relevant data to minimize loss
in the event of failure.

Component to
be Checkpointed

Component to
be Checkpointed

 Checkpoint
Synchronization

Key:
Control Flow

CMU/SEI-2001-TR-005 61

6.9 Retrieving Forgotten Passwords

A user may forget a password. Retrieving and/or changing it may be difficult or may cause
lapses in security. Systems should provide alternative, secure mechanisms to grant users ac-
cess. For example, some online stores ask each user for a maiden name, birthday, or the name
of a favorite pet in lieu of a forgotten password.

6.9.1 Pattern

The key element of the pattern is to have authentication encapsulated. There are a variety of
policies and mechanisms that can be used for authentication. These include secret questions,
mailing a new password to a previously authenticated mail address, and biologically-based
mechanisms such as finger print recognition or retinal scan. The policy and mechanism to be
used depends on the level of security to be implemented and the context of use. All data re-
lating to authentication should be stored using encryption so the information is not available
if the storage media is compromised.

6.9.2 Allocation to mechanism hierarchy

Separation
Encapsulation of function

The authentication component must be encapsulated and passwords encrypted to prevent se-
curity breaches if the media that stores it becomes compromised.

6.10 Providing Good Help

A user needs help. The user may find, however, that a system’s help procedures do not adapt
adequately to the context. For example, a user’s computer may crash. After rebooting, the
help system automatically opens to a general table of contents rather than to a section on re-
storing lost data or searching for conflicts. Help content may also lack the depth of informa-
tion required to address the user’s problem. For example, an operating system’s help area
may contain an entry on customizing the desktop with an image, but may fail to provide a list
of the types of image files that can be used. Help procedures should be context dependent and
sufficiently complete to assist users in solving problems.

6.10.1 Pattern

In the pattern, we focus on achieving context dependency. The content and verboseness of the
help messages is not an architectural issue. Having context dependent help requires two types
of knowledge: knowledge of what the user wishes to do and knowledge of the current state of
the system. Knowledge of the current state of the system can be gathered explicitly. Knowl-
edge of what the user wishes to do, however, must be inferred. This inference comes from
what the user has already done, the current system state, and a model of the tasks the user

62 CMU/SEI-2001-TR-005

might wish to do. The task model should be separated from other functions of the system,
since it is likely to change as it is refined. In other words, there should be an explicit task
model developed that supports context dependent help.

Figure 11 presents the pattern. The context determiner is responsible for determining the cur-
rent context so that the help system can show the correct information. The system state pro-
vides input to the context determiner without specifying its source. Finally, the task model is
a separate encapsulated component, for the reasons we have already mentioned. We do not
show the run-time interactions, but there are two cases. If the context dependent help is
automatically invoked, it should run in a thread that is separate from the thread of the user
activity. If context dependent help depends on user invocation, then its thread structure can be
synchronous with the user’s request.

Figure 11. Context Dependent Help

6.10.2 Allocation to mechanism hierarchy

Preemptive Scheduling

If a system is to offer help automatically when it perceives that a user is in trouble, the system
must support scheduling; the help system and context determiner will occupy an independent
thread.

Models
Task

A model of the task can be used to determine what help information to present first when ei-
ther the user requests help or the help system determines that the user is in trouble.

Models

Task Model System State

Help System

Context
Determiner

Presentation

CMU/SEI-2001-TR-005 63

User

A model of the user can be used to determine what level of help to provide and how likely the
user is to encounter problems (i.e., is the user a novice or an expert?). This model can also
help determine what information to present.

6.11 Reusing Information

A user may wish to move data from one part of a system to another. For example, a telemar-
keter may wish to move a large list of phone numbers from a word processor to a database.
Re-entering this data by hand could be tedious and/or excessively time-consuming. Users
should be provided with automatic (e.g., data propagation) or manual (e.g., cut and paste)
data transports between different parts of a system. When such transports are available and
easy to use, the user’s ability to gain insight through multiple perspectives and/or analysis
techniques will be enhanced.

6.11.1 Pattern

Figure 12 shows the components that implement information reuse. The interpretation and
persistence of these components, however, depend on the type of information reuse being
implemented. We discuss two cases, automatic and manual.

