ASPLOS XXI - Atlanta, Georgia — 4 April 2016

WHIRLPOOL!

IMPROVING DYNAMIC CACHE MANAGEMENT
WITH STATIC DATA CLASSIFICATION

Anurag Mukkara, Nathan Beckmann, Daniel Sanchez

MIT CSAIL

I H B Massachusetts] h
I I Institute of (W /_q_
Technology K

CSAIL

Processors are limited by data movement

1 Data movement often consumes >50% of time & energy
E.g., FP multiply-add: 20 pJ <~ DRAM access: 20,000 p]J

11 To scale performance, must keep data near where its used

-1 But how do programs use memory?¢

Good: nearby cache banks

Bad: faraway cache banks
Terrible: DRAM access

Static policies have limitations

Program Code \/

Static analysis Exploits program semantics
or profiling

Fixed policy ><

Can’t adapt to application
phases, input-dependent
behavior, or shared systems

E.g., scratchpads, bypass hints

Dynamic policies have limitations, too

| |
Observe

loads/stores l
[|

E.g., data migration & replication

Responsive to actual
application behavior

X

Difficult to recover program
semantics from loads/stores

=» Expensive mechanisms
(eg, extra data movement &
directories)

4

Combining static and dynamic is best

Program Code

Static analysis

v

or protiling Exploits program

Pool semantics at low overhead

v

Responsive to actual
Observe

loads/stores

Policy
A

application behavior

Agenda

1 Case study
0 Manual classification

0 Parallel applications

0 WhirlTool

System configuration

< —

-
”
—_y
_y
55_

Non-uniform cache access (NUCA):
Cache banks have different access latencies

Baseline dynamic NUCA scheme

7 We apply Whirlpool to Jigsaw ,
a state-of-the-art NUCA cache

Allocates virtual caches, collections of parts of cache banks

Significantly outperforms prior D-NUCA schemes

Reduce cache misses

Reduce on-chip

network traversals

‘ /NS Simple mechanisms

Dynamic policies can reduce data movement,

App: Delaunay
triangulation

Static NUCA Jigsaw
[Beckmann, PACT’ 13]

Dynamic policy performs somewhat better:

4% better performance
12% lower energy

Static analysis can help!

N Triangles
" Vertices
o Points

Accesses Footprint (MB) ‘

Points

Access Intensity

Trlcmgles

10

Jigsaw with Static Classification .

Few data structures accessed
more frequently than others

Points
>
| ‘; |
c :
| [Vertices |
I E OQ I
(72]
72 T . I
§ riangles
< |
[] . ’
Jigsaw Whirlpool!
[Beckmann, PACT’13] Vs Jigsaw:

19% better performance
42% lower energy

Agenda

0 Case study
1 Manual classification

0 Parallel applications

0 WhirlTool

12

Whirlpool — Manual classification

Organize application data into memory pools

Points, Triangles

int poolPoints = pool_create();
Point* points = pool_malloc(sizeof(Point)*n, poolPoints);

int poolTris = pool_create();
Tri* smallTris = pool_malloc(sizeof(Tri)*m, poolTris);

Tri* largeTris = pool_malloc(sizeof(Tri)*M, poolTris);

Insight: Group semantically similar data into a pool

13

Minor changes to programs

Delaunay triangulation
Maximal matching
PBBS Delaunay refinement
Maximal independent set

Minimal spanning forest

401.bzip2
SPECCPU 470-lom
429 .mcf
2006

436.cactusADM

14

Whirlpool on NUCA placement

Use pools to improve Jigsaw’s decisions
Each pool is allocated to a virtual cache

Jigsaw transparently places pools in NUCA banks

Whirlpool requires no changes to core Jigsaw
Increase size of structures (few KBs)

Minor improvements, e.g. bypassing (see paper)

