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Abstract—Graph processing is increasingly bottlenecked by
main memory accesses. On-chip caches are of little help because
the irregular structure of graphs causes seemingly random mem-
ory references. However, most real-world graphs offer significant
potential locality—it is just hard to predict ahead of time. In
practice, graphs have well-connected regions where relatively
few vertices share edges with many common neighbors. If these
vertices were processed together, graph processing would enjoy
significant data reuse. Hence, a graph’s traversal schedule largely
determines its locality.

This paper explores online traversal scheduling strategies that
exploit the community structure of real-world graphs to im-
prove locality. Software graph processing frameworks use simple,
locality-oblivious scheduling because, on general-purpose cores,
the benefits of locality-aware scheduling are outweighed by its
overheads. Software frameworks rely on offline preprocessing to
improve locality. Unfortunately, preprocessing is so expensive that
its costs often negate any benefits from improved locality. Recent
graph processing accelerators have inherited this design. Our
insight is that this misses an opportunity: Hardware acceleration
allows for more sophisticated, online locality-aware scheduling
than can be realized in software, letting systems significantly
improve locality without any preprocessing.

To exploit this insight, we present bounded depth-first schedul-
ing (BDFS), a simple online locality-aware scheduling strategy.
BDEFS restricts each core to explore one small, connected region
of the graph at a time, improving locality on graphs with
good community structure. We then present HATS, a hardware-
accelerated traversal scheduler that adds just 0.4% area and
0.2% power over general-purpose cores.

We evaluate BDFS and HATS on several algorithms using
large real-world graphs. On a simulated 16-core system, BDFS
reduces main memory accesses by up to 2.4x and by 30%
on average. However, BDFS is too expensive in software and
degrades performance by 21% on average. HATS eliminates
these overheads, allowing BDFS to improve performance by
83% on average (up to 3.1x) over a locality-oblivious software
implementation and by 31% on average (up to 2.1x) over
specialized prefetchers.

Index Terms—graph analytics, multicore, caches, locality,
scheduling, prefetching.

I. INTRODUCTION

Graph analytics is an increasingly important workload
domain. While graph algorithms are diverse, most have a
common characteristic: they are dominated by expensive
main memory accesses. Three factors conspire to make graph
algorithms memory-bound. First, these algorithms have low
compute-to-communication ratio, as they execute very few
instructions (usually few 10s) for each vertex or edge they

process. Second, they suffer from poor temporal locality, as
the irregular structure of graphs results in seemingly random
accesses that are hard to predict ahead of time. Third, they
suffer from poor spatial locality, as they perform many sparse
accesses to small (e.g., 4- or 8-byte) objects.

The conventional wisdom has been that graph algorithms
have essentially random accesses [26, 31]. This misconception
partially stems from limited evaluations that use synthetic,
randomly generated graphs. However, a more detailed analysis
reveals that many real-world graphs have abundant structure.
Specifically, they have strong community structure correspond-
ing to communities that exist in some meaningful sense in
the real world [29]. Many real-world graphs are also scale-
free, i.e., they have skewed degree distributions where a small
subset of vertices are much more popular, and hence accessed
more frequently, than others [6]. Graph algorithms thus offer
significant potential locality [7], though it is irregular and
difficult to predict.

This locality can be exploited by controlling the traversal
schedule, i.e., the order in which vertices and edges of
the graph are processed. Current software graph processing
frameworks cannot exploit this insight at runtime because
online traversal scheduling is simply too expensive. When only
a few instructions are executed per edge, even trivial traver-
sal scheduling adds prohibitive overheads. Instead, software
frameworks process vertices in the order they are laid out in
memory [48, 52], a strategy we call vertex-ordered scheduling.
Vertex-ordered scheduling is sensible on systems with general-
purpose cores, but it forgoes significant locality. To recover this
locality, current frameworks can use offline preprocessing that
changes the graph layout to improve the locality of subsequent
vertex-ordered traversals [22, 55, 59, 62, 64]. Unfortunately,
preprocessing is itself very expensive, and thus only makes
sense on graphs that change infrequently, ruling out many
important applications [33, 39].

The key idea of this paper is that hardware acceleration en-
ables more sophisticated, online traversal scheduling, allowing
systems to improve locality without expensive preprocessing.
We propose HATS, which introduces a simple, specialized
scheduling unit near each core that runs ahead and chooses
which edges to traverse. Prior graph accelerators for FPGAs [15,
42, 43] and ASICs [2, 22, 40, 44] include specialized scheduling
logic, but they all implement the simple, locality-oblivious
vertex-ordered scheduling. HATS is the first design that exploits
hardware acceleration to improve traversal scheduling itself.
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HATS improve performance by
1.8x and 2.7 x for PageRank Delta
on uk-2002.

memory accesses by 1.8x
for PageRank Delta on
uk-2002.

Specifically, we propose bounded depth-first scheduling
(BDFS). In BDFS, each core explores the graph in a depth-
first fashion up to a given maximum depth. This restricts each
core to explore a small, well-connected region of the graph
at a time, improving temporal locality on graphs with good
community structure. Prior work [1, 13] has observed that DFS
is a good technique to exploit locality and has exploited it
in offline graph preprocessing [5, 59, 61]. BDFS is the first
to exploit DFS for online locality-aware scheduling. HATS
implements BDFS with simple hardware similar to previous
indirect prefetchers [58]. Unlike these prefetchers, which only
hide latency, BDFS changes the traversal to improve locality
and thus reduces both latency and bandwidth.

Fig. 1 illustrates the benefits of BDFS for the PageRank
Delta algorithm [35] on the uk-2602 web graph [16]. BDFS
reduces memory accesses by 1.8x over the vertex-ordered
schedule (VO). Prior prefetchers and graph accelerators do
not reduce memory accesses, since they use the same vertex-
ordered schedule as software frameworks.

Fig. 2 shows the execution time of PageRank Delta on
uk-2002. In software, BDFS does not improve performance
because its overheads outweigh its locality benefits. But
hardware acceleration reverses this situation. HATS improves
VO’s performance by 1.8x (VO-HATS) due to accurate
prefetching that hides memory latency. But prefetching saturates
memory bandwidth, so improving performance further requires
reducing memory accesses. BDFS achieves this and BDFS-
HATS outperforms VO-HATS by 1.5x and VO by 2.7x.

We have prototyped BDFS-HATS in RTL and evaluated
it using detailed microarchitectural simulation. We consider
two system configurations: one where HATS engines are
implemented in hardware and another where they use on-chip
reconfigurable logic (similar to the Xilinx Zynq SoC, but with
high-performance cores). BDFS-HATS is easy to implement
and requires just 0.14mm? and 72mW at 65nm (or 3.2K
FPGA LUTs). This translates to 0.4% area and 0.2% power
overhead over a general-purpose core. We evaluate HATS on
five important graph algorithms, processing real-world graphs
whose working sets are much larger than the on-chip cache
capacity. On a 16-core system, BDFS-HATS reduces main
memory accesses by up to 2.4x and by 30% on average, and
improves performance by up to 3.1x and by 83% on average.
HATS thus gives a practical way to improve the locality of
graph processing.

II. BACKGROUND AND MOTIVATION

A. Current graph processing frameworks

Software graph processing frameworks [21, 41, 48, 52, 63]
provide a simple interface that lets application programmers
specify algorithm-specific logic to perform operations on
graph vertices and edges. The runtime is then responsible
for scheduling and performing these operations. The runtime
tracks which vertices are active in each iteration and performs
algorithm-specific operations on them until there are no more
active vertices or a termination condition (e.g., number of
iterations) is reached. We assume a Bulk Synchronous Parallel
(BSP) [54] model, where updates to algorithm-specific data
are made visible only at the end of each iteration.