If manual cut and paste is being implemented, then the user (somehow) indicates the data to
be transferred. This data is, typically, available on the display, so the information source is the
presentation component. The information is then placed in the information reuse repository.
Finally, the user indicates the sink for the data and the data is passed to the source as if it
were input data. One key to cut and paste is to maintain type information about the data. The
source provides the type of the data being transferred and the sink indicates whether it can
accept data of that type. If not, then a type conversion must be made between the type of the
data at the source and an acceptable type at the sink. Usually, system-wide conventions con-
cerning type have been established so the source and sink can accommodate the same types.

If automatic data propagation is being implemented, then type information is again a crucial
element. In this case, the information reuse repository is maintained as a blackboard. The
sink(s) register interest in items of a particular data type. The source publishes current infor-
mation of the particular data type. For example, if the sink is a form that wants to know the
user name, any component of the system that knows it places that name in the repository.
When the sink is invoked, it registers for the user name and the current name is given to the
sink.

The type of information used in data propagation is far richer than the type used in cut and
paste. A name, for example, in cut and paste can be treated as a sequence of letters. In data
propagation, the name should be identified as “proper name” or some other type. Usually, a

64 CMU/SEI-2001-TR-005

data dictionary is defined that enumerates all the valid types known to the information reuse
repository.

Figure 12. Information Re-Use

6.11.2 Allocation to mechanism hierarchy

Indirection
Data

The information reuse repository acts as an indirection intermediary by separating the data
producer and consumer.

6.12 Supporting International Use

A user may want to configure an application to communicate in his or her language or ac-
cording to the norms of his or her culture. For example, a Japanese user may wish to config-
ure the operating system to support a different keyboard layout. However, an application de-
veloped in one culture may contain elements that are confusing, offensive, or otherwise
inappropriate in another. Systems should be easily configurable for deployment in multiple
cultures

6.12.1 Pattern

Figure 13 gives the module view of the pattern. Some of the complications are screen real
estate management, screen painting, and deployment strategy.

Screen real estate management
The same phrase in different languages may require a different amount of characters even
when the languages utilize the same alphabet. Thus, screen layout may be different in differ-

Key:
Data Flow

Information
Sources

Information
Sink

Information
Reuse Repository

CMU/SEI-2001-TR-005 65

ent languages. One technique for managing this is to have a template supply the screen lay-
out. This template would be interpreted at runtime by the presentation component. The tem-
plate is accessible through the customization component.

Screen painting
Different languages may use a different order of painting. Latin-based languages are read
from left to right. Hebrew and Arabic languages are read right to left. Some Oriental lan-
guages are read top to bottom. It is the responsibility of the presentation component to paint
the screen and retrieve input in the correct fashion for the current user.

Deployment strategy
The architect must decide whether to have a single deployment support multiple languages
(such as an ATM machine) or whether each deployed system only supports a single language
(such as software intended for use within an office where the users’ language is known). If a
single deployment supports multiple languages, all of the language dictionaries must be pre-
sent and the presentation must decide on the layout at runtime. This decision is made based
on the user’s identity or expressed preference. If a single deployment only supports one lan-
guage then only the dictionary for that language needs to be present, and different versions of
the presentation component can be created.

Figure 13. Internationalization

Language/
Dialect Specific
Dictionaries

Functional
Portion of
Applications

Key:
Data Flow

Presentation
Component

Customization
Specifications

66 CMU/SEI-2001-TR-005

6.12.2 Allocation to mechanism hierarchy

Separation
Data from view of data

By separating the core data of a system from the view of that data, the presentation compo-
nent can map user-visible data into a form that is linguistically and culturally appropriate.

Models
User

The presentation component accesses user-supplied customization specifications to configure
itself appropriately. These specifications model the user.

6.13 Leveraging Human Knowledge

People use what they already know when approaching new situations. Such situations may
include using new applications on a familiar platform, a new version of a familiar applica-
tion, or a new product in an established product line.

New approaches usually bring new functionality or power. When, however, users are unable
to apply what they already know, a corresponding cost in productivity and training time is
incurred. For example, new versions of applications often assign items to different menus or
change their names. As a result, users skilled in the older version are reduced to the level of
novices again, searching menus for the function they know exists.

