
Anurag Mukkara, Nathan Beckmann, Daniel Sanchez

MIT CSAIL

ASPLOS XXI - Atlanta, Georgia – 4 April 2016

WHIRLPOOL!

IMPROVING DYNAMIC CACHE MANAGEMENT

WITH STATIC DATA CLASSIFICATION

Processors are limited by data movement

 Data movement often consumes >50% of time & energy

 E.g., FP multiply-add: 20 pJ  DRAM access: 20,000 pJ

 To scale performance, must keep data near where its used

 But how do programs use memory?

Cache banks

Good: nearby cache banks

Bad: faraway cache banks

Terrible: DRAM access

Static policies have limitations
3

Program Code

Fixed policy

Exploits program semantics

Binary

E.g., scratchpads, bypass hints

Can’t adapt to application

phases, input-dependent

behavior, or shared systems

Static analysis

or profiling

Dynamic policies have limitations, too
4

Binary

Dynamic policy

Responsive to actual

application behavior

E.g., data migration & replication
Difficult to recover program

semantics from loads/stores

 Expensive mechanisms

(eg, extra data movement &

directories)

Observe

loads/stores

Combining static and dynamic is best
5

Program Code

Binary

Static analysis

or profiling

Observe

loads/stores

Pool

A

Pool

B

Pool

C

Pool

D

Policy

A

Policy

B

Policy

C

Policy

D

Exploits program

semantics at low overhead

Responsive to actual

application behavior

Agenda
6

 Case study

 Manual classification

 Parallel applications

 WhirlTool

System configuration
7

Core

L1i L1d

Private L2

Non-uniform cache access (NUCA):

Cache banks have different access latencies

 We apply Whirlpool to Jigsaw [Beckmann PACT’13],

a state-of-the-art NUCA cache

 Allocates virtual caches, collections of parts of cache banks

 Significantly outperforms prior D-NUCA schemes

Baseline dynamic NUCA scheme
8

Reduce cache misses

Reduce on-chip

network traversals

Simple mechanisms

Dynamic policies can reduce data movement
9

Jigsaw
[Beckmann, PACT’13]

Dynamic policy performs somewhat better:

Static NUCA

4% better performance

12% lower energy

App: Delaunay

triangulation

Static analysis can help!
10

A
cc

e
ss

 I
n
te

n
si

ty

Points

Vertices

Triangles

Accesses Footprint (MB)

Jigsaw with Static Classification
11

Jigsaw
[Beckmann, PACT’13]

Whirlpool!

Vs Jigsaw:

19% better performance

42% lower energy

Few data structures accessed

more frequently than others

A
cc

e
ss

 I
n
te

n
si

ty

Points

Vertices

Triangles

Agenda
12

 Case study

 Manual classification

 Parallel applications

 WhirlTool

Whirlpool – Manual classification

Organize application data into memory pools

int poolPoints = pool_create();

Point* points = pool_malloc(sizeof(Point)*n, poolPoints);

int poolTris = pool_create();

Tri* smallTris = pool_malloc(sizeof(Tri)*m, poolTris);

Tri* largeTris = pool_malloc(sizeof(Tri)*M, poolTris);

Insight: Group semantically similar data into a pool

Points, Triangles

13

Minor changes to programs
14

Application Pools LOC

Delaunay triangulation 3 11

Maximal matching 3 13

Delaunay refinement 3 8

Maximal independent set 3 13

Minimal spanning forest 3 11

401.bzip2 4 43

470.lbm 2 21

429.mcf 2 14

436.cactusADM 2 53

SPECCPU

2006

PBBS

Whirlpool on NUCA placement
15

 Use pools to improve Jigsaw’s decisions

 Each pool is allocated to a virtual cache

 Jigsaw transparently places pools in NUCA banks

 Whirlpool requires no changes to core Jigsaw

 Increase size of structures (few KBs)

 Minor improvements, e.g. bypassing (see paper)

 Pools useful elsewhere, eg to dynamic prefetching

Significant improvements on some apps
16

bz
ip

2

re
fin

e
M

S
T

lb
m

m
cf

ca
ct
us

m
at

ch
in
g

D
T

M
IS

0

10

20

30

40

50

60

E
n

e
rg

y
 s

a
v
in

g
s
 v

s
 J

ig
s
a

w
 (

%
)

bz
ip

2

re
fin

e
M

S
T

lb
m

m
cf

ca
ct
us

m
at

ch
in
g

D
T

M
IS

0

2

4

6

8

10

12

14

S
p

e
e

d
u

p
 v

s
 J

ig
s
a

w
 (

%
)