Many graph algorithms are unordered and the runtime has

complete freedom on how to schedule the processing of active
edges in each iteration. Such scheduling does not affect the
correctness of the algorithm, but has a large impact on locality.
Before analyzing the locality tradeoffs of scheduling, we first
describe these frameworks in more detail.
Graph format: Most graph processing frameworks use the
compressed sparse row (CSR) format, or its variations, for
its simplicity and space efficiency [21, 41, 48, 52, 63]. As
Fig. 3 shows, CSR uses two arrays, offset and neighbor,
to store the graph structure. For each vertex id, the offset
array stores where its neighbors begin in the neighbor array.
Hence, each vertex v has edges to each neighbor(i] for i =
offset[v] — offset[v+ 1]. The neighbor array stores the
vertex id of each neighbor, so it has as many entries as edges in
the graph. For weighted graphs, the neighbor array also stores
the weight of each edge. Algorithm-specific data is stored in
a separate vertex data array. For example, in PageRank,
vertex data stores the score of each vertex.

Graph algorithms can perform pull- or push-based traversals.
In pull-based traversals, the CSR format encodes the incoming
edges of each vertex, as Fig. 3 shows, and each processed vertex
(the destination vertex) pulls updates from its in-neighbors
(sources). In push-based traversals, the CSR format encodes
the outgoing edges of each vertex, and each processed vertex
(source) pushes updates to its out-neighbors (destinations).

Offset k_@ Pull-
array based
. \\ @_\:. graph
Neighbor n n
array () Push-
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Fig. 3: Compressed sparse row (CSR) format. The offset array
stores, for each vertex, the starting location of its neighbors’
vertex ids in the neighbor array. The vertex data array stores
algorithm-specific data.

Vertex-ordered scheduling: State-of-the-art graph processing
frameworks [41, 48, 52, 63] follow a vertex-ordered schedule
(VO), a simple technique that achieves spatial locality in
accesses to edges but suffers from poor temporal and spatial
locality on accesses to neighbor vertices.



The vertex-ordered schedule simply processes the active
vertices in order of vertex id, and processes all the edges of
each vertex consecutively, as specified by the graph layout.
Processing an edge usually involves accessing the vertex -
data of both the current and neighbor vertices. Listing 1 shows
pseudocode for a single iteration of PageRank following the
vertex-ordered schedule. We show the pull version, where
destination vertices pull updates from their in-neighbors.

def PageRank(Graph G):
for dst in range(G.numVertices):
for src in G.neighbors(dst):
G.vertex_data[dst].newScore +=
G.vertex_data[src].oldScore /
G.vertex_data[src].degree

AN AW —

Listing 1: PageRank using the vertex-ordered schedule.

When the in-memory graph layout (i.e., offset and
neighbor arrays) does not correlate with the graph’s com-
munity structure, the vertex-ordered schedule suffers from poor
temporal locality. Consider the example graph shown in Fig. 4.
The graph has two well-
connected regions that are
weakly connected to each
other. To maximize temporal
locality, all the vertices and
edges in one region should
be processed before moving
to the next. But if the vertices
of the two regions are inter-
leaved in the graph layout as
in Fig. 4, the vertex-ordered
schedule alternates between
regions, yielding poor tempo-
ral locality.
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Fig. 4: The vertex-ordered sched-
ule ignores graph structure and
alternates between the two com-
munities.

Preprocessing improves locality but is expensive: Prior
work has proposed several graph preprocessing techniques
to improve locality [22, 43, 52, 55, 59, 61, 62, 64]. These
techniques change the order in which vertices are stored so
that closely connected communities are stored near each other
in memory. This improves the temporal and spatial locality of
the vertex-ordered schedule: it improves temporal locality by
placing a vertex’s neighbors close together, so accesses from
those neighbors to the vertex happen nearby in time; and it
improves spatial locality by placing related vertices in the same
cache line.

For example, for the graph in Fig. 4, preprocessing would
analyze the graph structure, identify the two regions and modify
the layout to place the vertices in the first region before those
in the second. When the vertex-ordered schedule is used with
the modified layout, it closely follows the community structure,
fully processing the first region before moving to the second.

Although preprocessing improves locality, it is very expen-
sive. Rewriting the graph requires several passes over the full
edge list. As a result, preprocessing often takes longer than the
graph algorithm itself, making it impractical for many important
use cases [33, 39]. Preprocessing costs can be amortized if the

same graph is reused many times, but in many applications the
graph changes over time or is produced by another algorithm,
and is used once or at most a few times [34].

Fig. 5 illustrates this for one iteration of the PageRank
algorithm on the uk-2002 graph [16]. We compare (/) The
vertex-ordered (VO) schedule (2) Slicing [22], a relatively
cheap preprocessing technique that ignores graph structure,
and (3) GOrder [55], an expensive preprocessing technique
that heavily exploits graph structure. Because GOrder takes
too long to simulate, we measure its preprocessing overhead
on an Intel Xeon E5-2658 v3 (Haswell) processor running at
2.2 GHz with a 30MB LLC.

Execution time

Slicing GOrder

VO  Slicing GOrder ~ Vo

(a) Main memory accesses. (b) Execution time.

Fig. 5: Memory accesses and execution time for one PageRank
iteration on uk-2002 with various preprocessing schemes.

Although both Slicing and GOrder reduce memory accesses
significantly and improve PageRank’s runtime over the vertex-
ordered schedule, they incur significant preprocessing time.
When including preprocessing time, these techniques are
beneficial only when the algorithm converges in more than 10
and 5440 iterations, respectively.

Several preprocessing techniques exploit the locality benefits
of depth-first search (DFS) and breadth-first search (BFS)
traversals [5, 14, 59, 61]. Children-DFS [5, 55] partitions
the graph by using a variant of DFS that seeks to group the
neighbors of each vertex. PathGraph [59] partitions the graph
by performing local breadth-first traversals while limiting the
partition sizes and relabels the vertices in each partition in DFS
order. FBSGraph [61] is a distributed framework that uses path-
centric partitioning and scheduling to improve convergence rate
of asynchronous graph algorithms. It leverages the necessary
graph partitioning pass and only improves temporal locality of
vertex data since it does not change the graph layout.

Unlike these techniques, BDFS improves temporal locality
without preprocessing. However, because BDFS does not
change the graph’s layout, it does not improve spatial locality.
Online heuristics to improve locality: Motivated by the high
costs of preprocessing, prior work has explored alternative,
cheaper runtime techniques to improve locality. Milk [26] and
Propagation Blocking [8] translate irregular indirect memory
references into batches of efficient sequential DRAM accesses.
These techniques are a spatial locality optimization, and only
benefit algorithms with small vertex objects. By contrast, BDFS
exploits the graph’s community structure to improve temporal
locality and benefits algorithms with large or small vertex
objects. While these techniques are effective with unstructured
(i.e., random) graphs, they forgo significant temporal locality
for graphs with good community structure.



B. Prior hardware techniques to accelerate graph processing

Indirect prefetching: Conventional stream or strided prefetch-
ers do not capture the indirect memory access patterns of
graph algorithms. IMP [58] is a hardware prefetcher that
dynamically identifies and prefetches indirect memory access
patterns, without requiring any application-specific information.
Similarly, Ainsworth and Jones [3] propose a specialized
prefetcher that uses information about an application’s data
structures to prefetch indirect memory accesses.