System designers should strive to develop upgrades that leverage users’ knowledge of prior
systems and allow them to move quickly and efficiently to the new system.

6.13.1 Pattern

There are two facets to this scenario. One facet is platform standards. The user can apply
knowledge from one application when using another. The second facet is to have multiple
interfaces when making substantive changes to an application. The user can then choose an
interface. We discuss these in turn.

Platform standards

The essence of maintaining platform standards is to separate the look and feel of an applica-
tion or command from the functional aspects of that command. There can then be libraries
that implement a standard look and feel for a particular platform. The approach to this sepa-
ration is discussed in the scenario “Modifying Interfaces.”

Multiple interfaces

CMU/SEI-2001-TR-005 67

Figure 13 gives a module view of maintaining multiple interfaces for the purpose of sup-
porting internationalization. Having multiple interfaces for the purpose of backward compati-
bility can be viewed as simultaneously supporting two languages. One difference is that the
two interfaces may not support exactly the same set of commands. This structure will support
the case where the commands available through the new interface are a superset of the com-
mands available through the old.

6.13.2 Allocation to mechanism hierarchy

Separation
Encapsulation of function

Toolkits and libraries are encapsulated to embody the standards and the Application Pro-
gramming Interface (API) of a given platform.

Separation
Data from view

By separating the core data of a system from the view of that data, multiple interfaces can be
offered to facilitate the transition from one version of a product to another.

6.14 Modifying Interfaces

Iterative design process is the lifeblood of current software development practice, yet a sys-
tem developer may find it prohibitively difficult to change the user interface of an application
to reflect new functions and/or new presentation desires. System designers should ensure that
their user interfaces can be easily modified.

6.14.1 Pattern

Two basic techniques to support modifiability are indirection (both data and control) and en-
capsulation (information hiding) of coherent computations. Data indirection techniques in-
clude repositories and publish/subscribe. Control indirection techniques include virtual ma-
chines. This is too complicated a topic to be easily summarized here. See Chapter 6 of
Software Architecture in Practice for a discussion of several user interface reference models
[Bass 1998].

To support modifiability, the architect should enumerate a list of likely change scenarios and
ensure that the architecture will support them.

6.14.2 Allocation to mechanism hierarchy

Separation
Encapsulation of function

68 CMU/SEI-2001-TR-005

Encapsulating all user interface functionality away from the core of the system (“Everything
Else”) allows designers to modify the user interface more easily.

Indirection
Function

The use of an intermediary such as the dialogue manager in the Seeheim Model or the Con-
trol in the PAC model is indirection of function. These models are discussed in Chapter 6 of
Software Architecture in Practice [Bass 1998].

Indirection
Data

Indirection of data refers to the separation of application data from the view of that data. It
occurs in virtually all of the models discussed in Chapter 6 of Software Architecture in Prac-
tice [Bass 1998].

6.15 Supporting Multiple Activities

Users often need to work on multiple tasks more or less simultaneously (e.g., check mail and
write a paper). A system or its applications should allow the user to switch quickly back and
forth between these tasks.

6.15.1 Pattern

The operating system should provide for independent threads of control and for context
changes between one thread and another. One problem arises because the operating system
must know what an application considers its context. Thus, key bindings as shortcuts may
differ from application to application, and the current key bindings should always reflect the
active application. Applications should register items so they can be saved and restored when
a context switch is made.

6.15.2 Allocation to mechanism hierarchy

Separation
Encapsulation of function

The context saver separates application specific environment data like key bindings from the
applications themselves.

Preemptive Scheduling

Systems that support multiple threads allow for robust, fast context switching.

CMU/SEI-2001-TR-005 69

6.16 Navigating Within a Single View

A user may want to navigate from data visible on-screen to data not currently displayed. For
example, he or she may wish to jump from the letter “A” to the letter “Q” in an online ency-
clopedia without consulting the table of contents. If the system takes too long to display the
new data or if the user must execute a cumbersome command sequence to arrive at her or his
destination, the user’s time will be wasted. System designers should strive to ensure that us-
ers can navigate within a view easily and attempt to keep wait times reasonably short.

