Modeling Cache Performance
Beyond LRU

Nathan Beckmann and Daniel Sanchez
MIT CSAIL — HPCA 2016 — Barcelona, Spain

Motivation

& Predictions of cache performance have many uses:
& Job scheduling to avoid interference

& Cache partitioning to improve performance, enhance security, ensure fairness, etc.
& Decades of research on predicting classic replacement policies like LRU or random replacement

& ...But not for recent, high-performance replacement policies
¢ DRRIP, PDP, IGRD, PRP, etc.

& We need new modeling techniques that can accurately predict the performance of a broad
range of policies

Background

& Last-level caches (LLCs) are critical to system performance and energy
& Large >a
¢ Hashu
¢ High

® Accesses

& Privat.
= LR

& LRU i

Very expensive!

¢ Abundant recent work on replacement

Background — Replacement policies

& Many different techniques

¢ Dynamically protecting cache lines [DIP, Qureshi ISCA’07][PDPF, Duong MICRO’12]
¢ Predicting whether lines will hit [SBDP,. Khan MICRO’10][PRF, Das TACO’15]/
¢ Predicting how long until a hit [DRRIP, Jaleel ISCA’10/[IRGD, Takagi ICS’04]

& Most policies assign value to cache lines which changes over time
¢ Value usually increases upon a hit, 1.e. promotion

& Value eventually declines after some time without a hit, 1.e. demotion

Background — Cache models

& Prior cache models target LRU, pseudo-LRU, random, etc.

& Many applications require accurate cache predictions

& Job scheduling [Mars, MICRO’11][Zhang, EuroSys’l3][Delimitrou, ASPLOS’13]
¢ Shared cache partitioning

% Performance [Qureshi, MICRO’06][Moreto, OSR’09][Beckmann, PACT’13]

& Fairness [Moreto, OSR’09][Pan, MICRO’13]

¢ Quality-of-service [Guo, MICRO’07][Kasture, ASPLOS’14][Cook, ISCA’13]

& Security, etc. [Page, Crypto’05][Beckmann, HPCA’15]

Need cache models for recent, high-performance replacement policies

Our modeling approach

& Observation 1: Private caches strip out successive accesses to same cache line

& Observation 2: Hashing + high associativity =» replacement candidates are well-mixed
Strategy: Model cache replacement as a random process
& Observation 3: Many replacement policies rank candidates by age (time since last reference)

Strategy: Model replacement policies as arbitrary functions of age

Contributions

& First model for several recent, high-performance replacement policies
& Based on absolute reuse distances — number of accesses between references to address
& Three related probability equations

¢ Easy to model new age-based replacement policies

& Efficient online implementation
& Accurate predictions — mean error of ~3% for LRU, PDP, and IRGD on SPECCPU2006

& Limitations: Currently does not model non-age-based policies like DRRIP

Model outline

& Assumptions
& Explain model for LRU
& Generalize model to other policies

To limit math, this talk will use pictures to give intuition and
then quickly show corresponding equations — see paper for detailed derivations

Model assumptions

& Assume high associativity — i.e., replacement candidates are selected at random

& Direct model of skew-associative caches, also works for hashed set-associative caches

& Assume reuse distances are independent and 1dentically distributed
& Reuse distance 1s the number of accesses between references to the same address

¢ Intuition: Private caches filter out successive accesses to same address, removing locality at LL.C

& These assumptions are only approximately satisfied in practice, but the model is
surprisingly robust to deviations from them

Example and definitions

Requests: A A B C B D
3 1 1 2 3 4
Y 3 4 1 2 1
1 4 3 4 1 2

& Age 1s the number of accesses since last reference

10

Model overview

& Three interdependent probability distributions

“Depends on”
>

& Cache hit rate is the sum of the hit distribution, i.e. Hit rate = },;—; Py(a)

11

Example and definitions

Requests A A B C B D B G
5 [Ssa 1A 1 2 3 4D 1 2
S s P 3 4B 1 2 B 1 2B 1
o 2 3 NG G / = 4 £C
S Time =»

& Age 1s the number of accesses since 1ast referenge

Hits Together
Evictions 5 sum to 1

Ages

112

Age distribution

& P4(a) — How many lines have age a?