These prefetchers all assume a vertex-ordered schedule and

improve performance by hiding memory access latency. They
easily saturate memory bandwidth and become bandwidth-
bound. By contrast, BDFS changes the traversal schedule to
reduce bandwidth demand, allowing it to outperform perfect
prefetching of a vertex-ordered schedule. HATS fetches graph
data ahead of the core, but this is more similar to how
graph accelerators non-speculatively fetch data than to indirect
prefetchers like IMP, which predict the access pattern outside
the core to issue speculative prefetches.
Graph accelerators: Recent work has proposed specialized
graph-processing accelerators for both FPGAs [15, 42, 43] and
ASICs [2, 22, 40, 44, 50, 60]. While these accelerators introduce
specialized scheduling logic, they implement the same vertex-
ordered schedule used by software algorithms and likewise rely
on expensive preprocessing to improve locality [22, 43, 50, 60].
The premise of our paper is that this misses an opportunity:
specialization enables online locality-aware schedules that
achieve most of the benefits of preprocessing without its
overheads.

Beyond scheduling, these accelerators use both compute and

memory system specialization to achieve large performance
and energy efficiency gains. Our paper complements this prior
work by using locality-aware scheduling to make better use
of limited on-chip cache capacity. Although we describe our
techniques in the context of a general-purpose system, we
expect it to be more beneficial on accelerators that are even
more bottlenecked on memory accesses.
Decoupled access-execute: HATS takes inspiration from
decoupled access-execute (DAE) architectures [49], where an
access core performs all memory operations and an execute
core performs all compute operations. Access and execute cores
communicate through queues, allowing the access core to run
ahead.

In some aspects, HATS is similar to an access core: it is
decoupled from the main core through a queue, and runs ahead
of it, exposing abundant memory-level parallelism. However,
HATS is specialized to graph traversals, making it much
cheaper and faster than a programmable access core. And
unlike DAE, the main core still performs memory accesses
instead of communicating them to HATS. This lets HATS
focus on handling the traversal of the graph. Also, unlike in
conventional DAE, communication between HATS and the
main core is one-sided, letting HATS run far ahead of the
core and avoiding the performance bottlenecks of DAE, where
two-way communication often caused loss of decoupling [53].

III. IMPROVING LOCALITY WITH BDFS

Our goal is to achieve most of the benefits of preprocessing
while avoiding its overheads. We improve temporal locality by
scheduling edges at runtime to match the graph’s community
structure, without modifying the graph layout. This section
describes our basic technique, BDFS, and the next describes
our hardware implementation of this technique, HATS.

BDFS traverses the graph by performing a series of bounded
depth-first searches, each of which visits a region of connected
vertices. Bounded depth-first search is used in several contexts,
such as iterative deepening [27] and search and optimization
techniques [9, 51]. Moreover, as described in Sec. II-A, several
preprocessing algorithms leverage DFS to improve locality [5,
59, 61]. However, to the best of our knowledge, we are the
first to use BDFS for online locality-aware scheduling of graph
traversals.

We first describe a sequential implementation of BDFS,
analyze its locality, and then discuss its parallel implementation.

A. BDFS algorithm

Listing 2 shows the pseudocode for PageRank using a
recursive implementation of BDFS. BDFS uses an active
bitvector to track the vertices that are not yet processed.
Listing 2 shows a version of PageRank where all the vertices
are active in each iteration [45], so the bitvector is initialized
to all ones.! BDFS starts processing at the first vertex (id
0). Thereafter, it chooses the next vertex to process from the
neighbors of the current vertex, ignoring inactive vertices. This
exploration proceeds in a depth-first fashion, always staying
within maxDepth levels away from the root vertex. Once the
exploration from a root vertex is finished, BDFS scans the
active bitvector to find the next unvisited vertex. This repeats
until all vertices are visited.

I There are more efficient versions that do not process all vertices on each
iteration. We later evaluate PageRank Delta, which performs this optimization.

1 def PageRank(Graph G):

2 iterator = BDFS(G)

3 while iterator.hasNext():

4 (src, dst) = iterator.next()

5 G.vertex_data[dst].newScore +=

6 G.vertex_data[src].oldScore /
7 G.vertex_data[src].degree
8

9 def BDFS::next():

10 active = BitVector(G.numVertices)

11 active.setAll ()

12 for root in range(G.numVertices):

13 if active[root]:

14 active[root] = False

15 BDFS::explore(root, 0)

16

17 def BDFS::explore(int dst, int curDepth):
18 for src in G.neighbors(dst):

19 yield (src, dst)

20 if curDepth < maxDepth:

21 if active[src]:

22 active[src] = False

23 BDFS::explore(src, curDepth+1)

Listing 2: PageRank implementation using BDFS. yield()
returns a value to the caller, but resumes at that point when
the callee is next invoked.




Fig. 6 shows the order in
which BDFS processes ver-
tices in the example graph
using maxDepth of 10. (This
is a pull-based traversal so
BDFS traverses incoming
edges, e.g., from vertex O to
4.) Unlike the vertex-ordered
schedule, BDFS tends to pro-
cess close-knit regions to-
gether. BDFS improves tem-
poral locality of accesses to
vertex data for two reasons. First, neighbors of a given
vertex are more likely to share neighbors, so processing them
together naturally exploits the community structure of real-
world graphs. Second, since processing an edge involves
accessing the vertex data of both the currently processed
vertex and its neighbor, processing one of the neighbor vertices
next results in at least one access to already cached data.
Scheduling overheads: The main scheduling structures in
BDEFS are a LIFO stack and the active bitvector. BDFS
requires only a small stack, which causes near-zero main
memory accesses. Although the bitvector gets irregular accesses,
it is much smaller than vertex data. For example, in
PageRank the bitvector is 128x smaller than vertex data,
which stores 16 B per vertex.

The real overheads of BDFS are not extra memory ac-
cesses, but the scheduling logic in Listing 2 to find the
next vertex. Although BDFS has linear-time complexity
(O(#Edges +#Vertices)), since most graph algorithms execute
few instructions per edge, it is relatively expensive in software:
BDFS not only executes 2-3x more instructions than VO, but
these extra instructions have data-dependent branches that limit
instruction-level parallelism. These overheads outweigh the
locality improvements of BDFS, motivating HATS.

Vertex with Id =1
[Legend ° T Processed at Time=T ]

Fig. 6: BDFS improves temporal
locality by processing neighbors
together and vertices within a
community close in time.

B. Analysis of access patterns

Fig. 7 compares the memory access patterns of the vertex-
ordered (VO) schedule (Listing 1) and BDFS (Listing 2). We
show accesses to the neighbor and vertex data arrays.

VO processes vertices and their edges sequentially, which
results in good spatial locality on the offset and neighbor
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Fig. 7: Memory access patterns with the vertex-ordered schedule
(top) and BDFS (bottom).

arrays, and in vertex data accesses for the currently pro-
cessed vertex. While the neighbor array is often the largest
data structure in the graph, each cache line has many elements
(typically 16), which amortizes their fetches well.

However, VO suffers from poor R — L
: : Offsets
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Fig. 7 shows that BDFS im-
proves temporal locality in neigh-
bor vertex data accesses by pro-
cessing communities together. How-
ever, it reduces spatial locality in
offset and neighbor array accesses. In BDFS, the first
access to a vertex’s slice of the neighbor array often misses.
Fortunately, accesses to the remaining neighbors enjoy the same
spatial locality as VO. Fig. 8 shows this is a good tradeoff:
neighbor vertex data misses are almost 5x lower, and while
offset and neighbor misses increase, BDFS reduces memory
accesses by 2.2x.

Fig. 8: Breakdown of
memory accesses to dif-
ferent data structures for
PageRank on the uk-2002
graph.