(See: Working at the User’s Pace)

6.16.1 Pattern

Caching improves performance by replicating data in a location with faster retrieval time. For
example, browsers cache copies of Web pages so users can return to those pages quickly.

Figure 14 shows two components that are used to manage caching. One component holds the
data with fast access as well as an algorithm that is used to update that data. Usually the
cache uses fewer resources than the main data store and so holds a smaller amount of data;
This makes it necessary to have an updating algorithm. If the data in the cache is changed by
the application, there must also be an algorithm for updating the main data store.

Figure 14. Navigation

6.16.2 Allocation to mechanism hierarchy

Replication
Data

By replicating data from a device with slow retrieval times and storing it in a high-speed
cache, navigation wait times can be reduced.

6.17 Observing System State

A user may not be presented with the system state data necessary to operate the system (e.g.,
uninformative error messages, no file size given for folders). Alternatively, the system state

Data with Fast
Access Time (Cache)

Data with Slow
Access Time

Key:
Data Flow

70 CMU/SEI-2001-TR-005

may be presented in a way that violates human tolerances (e.g., is presented too quickly for
people to read. See: Working at the User’s Pace). The system state may also be presented in
an unclear fashion, thereby confusing the user. System designers should account for human
needs and capabilities when deciding what aspects of system state to display and how to pre-
sent them.

A special case of Observing System State occurs when a user is unable to determine the level
of security for data entered into a system. Such experiences may make the user hesitate to use
the system or avoid it altogether.

6.17.1 Pattern

Two aspects to viewing the system state are making the data available and taking the initia-
tive in presenting the data.

Making the data available
Data that represents the system state should be collected into a component that can make it
accessible to the user. Associated with each data item should be information such as type of
data, a refresh rate (see Working at the User’s Pace), and other attributes of interest. Once the
data has been collected, it can be accessed through commands and specialized applications.

Taking the initiative in presenting data
If the data is to be presented upon user request, then no special architecture mechanism is
needed. If the data is to be presented on the system’s initiative, then a model of the user is
needed in order to decide what circumstances will require the system to take initiative.

6.17.2 Allocation to mechanism hierarchy

Separation
Data from Commands

State data is stored in a repository apart from the rest of the system.

Preemptive Scheduling

If data is to be presented on the system’s initiative, a component must occupy a separate
thread to monitor the user’s actions and determine when to present new data or update the
data currently displayed.

Models
Task

If data is to be presented on the system’s initiative, the system can consult a model of the task
to determine what information to present to the user.

CMU/SEI-2001-TR-005 71

Models
User

If data is to be presented on the system’s initiative, the system can consult a model of the user
to determine what information to present.

Models
System

If data is to be presented on the system’s initiative, the system can consult a model of itself to
determine what information to present.

6.18 Working at the User’s Pace

A system might not accommodate a user’s pace in performing an operation. This may make
the user feel hurried or frustrated. For example, ATMs often beep incessantly when a user
“fails” to insert an envelope in time. Also, Microsoft Word’s scrolling algorithm does not take
system speed into account and becomes unusable on fast systems (the data flies by too
quickly for human comfort). Systems should account for human needs and capabilities when
pacing the stages in an interaction. Systems should also allow users to adjust this pace as
needed.

6.18.1 Pattern

The system maintains a model of itself as well as a model of the user. It uses the model of the
user to determine the correct pace or users expectations. It uses to model of itself to predict
information that will be of interest to the user, such as time remaining to complete a task.

These models should operate on a thread distinct from the main activity thread so the com-
putations and displays associated with pace control can be completed regardless of the state
of the main activity computation.

6.18.2 Allocation to mechanism hierarchy

Models
Task

The system can use a model of the task to determine what pace to use for prompting. For ex-
ample, an ATM should know that if a user has asked to deposit money, it might take her or
him a while to fill and seal the envelope. The system should not beep at the user during this
time.

Models
User

72 CMU/SEI-2001-TR-005

The system can also use a model of the user to set the pace. For example, novice users may
take longer to perform tasks than experts.