& Insight: Lines at age a must hit or be evicted at age = a

& =>» P4(a) 1s proportional to number of hits and evictions at higher ages

Hits

Evictions

Ages

= X (P[H = a] + P|E = a])

Cache size

13

Eviction distribution for LRU

& Pg(a) — How many lines are evicted at age a? Associativity = 32 candidates
& Insight: LRU evicts the oldest (maximum age) candidate
¢ =2 Given W randomly-chosen candidates, victim’s age 2

is distributed as maximum of W draws from P,(a) E

o
® Pg(a) = Miss rate X Max. age of W ages — Ages P, (a)
_ — Evictions P (a)

& = P[miss] X (P[A < a + 1] — P[A < a]") ,

Age

Hit distribution

& Py(a) — How many hits occur at age a?

& Insight: Hits at age a imply (absolute) reuse distance of a

¢ Every reuse distance a will hit at age a unless first evicted

® =2 Py(a) = Reuse distances at a — Evictions before a

¢ Sadly, eviction age and reuse distance aren’t independent!

¢ How do evictions change hit probability?
& Insight: Replacement policy doesn’t know reuse distance!

& = Evictions at a only imply that reuse distance > a, and
lower the probability of all later hits

Probability

Reuse distance P, (a)
Evictions P (a)

Hits P (a)

Hit rate = 0.17

Hit
i x
\)
|
(@F:} e evicted
J
Age

15

Model summary for LRU

& Age distribution — cache size

s 12l@) = X (P[E = a] + P|H = a])

Cache size

—1 Pe(x)
® Py(a) = Pp(a) X (1 a z:;‘Cl:%P[f);cx])

16

Generalizing to other policies

¢ How to model different replacement policies?

& We model policies as ranking functions of candidates’ ages R(a)

& By convention, higher rank =» likelier to be evicted

& Replacement model:

¢ 1. Given candidates’ ages aq, a, ...ay

¢ 2. Rank candidates as R(a;),R(a,) ... R(ay)
& 3. Evict candidate with highest R(a;)

17

Ranking functions

Pros
& Simple + analytically tractable model
& Works for many replacement policies
¢ LRU:R(a) =a
¢ PDP: protect lines until age d,,
& IRGD: statistical cost function

& PRP: conditional hit probability

@

D

(0)

D

Eviction rank

LRU
PDP
IRGD

Age

lange

18

Generalized eviction distribution

& Age and hit distributions do not change!
¢ LRU evicted the oldest candidate

& Substitute: “maximum age” (for LRU) =» “maximum rank” (in general)
& 1. Compute distribution of ranks in cache using R(a) and age distribution

& 2. Find distribution of maximum rank as W draws from this distribution

& Some corner cases to avoid double counting, etc.

19

Model summary for arbitrary ranking functions

& Age distribution — cache size
Solve through iteration!

(see paper)

s 12l@) = X (P[E = a] + P|H = a])

Cache size

¢ Eviction distribution — replacement pohcy & associativity

w
& Pg(a) = P[miss] X Pk((gza))l*vf raI}L{:iﬁ ﬁ%)}+ Ar]" — P[rank < R(a)]"

Ar

& Hit distribution — access pattern via reuse distance distribution Pp(a)

P
& Py(a) = Pp(a) X (1 — Dx= %p Zg])

20

Validation — Simulation methodology

¢ Run SPECCPU2006 for 20 B instructions using zsim [Sanchez, ISCA’13]

& 16-way, set-associative hashed caches from 128 KB — 128 MB
& LRU, PDP, and IRGD replacement