C. BDFS does not require tuning the maximum depth

Alternative search strategies: An alternative to BDFS is
bounded breadth-first scheduling (BBFS). BDFS outperforms
BBFS and is also cheaper to implement. DFS has better locality
than BFS [1, 5, 13], and DFS works well with a small stack
while BFS requires a large FIFO queue (up to the entire graph).
Fig. 9 illustrates this for PageRank. It shows the memory
accesses of BDFS and BBFS as the fringe (BDFS stack or
BBFS queue) grows. Memory accesses are normalized to the
vertex-ordered schedule. BDFS outperforms BBFS at all fringe
sizes and achieves near-peak performance with a 10-element
fringe, whereas BBFS needs about a 100-element fringe to be
effective. All the graphs we evaluate show similar trends.
BDFS is insensitive to stack depth: Fig. 9 shows that BDFS’s
performance is flat after a stack depth of 5-10. Smaller fringes
cause more misses because they traverse smaller communities

BDFS BBFS BDFS BBFS
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Fig. 9: Memory accesses of PageRank on the uk-2002 graph with
BDFS and bounded BFS (BBFS) at different fringe sizes. BDFS
reduces memory accesses with much less storage than BBFS.



that use only a fraction of the cache. For example, with an
average degree of 4 neighbors/vertex, a depth of 4 traverses
only about 4% =256 vertices, whereas a depth of 10 traverses
about 419 = 1 M vertices.

However, the converse is not true: deeper stacks do not add
misses even if they result in huge traversals with many more
vertices than the cache can hold. This stems from DFS’s divide-
and-conquer nature [18]. Suppose that, for a given graph, a
stack of depth D yields the largest communities that fit on
cache. Suppose we instead use depth D+ 1. If the root node
has N neighbors, this is equivalent to performing N depth-D
traversals in sequence, each of which fits in cache. By induction,
BDFS does not overwhelm the cache with a deeper stack.

This observation yields two nice properties. First, BDFS
needs no tuning. Rather than analyzing the graph and figuring
out the right stack depth, we simply use a fixed depth in
hardware that is large enough to yield large traversals even
with small degrees. Second, BDFS should yield good locality
at different cache levels, regardless of their size.

D. Parallel BDFS

We parallelize BDFS by evenly dividing the active bitvec-
tor across threads. Each thread then begins independent BDFS
traversals through its chunk of the vertices, as in Listing 2.
The only change is that operations on the active bitvector are
done atomically (e.g., test-and-clear) to avoid repeating work.
Finally, we use work-stealing [11] to avoid load imbalance:
when a thread finishes its chunk it tries to steal half of another
thread’s remaining vertices.

We tried a number of more sophisticated parallelization
strategies that seek to keep all threads exploring within the
same community of the graph. We found that, on most graphs,
these added synchronization overheads without providing much
benefit over our simple work-stealing approach.

IV. HATS: HARDWARE-ACCELERATED
TRAVERSAL SCHEDULING

BDEFS effectively reduces cache misses, but when imple-
mented in software, its overheads negate the benefits of its
higher locality. To address this problem, we present hardware-
accelerated traversal scheduling (HATS). HATS is a simple,
specialized engine that performs traversal scheduling. HATS
enables sophisticated scheduling strategies like BDFS.
System architecture: Fig. 10 shows the system architecture we
use in this paper. Each core is augmented with a HATS engine,
which it configures to perform the traversal (e.g., passing in the
addresses of CSR structures). Each HATS engine runs ahead
of its core and communicates edges to the core through a FIFO
buffer. Our design effectively offloads the traversal scheduling
portion of the graph algorithm to the HATS engines, and uses
cores exclusively for edge and vertex processing. For example,
in Listing 2, the core executes the per-edge operations inside
the PageRank () function, while the HATS engine executes
everything else.

We propose and evaluate HATS on general-purpose pro-
cessors, where HATS is implemented as either fixed-function

\ Main Memory \ \
\ Shared L3

FIFO
Buffer

Fig. 10: System architecture. Each core has a HATS engine that
traverses the graph and sends edges to process to the core.

hardware or using on-chip reconfigurable logic. We focus on
general-purpose processors for two reasons. First, traversal
scheduling is needed by all graph algorithms, so it is natural
to specialize this common part and leave algorithm-specific
edge and vertex processing to programmable cores. Second,
specialized traversal schedulers impose negligible system-wide
overheads, similar in cost to prior indirect prefetchers. And
unlike prefetchers, HATS reduces both memory latency and
bandwidth (Sec. II-B). HATS thus adds a small dose of
specialization to get a large performance boost for an important
application domain, without sacrificing the programmability
and low entry cost of general-purpose processors.

That said, HATS can be applied to other system architectures,

e.g., by replacing the general-purpose cores with an algorithm-
specific accelerator.
Generality: HATS supports both push- and pull-based traver-
sals, and all-active and non-all-active algorithms. This lets
HATS accelerate the vast majority of graph processing
algorithms—the full spectrum of what state-of-the-art frame-
works like Ligra support.

HATS assumes a CSR graph format, which is by far the most
commonly used one [21, 41, 48, 63]. With small additions,
HATS could support other CSR variants (e.g., DCSR [12]).
Moreover, the reconfigurable logic implementation of HATS
would allow supporting other graph formats with no overheads.

In the remainder of this section, we explain the HATS
interface and operation in detail, which is common to all
HATS variants. We then describe HATS implementations of
VO and BDFS traversals, and compare the area and power
overheads of the ASIC and FPGA implementations of HATS.

A. HATS interface and operation

HATS only accelerates traversal scheduling and leaves all
other responsibilities to cores, including initialization, edge
and vertex processing, and load balancing.

Operation: Regardless of the traversal scheduling strategy
implemented by HATS (VO or BDFS), each traversal (e.g.,
one iteration of PageRank) proceeds in the following steps:

1. Initialization: Software first initializes all the required data
structures, including all graph data and, if needed, the active
bitvector, which specifies the set of vertices to visit. The need
for this bitvector depends on the graph algorithm and traversal
schedule: VO-HATS (Sec. IV-B) uses an active bitvector only
for algorithms where not all vertices are active each iteration
(e.g., BFS), while BDFS-HATS (Sec. IV-C) always uses an
active bitvector to avoid processing vertices multiple times.



2. HATS configuration: Each thread then configures its own
HATS unit by conveying the following information:

1) The base addresses and sizes of graph data struc-
tures: offset, neighbor, and vertex data arrays, and
active bitvector.

2) The type of traversal (push or pull).

3) The chunk of vertices that the HATS is responsible for
(start and end vertex ids).

This configuration data is written using memory-mapped

registers (e.g., like a DMA engine is configured). After the

core writes this configuration, HATS starts the traversal.

3. Processing: During traversals, HATS reads the offset and

neighbor arrays, as well as the active bitvector, if used. For

BDFS, HATS also performs updates to the active bitvector.

Finally, it prefetches vertex data.