Preemptive Scheduling

The model of the user and model of the task should operate on a thread distinct from the main
activity thread so the computations and displays associated with pace control can be com-
pleted and updated regardless of the state of the main activity.

6.19 Predicting Task Duration

A user may want to work on another task while a system completes a long running operation.
For example, an animator may want to leave the office to make copies or to eat while a com-
puter renders frames. If systems do not provide expected task durations, users will be unable
to make informed decisions about what to do while the computer “works.” Thus, systems
should present expected task durations.

6.19.1 Pattern
See Working at the User’s Pace.

6.19.2 Allocation to mechanism hierarchy

Models
Task

A model of the task can determine what steps are likely to be performed in an operation. The
system then can predict total completion time that spans more than one operation. For exam-
ple, if users install several parts of an application in sequence, the system can predict a total
install time.

Models
System

A model of the system can be used to determine how much work is left to do and, hence, to
predict completion time (percent complete, etc.).

Preemptive Scheduling

Scheduling is necessary in systems that present progress feedback. One thread is needed for
the progress monitor and one is needed for the activity being monitored.

6.20 Supporting Comprehensive Searching

A user wants to search some files or some aspects of those files for various types of content.
For example, a user may wish to search text for a specific string or all movies for a particular

CMU/SEI-2001-TR-005 73

frame. Search capabilities may be inconsistent across different systems and media, thereby
limiting the user’s opportunity to work. Systems should allow users to search data in a com-
prehensive and consistent manner by relevant criteria.

6.20.1 Pattern

The architecture pattern for comprehensive search is shown in Figure 15. It uses a search
registry to satisfy the search requests. Various applications that have searchable information
can register with the search registry. Thus, a file manager might register with the search reg-
istry so it can search file names and content. An application requests a search by specifying
the types of information that should be reviewed and the scope of the review, the search man-
ager then delegates the search request to the entities that have registered with it. Results are
sent back to the application that originally requested the search.

Returning information to the application must allow for appropriate feedback to the user. For
example, if the search is for a word in a document, the return should be a reference to that
word rather than the word itself so the user can see the word highlighted within context.

Figure 15. Search

6.20.2 Allocation to mechanism hierarchy

Separation
Encapsulation of function

The search registry is separated from individual applications and files to allow users to in-
stantiate a search from within any application.

Indirection

Presentation

Application Re-
quest for
Search

Search
Registry

Application that has
Search Capability

74 CMU/SEI-2001-TR-005

Function

The search registry operates as an intermediary between the applications requesting searches
and the applications executing them.

6.21 Supporting Undo

A user performs an operation, then no longer wants the effect of that operation. For example,
a user may accidentally delete a paragraph in a document and wish to restore it. The system
should allow the user to return to the state before that operation was performed. Furthermore,
it is desirable that the user then be able to undo the prior operation (multi-level undo).

6.21.1 Pattern

Figure 16 shows the key components in implementing an undo capability. Each component
that is involved in an undo sends relevant data to a transaction manager. The data is viewed
as a transaction. That is, data items are grouped together and form an atomic unit. All of the
data has been applied or none of it has been applied. (Transactions can be rolled off and that
is “undo.”)

Using a global transaction manager rather than relying on each component to perform its own
undo has an advantage: the number of steps that can be undone is arbitrary. The only limit is
the amount of storage on the media used for the undo capability. Furthermore, the granularity
of the undo (e.g., are keystrokes undone or commands) is then dependent on the component
rather than on some system-wide decision. That is, suppose the current granularity of the
undo is at the command level and there is a decision made to change it to the keystroke level.
Then all that is necessary is to enter the keystrokes into the transaction manager and the
commands do not need to be modified. The transaction stack will go from just having the
data to undo the commands to having the data to undo the keystrokes.

CMU/SEI-2001-TR-005 75

Figure 16. Undo

6.21.2 Allocation to mechanism hierarchy

Recording

The transaction manager must store state information each time an “undoable” command is
executed in order to later “roll back” through one or more previous states.