38

Up to 38% better performance Up to 53% lower energy

Performance Energy

Agenda
17

 Case study

 Manual classification

 Parallel applications

 WhirlTool

Conventional runtimes can harm locality
18

Optimize load

balance, not locality

Whirlpool co-locates tasks and data
19

 Break input into pools

 Application indicates task affinity

 Schedule + steal tasks from nearby their data

 Dynamically adapt data placement

 Requires minimal changes to task-parallel runtimes

Input

Whirlpool improves locality
20

Whirlpool adapts schedule dynamically
21

 Data placement implicitly schedules tasks

Significant improvements at 16 cores
22

MS FFT TC DT PR CC

0

10

20

30

40

50

60

70

S
p

e
e

d
u
p

 v
s
 J

ig
s
a
w

 (
%

)

MS FFT TC DT PR CC

1.0

1.5

2.0

2.5

3.0

E
n

e
rg

y
 s

a
v
in

g
s
 v

s
 J

ig
s
a

w

Up to 67% better performance Up to 2.6x lower energy

Applications
Divide and conquer algorithms: Mergesort, FFT

Graph analytics: PageRank, Triangle Counting, Connected Components

Graphics: Delaunay Triangulation

Caveat: Splitting data into

pools can be expensive!

Agenda
23

 Case study

 Manual classification

 Parallel applications

 WhirlTool

WhirlTool – Automated classification
24

 Modifying program code is not always practical

 A profile-guided tool can automatically classify data into

pools

WhirlTool

Profiler

WhirlTool

Analyzer

Per-callpoint

miss curves

Callpoint-to-

pool map

Application

WhirlTool

runtime

Whirlpool

Allocator

malloc()

pool_malloc()

WhirlTool profiles miss curves
25

Periodically records

per-callpoint

miss curves

Application

A B C ….

A
llo

c
A

cc
s

Groups allocations

by callpoint

Profiles accesses

to each pool

T

i

m

e

Misses

Cache size

WhirlTool analyzes curves to find pools
26

 Hardware can only support a limited number of pools

 Jigsaw uses 3 virtual caches / thread

 0.6% area overhead over LLC

 Whirlpool adds 4 pools (each mapped to a virtual cache)

 1.2% total area overhead over LLC

 Must cluster callpoints into semantically similar groups

Per-callpoint

miss curves

Agglomerative

clustering

Callpoint-to-pool

mapping

Example of agglomerative clustering
27

1

1

1

2

2

3

WhirlTool’s distance metric
28

Cache Size
M

is
se

s

Small distance

Cache Size

M
is

se
s

Large distance

Pool 1

Pool 2

Separated

Combined

Pool 3

How many misses are saved by separating pools?

WhirlTool matches manual hints
29

le
sl

ie
gc

c
ge

m
s

bz
ip

2
om

ne
t

ra
y

re
fin

e
sp

hi
nx

3
M

S
T

lb
m

se
tC

ov
er

so
pl

ex
xa

la
nc m
cf S
A

ca
ct

us
m

at
ch

in
g

D
T

M
IS

0

2

4

6

8

10

12

14

S
p

e
e
d

u
p

 v
s
 J

ig
s
a

w
 (

%
)

38

WhirlTool

le
sl

ie
gc

c
ge

m
s

bz
ip

2
om

ne
t

ra
y

re
fin

e
sp

hi
nx

3
M

S
T

lb
m

se
tC

ov
er

so
pl

ex
xa

la
nc m
cf S
A

ca
ct

us
m

at
ch

in
g

D
T

M
IS

0

2

4

6

8

10

12

14

S
p

e
e
d

u
p

 v
s
 J

ig
s
a

w
 (

%
)

38 38

WhirlTool

Manual

Multiprogram mixes
30

 4-core system with random SPECCPU2006 apps

 Including those that do not benefit

 Whirlpool improves performance by (gmean over 20 mixes)

 35% over S-NUCA

 30% over idealized shared-private D-NUCA [Hererro, ISCA’10]

 26% over R-NUCA [Hardavellas, ISCA’09]

 18% over page placement by Awasthi et al. [Awasthi HPCA’09]

 5% over Jigsaw [Beckmann, PACT’13]

Conclusion
31

 Semantic information from applications improves

performance of dynamic policies

 Coordinated data and task placement gives large

improvements in parallel applications

 Automated classification reduces programmer burden

THANKS FOR YOUR ATTENTION!

QUESTIONS ARE WELCOME!

32

WhirlTool code available at http://bit.ly/WhirlTool