As HATS finds unvisited active vertices, it fills its FIFO

buffer with edges (source and destination vertex ids) for the core
to process. The core uses a fetch edge instruction to fetch
edges from the buffer (this is the only new instruction).
fetch edge returns the source and destination ids in registers.
Software takes two extra instructions to translate these ids to
vertex data addresses. If HATS has finished traversing its
assigned chunk of vertices, fetch edge returns (—1,—1). If
the FIFO is empty, fetch edge stalls the core. If it fills up,
HATS’s traversal stalls.
HATS is transparent to applications: We expose the above
functionality to the software graph processing framework
through a simple low-level API consisting of two methods:
hats configure(...) performs the configuration step and
hats fetch edge() translates to a fetch edge instruc-
tion. Graph algorithms need not deal with this API: we code
all our algorithms to a highly optimized, Ligra-like graph
processing framework (Sec. V-A). Only the framework needs
to be modified to use HATS—application code is unchanged.
Parallelism and load-balancing: Parallel operation is similar
to the software BDFS implementation (Sec. III-D): vertices are
divided into as many chunks as threads, and each HATS engine
is responsible for scanning a separate chunk. We perform load-
balancing using work-stealing: if a HATS engine finishes its
chunk early, its thread interrupts a randomly chosen thread,
which donates half of the remaining chunk in its HATS engine.
We use the same termination algorithm as Cilk [19].
Handling preemption: Because HATS does work on behalf of
the thread, some of its state is architecturally visible and must
be considered on preemption events. If the OS deschedules a
thread, it quiesces the HATS engine and saves this architectural
state (which includes the remainder of the chunk and base
addresses of all data structures). When the thread is rescheduled,
its core’s HATS is configured using this state. Note that this is
needed only when the thread is descheduled, not when taking
exceptions or system calls (similar to how FPU state is not
saved when entering into the kernel). It is thus a rare event.

Virtual memory: Finally, HATS operates on virtual addresses.

Like prior indirect prefetchers, HATS leverages the core’s ad-

dress-translation machinery [3, 58]. Unlike indirect prefetchers,

HATS does not monitor the core’s cache accesses. Since we
place HATS at the core’s L2, we use the L2 TLB.

HATS may cause a page fault, which is handled as in prior
indirect prefetchers: the core is interrupted and the OS page
fault handler invoked. The HATS engine stalls until the page
fault handler completes. Once the page fault handler finishes,
core and HATS engine resume normal execution.

B. VO-HATS implementation

We now describe the design of the HATS engine when using
the vertex-ordered schedule. We describe its operation assuming
a push-based traversal. Sec. IV-D discusses the changes needed
for pull-based traversals.
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Fig. 11: Microarchitecture of VO-HATS.

Our VO-HATS design uses a simple pipelined implementa-
tion, illustrated in Fig. 11. Each pipeline stage corresponds to
a particular step in the fetching of graph data:

1) Scan holds the current and last vertex ids of the HATS
chunk. For an all-active algorithm, Scan simply outputs
the current vertex id each cycle, and increments it. If the
algorithm is not all-active, Scan loads the active bitvector
line by line and outputs the ids of active vertices.

2) Fetch offsets takes a vertex id as input and outputs its start
and end offsets, which it loads from the offsets array.

3) Fetch neighbors takes the start and end offsets of a single
vertex as input and outputs its neighbor ids, which it loads
from the neighbors array. The vertex and its neighbor ids
are then queued in the FIFO buffer.

4) Prefetch issues prefetches for the vertex and its neighbors’
vertex data.

To allow enough memory-level parallelism, these stages are
decoupled using small FIFOs. In practice, we find that allowing
the Scan and Fetch neighbors stages to each request up to two
cache lines in parallel suffices to keep the FIFO full.

C. BDFS-HATS implementation

Our implementation of BDFS-HATS shares many common
elements with VO-HATS, but has additional logic to perform
data-dependent traversals. Fig. 12 shows its design. We first
explain its basic operation, and then the optimizations required
to achieve good performance.

Basic operation: The main component of the BDFS scheduler
is a fixed-depth stack. Each stack level stores the following
information about a single vertex: its vertex id, current and
end offsets, and a cache line worth of neighbor ids. These
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fields are populated as the vertex is processed. The stack is
provisioned for the maximum depth of BDFS exploration (10
levels in our implementation). As discussed in Sec. III-C, it
is not necessary to tune BDFS’s depth—we always use the
maximum depth.

Unlike VO, BDFS always uses an active bitvector, even
for all-active algorithms. HATS reads this bitvector to restrict
its exploration to active vertices, and updates it as it traverses
the graph, clearing the vertices it decides to explore.

The traversal begins with an empty stack. As in VO, the Scan
stage traverses the active bitvector and produces the next
active vertex id. This vertex is immediately marked as inactive.
Then the vertex serves as the root of a bounded-depth first
exploration: the vertex id is stored in the first level of the stack.
Its offsets are fetched, and, once known, they are used to fetch
the first cache line of neighbor vertex ids. These neighbors are
checked in the active bitvector, and those that are active are
marked inactive and stored, along with the vertex’s offsets, in
its stack entry.

The traversal continues in a depth-first fashion: the first
neighbor of the topmost element is used to populate the next
level of the stack as above, and so on until the stack is filled.

As the depth-first traversal proceeds, newly fetched neighbor
ids are used to produce edges, which are queued to the FIFO
buffer. Once the stack fills up, the neighbor ids of the last level
are fetched and used to produce edges, but are not traversed.
When all the neighbors at a given level have been traversed,
the level is cleared and the exploration continues at the next
neighbor of the previous level. When all of the root’s neighbors
have been explored, the current region has been fully explored,
and the Scan stage provides the next root vertex.

BDFS-HATS uses a finite state machine (FSM) to implement

this procedure, shown in Fig. 12. On each cycle, the FSM
decides on the next piece of data to fetch based on the current
state of the stack.
Exploiting intra-traversal parallelism: Unlike VO, BDFS
traversals experience more data dependences and thus more
serialization. Additional optimizations are needed to exploit the
parallelism within a single BDFS traversal in order to obtain
enough memory-level parallelism and saturate each core.

First, we move the active bitvector check-and-clear opera-
tions off the critical path and perform them in parallel. These
checks constitute a substantial fraction of the work in BDFS.

TABLE I: Area and power of VO-HATS and BDFS-HATS
implementations: ASIC (65nm) and FPGA (Zynq-7045).

HATS ASIC Area ASIC Power FPGA Area
Design  (mm?)  %core  (mW) %TDP (LUTs) %FPGA
VO 007  0.19% 37 0.11% 1725 0.79%
BDFS  0.14 038% 72 0.22% 3203 1.47%

Instead of checking whether a vertex should be visited eagerly,
we add all vertices to the neighbor list, issue pending bitvector
checks if there is nothing else to do, and mark them as active
or inactive as the responses arrive.

Second, all levels in the stack expand the first two active
neighbors in parallel, instead of only expanding the first one.
Each stack level has an additional entry, and when the topmost
element is populated, its first and second active neighbors are
used to populate the next level. This way, when the level’s
current vertex is completely explored, the data for the next
vertex is already available (and as soon as we switch to it, the
data for the following vertex starts being fetched). This greatly
reduces the critical path at the cost of some additional storage.

With these optimizations, we find that BDFS-HATS achieves
enough throughput to avoid stalling the core.

D. Extending HATS for pull-based traversals

We have so far described push-based traversal variants of
HATS. The above designs can be easily extended to perform
pull-based traversals. The key difference is when the active
bitvector checks happen. In a push-based traversal, the active
bitvector is checked to filter vertices before exploring their
neighbors. For example, VO-HATS does this in the Scan stage.
By contrast, a pull-based traversal fetches the neighbors of all
the vertices in the graph, then uses the bitvector to filter inactive
neighbors. Thus, adapting our VO-HATS design simply requires
performing the bitvector checks after the Fetch neighbors stage
instead of in the Scan stage. The BDFS design requires similar
changes. Our HATS prototypes support both push- and pull-
based traversals.

E. Hardware costs

ASIC implementation: We have written Verilog RTL for
both VO-HATS and BDFS-HATS engines and synthesized
them using a commercial 65 nm process. Both designs meet a
1.1 GHz target frequency. Table I shows their area and power
consumption under typical operating conditions. Area and
power are negligible when compared to those of a core in
the Intel Core 2 E6750, also manufactured in 65nm [17].
Table I shows that BDFS-HATS takes about 0.4% of core area
and 0.2% of core TDP. VO-HATS is even cheaper.