6.22 Working in an Unfamiliar Context

A user needs to work on a problem in a different context. Discrepancies between this new
context and the one the user is accustomed to may interfere with the ability to work. For ex-
ample, a clerk in business office A wants to post a payment for a customer of business unit B.
Each business unit has a unique user interface, and the clerk has only used unit A’s previ-
ously. The clerk may have trouble adapting to business unit B’s interface (same system, un-
familiar context.) Systems should provide a novice (verbose) interface to offer guidance to
users operating in unfamiliar contexts.

6.22.1 Pattern

This pattern requires maintaining two different interfaces simultaneously for the same sys-
tem. This is the same pattern described in Supporting Internationalization and Leveraging
Human Knowledge.

6.22.2 Allocation to mechanism hierachy

Separation
Data from View

“Undoable”
component

Transaction
manager

Key:
Data flow

76 CMU/SEI-2001-TR-005

The “verbose” and “standard” user interfaces are kept separate from the functional core of the
system to easily switch between them.

Replication
Commands

Since two user interfaces are offered, commands that are available in both are replicated.

Models
User

The system consults a model of the user to determine which interface to present.

6.23 Verifying Resources

An application may fail to verify that necessary resources exist before beginning an opera-
tion. This failure may cause errors to occur unexpectedly during execution. For example,
some versions of Adobe® PhotoShop® may begin to save a file only to run out of disk space
before completing the operation. Applications should verify that all necessary resources are
available before beginning an operation.

6.23.1 Pattern

This is very similar to “Using Applications Concurrently.” The application must verify that
necessary resources are available from a resource manager and inform the user if sufficient
resources are not available to complete a task.

6.23.2 Allocation to mechanism hierarchy

Separation
Encapsulation of function

The resource manager is encapsulated apart from the rest of the system.

Models
System

The resource manager must maintain a model of the system to know which resources to ver-
ify and to determine a plan of action in the event that needed resources are unavailable.

6.24 Operating Consistently Across Views

A user may become confused by functional deviations between different views of the same
data. Commands that had been available in one view may become unavailable in another or
may require different access methods. For example, users cannot run a spell check in the
Outline View utility found in a mid-90’s version of Microsoft Word. Systems should make

CMU/SEI-2001-TR-005 77

commands available based on the type and content of a user’s data, rather than the current
view of that data, as long as those operations make sense in the current view.

For example, allowing users to perform operations on individual points in a scatter plot while
viewing the plot at such a magnification that individual points cannot be visually distin-
guished does not make sense. A naïve user is likely to destroy the underlying data. The sys-
tem should prevent selection of single points when their density exceeds the resolution of the
screen, and inform the user how to zoom in, access the data in a more detailed view, or oth-
erwise act on single data points.

(See: Providing Good Help and Supporting Visualization)

6.24.1 Pattern

Figure 17 shows the relevant components that enable consistent operation across views. The
data that is being viewed should be separated from the view description. The presentation
maps the data through the description of the user’s requested view. Commands are also sepa-
rated from the data. This allows the commands to operate on the data without knowing the
view of the data requested by the user.

Figure 17. Consistent Operation

View
Descriptions Commands

Data to be
Viewed

Presentation

Key:
Data Flow

78 CMU/SEI-2001-TR-005

6.24.2 Allocation to mechanism hierarchy
Separation

Data from Commands

In systems in which users select the current view from a toolbar, the view change commands
are separated from the view description.

Separation
Data from View

When the view description is kept separate from the viewed data, commands that manipulate
the data can be executed without referencing the current view.

6.25 Making Views Accessible

A user may want to see data from another point of view. For example, a user may wish to see
the outline of a long document and the details of the prose. If certain views become unavail-
able in certain modes of operation, or if switching between views is cumbersome, the user’s
ability to gain insight through multiple perspectives will be constrained.

6.25.1 Pattern

Figure 17 (Consistent Operation) also satisfies this scenario. Switching between views is a
matter of changing the active view description and should be independent of the mode or of
what is currently on the screen.

6.25.2 Allocation to mechanism hierarchy

Separation
Data from Commands

In systems where users select the current view from a toolbar, the view change commands are
separated from the view description.

Separation
Data from View

When the view description is kept separate from the viewed data, the system can change
views without referencing the current view.