Pools useful elsewhere, eg to dynamic prefetching

15

Significant improvements on some apps,

Performance Energy

& 60 - -
— 14 - - eé
\o —_
8/ 12_ - Eg 50
= ko2)
g 10 - a — 40
=2 (0))]
2 8- T30 -
2 (@))
2 6- - £)
- . % 20 -
o 4- P
L > 10 - -
Q 9 - D
> l I I o

0- - 2 o
5 OL O
¥ N Te
\Q/\>Q \é\\ (Sb(') \(\)Q\ @

6{0’

Up to 38% better performance Up to 53% lower energy

Agenda

0 Case study
0 Manual classification

71 Parallel applications

0 WhirlTool

17

Conventional runtimes can harm Ic>cc:|i’r)(8

~
S Optimize load

balance, not locality

=

A
iR

e

Whirlpool co-locates tasks and data |

-1 Break input into pools

—

Input

- Application indicates task affinity
1 Schedule + steal tasks from nearby their data

1 Dynamically adapt data placement

-1 Requires minimal changes to task-parallel runtimes

Whirlpool improves locality

4

20

Whirlpool adapts schedule dynamically

-1 Data placement implicitly sciicdules tasks

e

m
un

Significant improvements at 16 cores _,

Applications
Divide and conquer algorithms: Mergesort, FFT

Graph analytics: PageRank, Triangle Counting, Connected Components
Graphics: Delaunay Triangulation

<

7 5 I

S 40 >

3 =) 2.0 - -

> 30 - S

=3 3

§ 20 - 5 1.5 - _

" amll -
m-..] . F i _

MS FFT TC DT PR CC MS FFT TC DT PR CC

Up to 67% better performance Up to 2.6x lower energy

Agenda

0 Case study
0 Manual classification

0 Parallel applications

- WhirlTool

23

WhirlTool — Automated classification

24

1 Modifying program code is not always practical

11 A profile-guided tool can automatically classify data into

pools

WhirlTool
Profiler

Per-callpoint
Mmiss curves

WhirlTool
Analyzer

1 malloc()

o

I |
CO|||poin’r-’ro- 5 pPOool_ma Oc()

pool map

Whirlpool
Allocator

WhirlTool profiles miss curves

Application

N\

Groups allocations

by callpoint

Profiles accesses

to each pool

Periodically records

~

per-callpoint
miss curves

Cache size

25

WhirlTool analyzes curves to find pools,

Hardware can only support a limited number of pools

Jigsaw uses 3 virtual caches / thread
=>» 0.6% area overhead over LLC

Whirlpool adds 4 pools (each mapped to a virtual cache)
=> 1.2% total area overhead over LLC

Must cluster callpoints into semantically similar groups

Per-callpoint Callpoint-to-pool
miss curves mapping

Example of agglomerative clustering .

D

N
N <

N DN

I IEIEIE]

W

WhirlTool’s distance metric

Pool 1

Pool 3

Combined

Separated

Misses

Misses

How many misses are saved by separating pools¢

Small distance

Cadisr §ez€distance

Cache Size

28

29

WhirlTool matches manual hints

3838

. WhirlTool
- Manual

_ _ _ _
< N O o
— — —

< N O

O
(04) mesbir sA dnpaads

Multiprogram mixes 20

4-core system with random SPECCPU2006 apps
Including those that do not benefit

Whirlpool improves performance by (gmean over 20 mixes)
35% over S-NUCA
30% over idealized shared-private D-NUCA
26% over R-NUCA
18% over page placement by Awasthi et al.

5% over Jigsaw

Conclusion

Semantic information from applications improves
performance of dynamic policies

Coordinated data and task placement gives large
improvements in parallel applications

Automated classification reduces programmer burden

31

32

THANKS FOR YOUR ATTENTION!

QUESTIONS ARE WELCOME!

WhirlTool code available at http://bit.ly /WhirlTool

I H B Massachusetts] /h }
I I Institute of \f /_n |
Technology 5

CSAIL