Prior indirect prefetchers do not allow for a direct area
and power comparison, but we can use their internal storage
requirements as a proxy. VO-HATS requires 2.5 Kbits of storage
for its internal FIFO buffers and BDFS-HATS requires 6.4 Kbits
for 10 stack levels. In addition, both designs use a 1 Kbit output
FIFO buffer. In comparison, IMP [58] requires 5.5 Kbits of
storage, so our HATS designs have about the same cost.
FPGA implementation: We also synthesized the HATS
designs on an FPGA platform. VO-HATS and BDFS-HATS



TABLE II: Configuration of the simulated system.

Cores 16 cores, x86-64 ISA, 2.2 GHz, Haswell-like OOO [47]
32 KB, per-core, 8-way set-associative, split D/I,
L1 caches 3-cycle latency
128 KB, private per-core, 8-way set-associative, 6-cycle
L2 cache latency
L3 h 32 MB, shared, 16-way hashed set-associative, inclusive,
cache 24-cycle bank latency, LRU replacement
Global 4x4 mesh, 128-bit flits and links, X-Y routing, 1-cycle
NoC pipelined routers, 1-cycle links
Coherence MESI, 64 B lines, in-cache directory, no silent drops
4 controllers, FR-FCFS, DDR4 1600 (12.8 GB/s per
Memory

controller)

require 1725 and 3203 LUTs respectively, as shown in Table I.
This is less than 2% of the total LUT count on a modest Xilinx
Zyng-7045 SoC [56] (state-of-the-art FPGAs have 10x more
LUTs [57]). Both designs meet a 220MHz target frequency,
5x slower than the ASIC implementation.

To ensure that the HATS engine can match the core’s
throughput at this frequency, we need more parallelism within
the engine. However, we do not need to replicate the entire
HATS pipeline to achieve this. We find that active bitvector
checks in the Filter neighbors stage become the bottleneck
when operating at a lower frequency. Thus, we only replicate the
bitvector check logic and perform multiple bitvector operations
in parallel (4 in our case). Sec. V-C shows that with this support,
even a 220MHz design can keep the core busy.

V. EVALUATION
A. Methodology

We now present our evaluation methodology, including the
simulated system, graph algorithms, and datasets we use.
Simulation infrastructure: We perform microarchitectural,
execution-driven simulation using zsim [47]. We have imple-
mented detailed cycle-driven models of our proposed VO and
BDFS HATS designs.

We simulate a 16-core system with parameters given in
Table II. The system uses out-of-order cores modeled after and
validated against Intel Haswell cores. Each core has private L1
and L2 caches, and all cores share a banked 32 MB last-level
cache. The system has four memory controllers, like Haswell-
EP systems [23]. We use McPAT [30] to derive the energy
numbers of chip components at 22 nm, and Micron DDR3L
datasheets [37] to compute main memory energy.
Algorithms: We use five graph algorithms from the widely
used Ligra [48] framework, as shown in Table III. These include
both all-active and non-all-active algorithms. All algorithms
use objects that are much smaller than a cache line (64 B).

PageRank computes the relative importance of vertices in a
graph, and was originally used to rank webpages [45]. PageR-
ank Delta is a variant of PageRank in which vertices are active
in an iteration only if they have accumulated enough change in
their PageRank score [35]. Connected Components divides a
graph’s vertices into disjoint subsets (or components) such that
there is no path between vertices belonging to different sub-
sets [13]. Radii Estimation estimates the radius of each vertex

by performing multiple
parallel BFS’s from a
small sample of ver-
tices [32]. Maximal In-
dependent Set finds a
maximal subset of ver-
tices such that no ver-
tices in the subset are
neighbors [10].

We obtain the source code for these algorithms from
Ligra [48]. We adapt the scheduling code to use the HATS
programming model, without modifying the per-algorithm code.
We also incorporate several optimizations in the scheduling
code like careful loop unrolling that yield significant speedups:
our implementations outperform Ligra by up to 2.5x.

Our approach lets us start with an optimized software base-
line, which is important since it affects the qualitative tradeoffs.
In particular, we find that well-optimized implementations are
more memory-bound and saturate bandwidth more effectively.
Datasets: We use sev-
eral large real-world

TABLE III: Graph algorithms.

Vertex All-
Algorithm Size Active?

PageRank (PR) 16B  Yes
PageRank Delta (PRD) 16B No
Conn. Components (CC) 8B No
Radii Estimation (RE) 24 B No
Max. Indep. Set (MIS) 8B No

TABLE IV: Graph datasets.

web and social graphs  Graph Vertices Edges Description
detailed in Table IV. op o™
These graphs are di- uk 19 298 uk-2002 [16]

. . _ arb 22 640 arabic-2005 [16]
verse (harmomc diam twi 41 1468 Twitter followers [28]
eter: 5-38; average de- sk 51 1949 sk-2005 [16]

gree: 9-38; clustering web 118
coefficient: 0.06-0.55).
With the objects sizes listed in Table III, the vertex data
footprint is much larger than the last-level cache. We represent
graphs in memory in compressed sparse row (CSR) format.
Graph algorithms are generally executed for several iterations
until a convergence condition is reached. To avoid long
simulation times, we use iferation sampling: we perform
detailed simulation only for every 4th iteration and fast-forward
through the other iterations (after skipping initialization). This
yields accurate results since the execution characteristics of
all algorithms change slowly over consecutive iterations. Even
with iteration sampling, we perform detailed simulation for
over 100 billion instructions for the largest graph.

1020 webbase-2001 [16]

B. ASIC HATS Evaluation

Main memory accesses: Fig. 13 shows the main memory
accesses of VO and BDFS for single-threaded PageRank. Each
bar shows the breakdown of accesses to different data structures
as in Fig. 6. This includes misses due to demand accesses
and prefetches. BDFS’s benefits stem from reducing neighbor
vertex data misses, as explained in Sec. III-B. Fig. 13 shows
that these benefits hold across most graphs: BDFS reduces
main memory accesses significantly, by up to 2.6x and by
60% on average. Other indicates accesses to BDFS’s data
structures, mainly the active bitvector. These are negligible
except when the bitvector does not fit in cache (for web).
BDFS reduces misses on all graphs except twi, due to twi’s
weak community structure. On twi, BDFS does not improve
temporal locality of vertex data accesses, and adds offset
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Fig. 16: Speedup over software VO at 16 threads. VO-HATS and BDFS-HATS significantly improve performance over software VO
and hardware prefetchers (IMP).