6.26 Supporting Visualization

A user wishes to see data from a different viewpoint. Systems should provide a reasonable set
of task-related views to enhance users’ ability to gain additional insight while solving prob-
lems. For example, Microsoft Word provides several views to help users compose docu-
ments, including Outline and Page Layout modes.

CMU/SEI-2001-TR-005 79

6.26.1 Pattern

Figure 17 (Consistent Operation) also satisfies this scenario. Task-related views can be de-
scribed in the view description and adding views should be an easy set of modifications.
Switching between views then is a matter of changing the active view description and should
be independent of the mode or of what is currently on the screen.

6.26.2 Allocation to mechanism hierarchy

Separation
Data from Commands

In systems where users select the current view from a toolbar, the view change commands are
separated from the view description.

Separation
Data from View

Each view of the data exists independently from the data itself.

80 CMU/SEI-2001-TR-005

CMU/SEI-2001-TR-005 81

7 Cross-Referencing Benefits and
Mechanisms

In this chapter, we present a matrix (Figure 18) that puts the mechanism hierarchy on one
axis and the benefit hierarchy on the other. Each cell contains the general usability scenarios
that correspond to the mechanism and benefit hierarchies.

On the one hand, this matrix reproduces the information presented in Sections 4 and 6. On
the other, the matrix provides additional benefits. The software design team can decide which
usability benefits are most valued in a particular project, use the matrix to focus on the gen-
eral scenarios providing those benefits to see which are applicable to the project, and then
read off the architectural mechanisms necessary to implement those scenarios. The team can
use this information to generate the architecture or to evaluate an existing architecture to see
what usability risks might be inherent in their design. Alternatively, the team could look at the
mechanisms included in a current system design and use the matrix to discover which general
usability scenarios could be implemented using those mechanisms, and which additional us-
ability scenarios could be addressed with only small changes to the architecture. We expect
this matrix to be the vehicle for referencing the work presented here and thereby increase its
utility beyond the linear format of prose and diagrams.

82 CMU/SEI-2001-TR-005

Figure 18. Benefit and Mechanism Matrix

Usability
Benefits

Accelerates
error-free
portion

Reduces
impact of

slips

Supports
problem-
solving

Facilitates
learning

Prevents
mistakes

Accommo-
dates

mistakes

Tolerates
system
errors

Prevents
system
errors

Encapsulation of
function

4, 13, 14, 15,
20, 23

3, 4 3, 4, 13, 20 4, 13, 20 4, 13, 20 3, 9, 14 23 3, 23

Data from the
view of that data

12, 13, 24,
25

12
12, 13, 22,
24, 25, 26

12, 13, 24
12, 13, 22,

24
12 12

Data from
commands 1, 24, 25 5, 17

5, 17, 24, 25,
26

5, 17, 24 1, 5, 17, 24 1, 5, 17 17

Authoring from
execution 1, 2 2 1, 2 1, 2

Data
16

Commands
2 2 22 2, 22 2

Data
7, 11, 14 11 7, 11 14

Function
6, 14, 20 6, 20 20 20 14 6 6

2, 7 2, 3, 21 3, 7, 21 2 2, 3, 21 3, 8 3, 6

15, 18, 19
2, 3, 5, 17,

18
3, 5, 10, 17 5, 10, 17 5, 17, 19 3, 5, 17 3 3 17, 18

Task
18, 19 5, 17, 18 5, 10, 17 5, 10, 17 5, 17, 19 5, 17 17, 18

User
12, 13, 18 5, 12, 17, 18

5, 10, 12, 13,
17, 22

5, 10, 12, 13,
17

5, 12, 13, 17,
22

5, 12, 17 12, 17, 18

System
4, 6, 19, 23 3, 4, 5, 17 3, 4, 5, 6, 17 4, 5, 17

3, 4, 5, 17,
19

3, 5, 17 3, 6, 23 3, 6, 23 17

Increases individual effectiveness Reduces impact of system
errors

Increases
confidence
and comfort

Expedites routine
performance

Improves non-routine
performance

Reduces impact of
mistakes

Recording

Preemptive Scheduling

Models

Architectural
Mechanisms

Separation

Replication

Indirection

CMU/SEI-2001-TR-005 83

8 Further Work

This work is by no means complete. There are a number of activities that remain to be done
to simplify the support of usability at the software architectural design stage of a system.
These activities include

• validating and extending the list of general usability scenarios. We explicitly limited our
attention to single-user desktop systems. The scenarios should be extended to include
mobile and multi-user environments. Although many of the general scenarios presented
here will still be applicable, these environments will introduce their own additional us-
ability requirements. Furthermore, the scenarios need to be validated in practice. Their
utility still must be determined, although we have used them successfully in several
evaluation and design exercises to date.