& Model solved every 100 ms using sample reuse distance distributions

& Small monitor gathers LLC reuse distance distribution online

& Compare against simulated cache hit rate

¢ Demanding workload!
& Sampling error

& Reuse distance distributions not in equilibrium

21

Validation — SPECCPU2006 results

& Low error across 400,000 model solutions 1.0 ' . .
& 29 applications IRGD |
- 08} — LRU §
& 11 cache sizes, 128 KB — 128 MB 5 - PDP l
¢ 100 ms interval W o6l f
. |
- -
"é 0.4} I
¢ E.g., for IRGD 2 i
¢ Median error of 0.1% 0.2+ e
& Mean error of 1.9%) e
00 1 A a1
& 90" pctl error of 5.5% 0 25 50 75 100

Percentile

22

Validation — SPECCPU2006 results

& Even more accurate across full program execution

Error

Model

Simulation

gcc.

BN
hmmer

L

Q
»
soplex.

oley SsIN

23

Case study — Cache partitioning

& Cache partitioning with IRGD 1mproves 1.20 ? ! ; VR
performance significantly § § § S
, , ; Q 1 A5f - SR CERRLN
& No prior scheme can efficiently predict IRGD! _8 1y
)] g e
& 4 core system, 4 random apps R qq0b ,{_ A |
¢ Utility-based Cache Partitioning (UCP) g UCP + IRGD: K ’
> RN -
¢ Gmean +10% speedup, up to +44% O R N
1.00 fepmmm s e e e e e b i o]
& vs for LRU, gmean +4.5% = I’ - & 'LRU
) I S B
0 20 40 60 80 100

Workload

24

Extensions — Classification /7ech repore]

& For some apps, our assumptions are too
strong

& Specifically: Reuse distances aren’t 11d

& This 1s largely addressed by breaking
accesses into two classes:

& Those likely to hit (short reuse)
& Those unlikely to hit (long reuse)

¢ Boundary chosen adaptively

cactus

1.0 , .

Miss Ratio

02l |~ Simulation
: ' D == Model
- = Model w/ Classification

0.0 L ' | | I I

25

Extensions — Cache calculus

[CAL’16]

& We can generalize this model into system of ordi

D' D'
H”:FH’_l DE’ and

o
(=]
|

& Solve ODE:s for closed-form solutions on particular g

Miss ratio

=
N
I

& Example: Scanning an array with random replace iyt S S S

® o Simulation ;
— ODE Solution

miss rate = 1 — S X ProductLog (—e™1/5/S) -

0.0 0.2 0.4 0.6 0.8

Cache size as fraction of array

26

Conclusion

& Accurate predictions of cache behavior are very useful
¢ Prior models do not support recent high-performance policies
& This work makes a first step towards modeling arbitrary replacement policies

& Efficient implementation and accurate predictions

27

Questions?

Model solution

& Iterate to a fixed point when hit rate stabilizes
& Typically <50 iterations

& Each iteration is linear on size of distributions

¢ Efficient through coarsened ages, 1.e. age regions

¢ Increases performance tremendously — e.g., 64 X

¢ Small C++ runtime is publicly available

29

Probability

0.030

0.025

0.020

0.015

0.010

0.005

0.000
0

Validation — Synthetic

200

400 600
Reuse Distance

800

1000

PDP cliff
LRU cliff
Cache friendly

Cim

Miss Ratio

0.0
0

"
"
e

64

|
128
Cache Size (lines)

i
192

30

N
o

=
un

Model Error (%)
=

o

Validation — SPECCPU2006 results

& Modest error from coarsening ages until ~64 regions

(64X compression)

LRU

PDP

IRIEAaRIENE

: """ 1 90th pct |7

IRGD

1 Mean

N

6;7
%
%
%) Jé’

%

Points in solution, Vv

31

Future work

¢ Model other policies
¢ DRRIP — incorporate classification to model promotions + model aging mechanism

& Generalize from one rank to a distribution of possible ranks?

& New model applications
¢ Much more information than just hit rate!

¢ How can we use hit, eviction distribution to improve cache performance?

32

