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WHIRLPOOL!

IMPROVING DYNAMIC CACHE MANAGEMENT

WITH STATIC DATA CLASSIFICATION



Processors are limited by data movement

 Data movement often consumes >50% of time & energy

 E.g., FP multiply-add: 20 pJ  DRAM access: 20,000 pJ

 To scale performance, must keep data near where its used

 But how do programs use memory?

Cache banks

Good: nearby cache banks

Bad: faraway cache banks

Terrible: DRAM access



Static policies have limitations
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Program Code

Fixed policy

Exploits program semantics

Binary

E.g., scratchpads, bypass hints

Can’t adapt to application 

phases, input-dependent 

behavior, or shared systems

Static analysis  

or profiling



Dynamic policies have limitations, too
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Binary

Dynamic policy

Responsive to actual 

application behavior

E.g., data migration & replication
Difficult to recover program 

semantics from loads/stores

 Expensive mechanisms

(eg, extra data movement & 

directories)

Observe 

loads/stores



Combining static and dynamic is best
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Program Code

Binary

Static analysis  

or profiling

Observe 

loads/stores

Pool 

A

Pool 

B

Pool

C

Pool

D

Policy 

A

Policy 

B

Policy 

C

Policy 

D

Exploits program 

semantics at low overhead

Responsive to actual 

application behavior
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System configuration
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Core

L1i L1d

Private L2

Non-uniform cache access (NUCA):

Cache banks have different access latencies



 We apply Whirlpool to Jigsaw [Beckmann PACT’13],

a state-of-the-art NUCA cache

 Allocates virtual caches, collections of parts of cache banks

 Significantly outperforms prior D-NUCA schemes

Baseline dynamic NUCA scheme
8

Reduce cache misses

Reduce on-chip 

network traversals

Simple mechanisms



Dynamic policies can reduce data movement
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Jigsaw
[Beckmann, PACT’13]

Dynamic policy performs somewhat better: 

Static NUCA

4% better performance

12% lower energy

App: Delaunay 

triangulation



Static analysis can help!
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Jigsaw with Static Classification
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Jigsaw
[Beckmann, PACT’13]

Whirlpool!

Vs Jigsaw:

19% better performance

42% lower energy

Few data structures accessed 

more frequently than others
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Whirlpool – Manual classification

Organize application data into memory pools

int poolPoints = pool_create();

Point* points = pool_malloc(sizeof(Point)*n, poolPoints);

int poolTris = pool_create();

Tri* smallTris = pool_malloc(sizeof(Tri)*m, poolTris);

Tri* largeTris = pool_malloc(sizeof(Tri)*M, poolTris);

Insight: Group semantically similar data into a pool

Points, Triangles

13



Minor changes to programs
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Application Pools LOC 

Delaunay triangulation 3 11

Maximal matching 3 13

Delaunay refinement 3 8

Maximal independent set 3 13

Minimal spanning forest 3 11

401.bzip2 4 43

470.lbm 2 21

429.mcf 2 14

436.cactusADM 2 53

SPECCPU

2006

PBBS



Whirlpool on NUCA placement
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 Use pools to improve Jigsaw’s decisions

 Each pool is allocated to a virtual cache

 Jigsaw transparently places pools in NUCA banks

 Whirlpool requires no changes to core Jigsaw

 Increase size of structures (few KBs)

 Minor improvements, e.g. bypassing (see paper)

 Pools useful elsewhere, eg to dynamic prefetching



Significant improvements on some apps
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38

Up to 38% better performance Up to 53% lower energy

Performance Energy
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Conventional runtimes can harm locality
18

Optimize load 

balance, not locality



Whirlpool co-locates tasks and data
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 Break input into pools

 Application indicates task affinity

 Schedule + steal tasks from nearby their data

 Dynamically adapt data placement

 Requires minimal changes to task-parallel runtimes

Input



Whirlpool improves locality
20



Whirlpool adapts schedule dynamically
21

 Data placement implicitly schedules tasks



Significant improvements at 16 cores
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Up to 67% better performance Up to 2.6x lower energy

Applications
Divide and conquer algorithms: Mergesort, FFT

Graph analytics: PageRank, Triangle Counting, Connected Components

Graphics: Delaunay Triangulation

Caveat: Splitting data into 

pools can be expensive!
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WhirlTool – Automated classification
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 Modifying program code is not always practical

 A profile-guided tool can automatically classify data into 

pools

WhirlTool

Profiler

WhirlTool

Analyzer

Per-callpoint

miss curves

Callpoint-to-

pool map

Application

WhirlTool 

runtime

Whirlpool

Allocator

malloc()

pool_malloc()



WhirlTool profiles miss curves
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Periodically records 

per-callpoint

miss curves

Application

A B C ….
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WhirlTool analyzes curves to find pools
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 Hardware can only support a limited number of pools

 Jigsaw uses 3 virtual caches / thread

 0.6% area overhead over LLC

 Whirlpool adds 4 pools (each mapped to a virtual cache)

 1.2% total area overhead over LLC

 Must cluster callpoints into semantically similar groups

Per-callpoint 

miss curves

Agglomerative 

clustering

Callpoint-to-pool 

mapping



Example of agglomerative clustering
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WhirlTool’s distance metric
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Cache Size
M
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se

s

Small distance

Cache Size
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Pool 1

Pool 2

Separated

Combined

Pool 3 

How many misses are saved by separating pools?



WhirlTool matches manual hints
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WhirlTool
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WhirlTool

Manual



Multiprogram mixes
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 4-core system with random SPECCPU2006 apps

 Including those that do not benefit

 Whirlpool improves performance by (gmean over 20 mixes)

 35% over S-NUCA

 30% over idealized shared-private D-NUCA [Hererro, ISCA’10]

 26% over R-NUCA [Hardavellas, ISCA’09]

 18% over page placement by Awasthi et al. [Awasthi HPCA’09]

 5% over Jigsaw [Beckmann, PACT’13]



Conclusion
31

 Semantic information from applications improves 

performance of dynamic policies

 Coordinated data and task placement gives large 

improvements in parallel applications

 Automated classification reduces programmer burden



THANKS FOR YOUR ATTENTION!

QUESTIONS ARE WELCOME!
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WhirlTool code available at http://bit.ly/WhirlTool