• understanding the effect on other attributes of usability architecture patterns. In order for
an architect to adopt a particular architectural pattern to support usability, the effect of
this pattern on other quality attributes such as performance, modifiability, security and
reliability should be understood. There is ongoing work at the SEI in this area [Bass
2000].

• understanding the usability impact of architectural mechanisms used to achieve other at-
tributes. For example, what is the usability impact of a firewall? Again, there is ongoing
work at the SEI in this area [Bass 2000].

84 CMU/SEI-2001-TR-005

CMU/SEI-2001-TR-005 85

References/Bibliography

Bass 1998 Bass, L.; Clements, P. & Kazman, R. Software Architecture in Practice.
Reading, MA: Addison Wesley Longman, 1998.

Bass 2000 Klein, M. & Bachmann, F. Quality Attribute Design Primitives (CMU/SEI-
 2000-TN-2000-017). Pittsburgh, PA: Software Engineering Institute,
 Carnegie Mellon University, 2000.

Bhavnani 2000 Bhavnani, S. K. & John, B. E. “The Efficient Use of Complex Computer
Systems.” Human-Computer Interaction 15, 2: 107-137.

Card 1983 Card, S. K.; Moran, T. P. & Newell, A. The Psychology of Human-Computer
Interaction. Hillsdale, NJ: Erlbaum, 1983.

Gram 1996 Gram, C. & Cockton, G. Design Principles for Interactive Systems. London,
England: Chapman and Hall, 1996.

Newell 1972 Newell, A. & Simon, H. A. Human Problem Solving. Englewood Cliffs, NJ:
Prentice-Hall, 1972.

Newman 1995 Newman, W. & Lamming, M. Interactive System Design. Wokingham,
England: Addison-Wesley Publishing, 1995.

Nielsen 1993 Nielsen, J. Usability Engineering. Boston, MA: Academic Press Inc., 1993.

Shneiderman 1998 Shneiderman, B. Designing the User Interface, 3rd ed. Reading, MA:
Addison-Wesley, 1998.

Beyer 1998 Beyer, H. & Holtzblatt, K. Contextual Design. San Francisco, CA: Morgan
Kaufmann Publishers, Inc., 1998.

86 CMU/SEI-2001-TR-005

 Miller 1987 Miller, D. P. & Swain, A. D. “Human Error and Human Reliability,” 219-
257. Handbook of Human Factors, ed. Gavriel Salvendy. New York: John
Wiley and Sons, Inc.

CMU/SEI-2001-TR-005 87

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations
and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-
0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Achieving Usability Through Software Architecture

5. FUNDING NUMBERS

F19628-00-C-0003
6. AUTHOR(S)

Len Bass, Bonnie E. John, Jessie Kates
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2001-TR-005

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

In this paper, we present an approach to improving the usability of software systems by means of software architectural
decisions. We identify specific connections between aspects of usability, such as the ability to "undo," and software ar-
chitecture. We also formulate each aspect of usability as a scenario with a characteristic stimulus and response. For
every scenario, we provide an architecture pattern that implements its aspect of usability. We then organize the usability
scenarios by category. One category presents the benefits of these aspects of usability to users or their organizations.
A second category presents the architecture mechanisms that directly relate to the aspects of usability. Finally, we pre-
sent a matrix that correlates these two categories with the general scenarios that apply to them.

14. SUBJECT TERMS

Software architecture, software systems, usability, general scenarios, usability
evaluators, architecture patterns, architecture mechanisms, architecture design

15. NUMBER OF PAGES

102

16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION OF

THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF

ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