and neighbor misses. Preprocessing techniques [4] also show accelerated VO (VO-HATS) and BDFS (BDFS-HATS). To
lower benefits for twi. Excluding twi, BDFS reduces memory ensure IMP issues accurate prefetches, we configure it with
accesses by 2x on average for PageRank. explicit information about the graph structures as in [3].
twi’s weak community structure is an outlier. For example, IMP improves performance for the four non-all-active algo-
twi has a clustering coefficient of 0.06, whereas most real- rithms that are memory-latency bound (PRD, CC, RE, and MIS).
world graphs are above 0.2 [29]. Therefore, we expect BDFS  When IMP does not saturate bandwidth (PRD, CC, and RE), VO-
to be beneficial in the common case. In Sec. V-D we present HATS achieves further gains by offloading traversal scheduling
Adaptive-HATS, which can detect when graphs have weak work to HATS. When IMP already saturates bandwidth (PR,
community structure and switch to a VO schedule. MIS), VO-HATS does not improve performance further. Overall,
Fig. 14 shows the main memory accesses of BDFS at 16 VO-HATS improves performance over VO by up to 2.3x and
threads for all five algorithms. BDFS reduces memory accesses by 85%, 58%, 61%, and 41% on average for PRD, CC, RE, and
significantly for all algorithms: by 44%, 29%, 18%, 19%, and MIS respectively.
46% on average for PR, PRD, CC, RE, and MIS respectively. Some However, neither IMP nor VO-HATS reduce memory traffic,
non-all-active algorithms like PRD, CC, and RE get slightly lower so their performance gains are limited by memory bandwidth.
reductions. In these algorithms, only a subset of vertices are  This is most noticeable for PR (Fig. 16a): software VO already
active in some iterations and as a result the active vertex - saturates memory bandwidth, so VO-HATS and IMP barely
data is much more likely to fit in cache. improve performance. By contrast, BDFS’s reduced memory
There is a slight increase in BDFS’s memory accesses from 1  accesses translate to improved performance for BDFS-HATS
to 16 threads (compare Fig. 13 and PageRank in Fig. 14). In the on PR, with up to 2.2x speedup over VO on the arb graph.
single-thread experiments the whole 32 MB LLC is available On average, BDFS-HATS improves the performance of PR by
to a single traversal, whereas in the 16-thread experiments 46% over VO and by 43% over VO-HATS.

the LLC is shared among 16 concurrent traversals, causing BDFS-HATS achieves similar but slightly lower gains over
interference. The increase is small except for the sk graph, VO-HATS for the non-all-active algorithms. BDFS-HATS
which is quite sensitive to per-thread cache capacity. improves average performance over VO-HATS by 20%, 13%,

Performance: Fig. 15 shows the average slowdown of software  17%, and 35% for PRD, CC, RE, and MIS respectively and over
BDEFS over VO. In software, BDFS is slower than VO for all VO by 2.2x, 78%, 88%, and 91%.
algorithms. This happens because, despite its large reductions Energy: Fig. 17 shows the energy breakdown for various
in memory accesses, BDFS adds bookkeeping overheads when schemes. For software-only VO, most of the energy comes
implemented in software. Since graph algorithms execute only from core and main memory, and the fraction of energy
a few instructions per edge, these overheads are relatively large. from cores depends on how compute-bound the algorithm
Fig. 16 shows the speedup of three schemes over software is. For highly memory-bound applications like PageRank, main
VO: the IMP indirect memory prefetcher [58], and hardware- memory contributes 46% of total energy.
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HATS reduces core energy because it offloads the traversal
scheduling to specialized hardware, reducing instruction counts
on general-purpose cores. In particular, non-all-active algo-
rithms spend a significant fraction of instructions in activeness
checking even with simple VO. HATS completely eliminates
these instructions and, on average, reduces core energy by 35%,
36%, 25%, and 28% for PRD, CC, RE, and MIS respectively.

BDFS’s reduction in main memory accesses causes propor-
tional reductions in main memory energy. Overall, BDFS-HATS
reduces energy by 19%, 33%, 28%, 22%, and 30% on average
over VO for the five algorithms. The overall energy reductions
would be higher on graph processing accelerators, which reduce
core energy by over 10x [22, 44], making memory energy the
main bottleneck. IMP barely reduces energy since it neither
reduces instruction count nor memory accesses.

C. HATS on an on-chip reconfigurable fabric

Results so far assume an ASIC implementation of HATS.
Fig. 18 shows results for our VO-HATS and BDFS-HATS
reconfigurable logic implementations. We model an on-chip
FPGA fabric that can issue accesses to the L2 cache, similar
to the Xilinx Zynq SoC [56] but using high-performance cores.
Unlike Zynq, where the FPGA fabric is shared by all cores,
we assume a per-core FPGA fabric near the private L2s. We
later explore the effect of placing HATS at different points
in the memory hierarchy, which accounts for less-integrated
FPGA fabrics like HARP [24, 46].

The key difference with the ASIC implementation is the
slower clock frequency, 220 MHz. Fig. 18 shows that when
HATS has enough parallelism through replication of some parts
of the pipeline, as explained in Sec. IV-E, even this slow clock
is sufficient to keep the core busy. There is only a small drop
in performance (1%) for both HATS versions. Without these
changes (i.e., using the ASIC design on the FPGA), VO-HATS
and BDFS-HATS are 15% and 34% slower on average.
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Fig. 19: FIFO buffer type.
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Fig. 18: HATS performance on
an FPGA fabric.
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We also modeled a variant where HATS and the core
communicate through a FIFO buffer in shared memory. This
avoids the need for a dedicated FIFO channel between the
HATS engine and the core, which some reconfigurable fabrics
may not offer. It also avoids changing the ISA (no fetch edge
instruction). Although buffer management operations increase
core instructions by up to 10% (on PR), since the workloads
are memory-bandwidth bound, there is negligible impact on
performance, as Fig. 19 shows: VO-HATS is insensitive and
BDFS-HATS shows at most 5% performance loss (on MIS).

D. Adaptive-HATS

We now explore an adaptive version of HATS that switches
between VO and BDFS dynamically. Adaptive-HATS is ben-
eficial for two reasons. First, when the graph does not have
good community structure, BDFS increases memory accesses
over VO and lowers performance. This can be observed for
the twi graph across all algorithms in Fig. 16. Second, even
for graphs with good community structure, the later phases of
BDFS exploration usually process low-locality work. Using
the simpler VO schedule in such phases improves performance
due to lower scheduling overheads.
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Fig. 20: Adaptive-HATS outperforms BDFS-HATS by avoiding
BDFS-HATS’s performance pathologies.

Adaptive-HATS requires small extensions to BDFS-HATS:
switching between VO and BDFS only requires changing
the maximum depth of exploration (1 for VO and 10 for
BDEFS). Every 50M cycles, all HATS units switch to the
alternative mode of exploration for 5 M cycles, and use the best-
performing mode for the next 45 M cycles. Fig. 20a compares
the performance of VO-HATS, BDFS-HATS and Adaptive-
HATS on PRD for each graph. web and twi benefit the most
from Adaptive-HATS on PRD; we observe similar benefits for
other algorithms. Fig. 20b shows gmean performance across
graphs. Adaptive-HATS outperforms BDFS-HATS by 4%, 6%,
10%, 7%, and 4% for PR, PRD, CC, RE, and MIS.

(b) Gmean across graphs.

E. BDFS-HATS versus other locality optimizations

We now compare BDFS-HATS with online and offline
techniques to improve locality.

Propagation Blocking [8] (PB) is an online heuristic to
improve the spatial locality of all-active algorithms like
PageRank. PB first accesses the graph sequentially to gather the
updates to neighbors. It partitions these updates into bins, with
each bin holding updates for a cache-fitting slice of vertices.
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Fig. 21: Propagation Blocking reduces memory traffic signifi-
cantly but shows limited performance gains.

Updates are stored in main memory. PB then reads the updates
from memory bin by bin, and finally applies them. Both phases
generate sequential accesses to main memory.

We used all optimizations from the original implementation,
which we obtained from PB’s authors [8]. We modified our
simulator to model non-temporal stores, which are crucial
to reduce PB’s memory traffic. Moreover, we compare to
Deterministic PB, which generates the per-update neighbor
vertex ids only once and reuses them across iterations. We
found that a bin size of 1 MB works best for our system.

Fig. 21a compares the memory accesses of BDFS-HATS
and PB, normalized to VO. On average, PB achieves slightly
lower memory accesses than BDFS-HATS, and works well
even for unstructured graphs like twi. However, PB is a
software technique that adds non-trivial compute to achieve
these memory access reductions. Hence, as shown in Fig. 21b,
the performance gains of PB are limited: while PB achieves
up to 43% speedup for sk, it hurts performance for twi. On
average, PB is 17% faster then VO, whereas BDFS-HATS is
46% faster. Moreover, PB has several limitations. PB can be
extended for non-all-active algorithms [26], but the per-update
neighbor vertex ids cannot be reused across iterations. And PB
works only on algorithms where updates are commutative.

Fig. 22a compares the memory accesses of BDFS-HATS
with GOrder [55] preprocessing, a very expensive heuristic (see
Fig. 5b) that heavily exploits graph structure. GOrder achieves
much lower memory accesses than BDFS-HATS and these
memory traffic reductions translate to improved performance
as shown in Fig. 22b. GOrder-HATS, which combines GOrder
with VO-HATS, further improves performance significantly for
non-all-active algorithms (PRD, CC, RE, MIS).
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Fig. 22: BDFS-HATS versus GOrder preprocessing.

F. Sensitivity studies

Impact of prefetching: HATS engines accurately prefetch
vertex data into the L2 to accelerate edge processing by
the cores. Fig. 23 shows that this prefetching is effective by
comparing VO and BDFS HATS variants with and without
vertex data prefetching. Prefetching accounts for about a
third of the speedup achieved by BDFS-HATS over VO. (Note
that these prefetches are irregular, so a conventional prefetcher
would not be able to perform them.)

B VO-HATS w/o Pref. IMP VO-HATS

BDFS-HATS w/o Pref. BDFS-HATS

120 ]

Speedup over VO (%)

PR PRD CC RE MIS

Fig. 23: Impact of prefetching on performance.

We find that HATS prefetches are timely. First, the limited
size of the HATS buffer (64 entries) constrains how far ahead
the HATS runs. Thus, prefetched data takes a small fraction
of the L2 (up to 4 KB), avoiding too-early prefetches. Second,
the HATS buffer is large enough to avoid late prefetches. We
observe that a small fraction (5-10%) of prefetches are late
(i.e., partially overlapped with the demand access). Even then,
these late prefetches cover 90% of access latency on average.
HATS location: Fig. 24
shows how the location of
HATS changes the benefits
of BDFS-HATS over VO.
Performance changes only
slightly when moving HATS
from the L2 to the L1. How-
ever, placing HATS near the of
LLC (e.g., on a shared FPGA
fabric) causes a noticeable
drop in performance for non-
all-active algorithms. With this configuration, HATS can only
prefetch vertex data into the LLC. Thus, cores experience
few tens of cycles of latency when accessing vertex data.
Memory bandwidth: Fig. 25 shows the speedup of VO-HATS
and BDFS-HATS over VO as the number of memory controllers
grows from two to six (i.e., as peak main memory bandwidth

L2 (Default) LLC

MIS

PR PRD CC RE

Fig. 24: Sensitivity of BDFS-
HATS to on-chip location.
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Fig. 25: Speedup of VO-HATS
(shaded) and BDFS-HATS over
VO with 2-6 memory ctlrs.
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Fig. 26: Speedup of BDFS-
HATS with different cores, over
VO with Haswell cores.



grows from about 26 to 77 GB/s). While both VO-HATS
and BDFS-HATS are more beneficial when the system has
higher bandwidth, the improvement of BDFS-HATS over VO-
HATS increases when the system has lower bandwidth. At two
memory controllers, BDFS-HATS outperforms VO-HATS by
43%, 25%, 18%, 22%, and 43%. At six memory controllers,
the speedups reduce to 37%, 10%, 3%, 8%, and 20%.
General-purpose core type: Fig. 26 shows the speedup of
BDFS-HATS different core types. All speedups are normalized
to VO with Haswell-like cores. While compute-bound non-
all-active algorithms (PRD, CC, RE) are more sensitive, BDFS-
HATS retains a large fraction of its benefits with lean OOO
(Silvermont-like) cores since the system is memory bandwidth-
bound. Moreover, HATS with energy-efficient in-order cores
is faster than software VO with power-hungry OOO cores.
Cache size: Fig. 27 shows the performance of VO-HATS and
BDFS-HATS at various cache sizes. All speedups are relative to
software VO at a fixed cache size of 32 MB, making speedups
across cache sizes comparable. For PR and MIS, BDFS-HATS
with just a 16 MB cache outperforms both VO-HATS and VO
with a 32 MB cache. For PRD and RE, BDFS-HATS at 16 MB
outperforms VO with a 32 MB cache. It closely matches VO-
HATS with a 32 MB cache.
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Fig. 27: SensmVlty to LLC size. All Fig. 28: BDFS-HATS
speedups are relative to software with different LLC

VO at 32 MB. replacement policies.

LLC replacement policy: Finally, Fig. 28 shows how the
LLC replacement policy affects the benefits of BDFS. We
evaluate BDFS-HATS with LRU and DRRIP [25], a high-
performance replacement policy. BDFS-HATS achieves slightly
higher gains when using DRRIP. This happens because DRRIP
is scan- and thrash-resistant, so it reduces the cache pollution
caused by access patterns with no temporal locality. This leaves
more cache capacity for data with temporal locality, which
BDEFS exploits. These results show that BDFS-HATS and high-
performance replacement policies are complementary. BDFS-
HATS would also benefit from specializing the replacement
policy for different graph data structures [38].

VI. ADDITIONAL RELATED WORK
A. Memory system specialization for graph processing

Recent graph processing accelerators have proposed various
ways to tune the memory hierarchy to the needs of graph
algorithms, e.g., by using separate scratchpads to hold vertex
and edge data and matching their word sizes to object sizes [44],
or by adding a large on-chip eDRAM scratchpad that can hold
larger graphs than is possible with SRAM [22].

Prior work has also proposed near-data processing (NDP)
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designs [2, 20, 40, 50, 60] that execute most graph-processing
operations in logic close to main memory, reducing the cost
of memory accesses. NDP’s high memory bandwidth makes it
attractive for processing large unstructured graphs without any
locality, but as we have seen, graphs often have community
structure and can use caches effectively. Moreover, NDP
systems are still under development, so it is important to
optimize systems that use conventional off-chip main memory.
HATS complements this prior work by using locality-aware
scheduling to make better use of limited on-chip storage.

B. Preprocessing and locality optimizations

As discussed in Sec. II, preprocessing algorithms such as
RCM [14], GOrder [55], and Rabbit Order [4] improve the
locality of VO, but they are very expensive. These techniques
reorder graph vertices to assign close-by ids to related vertices.
They turn the graph’s adjacency matrix into a narrow band
matrix, with most nonzeros clustered around its diagonal.
However, this reordering is orders of magnitude more expensive
than the runtime of a single traversal [33, 39]. Similarly, edge-
centric scheduling with Hilbert Order [36] outperforms VO by
balancing the locality of source and destination vertices but
requires an expensive sort of all edges.

VII. CONCLUSION

Graph processing algorithms are increasingly bottlenecked by
main memory accesses. We have shown how runtime schedul-
ing strategies that exploit the community structure of real-world
graphs can significantly improve locality. We propose bounded
depth-first scheduling (BDFS), a simple yet highly effective
scheduling technique to improve locality for graphs with
good community structure, and HATS, a hardware-accelerated
traversal scheduler. BDFS-HATS requires inexpensive hardware
and reduces memory accesses significantly. On a simulated
16-core system, BDFS reduces main memory accesses by up to
2.4x and BDFS-HATS improves performance by up to 3.1x
over a locality-oblivious software implementation and by up
to 2.1x over specialized prefetchers.
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