
Combining Substructures to Uncover The Relational Web

B. Cenk Gazen

Computer Science Department

Carnegie Mellon University

Pittsburgh, PA 15213

bcg@cs.cmu.edu

June 25th, 2004

Thesis Committee:
Jaime Carbonell, Carnegie Mellon University (chair)

William Cohen, Carnegie Mellon University
John Lafferty, Carnegie Mellon University

Steven Minton, Fetch Technologies

Abstract

I describe an approach to automatically convert web-sites into relational form. The

approach relies on the existence of multiple types of substructure within a collection of

pages from a web-site. Corresponding to each substructure is an expert that generates a

set of simple hints for the particular collection. Each hint describes the alignment of some

tokens within relations. An optimization algorithm then finds the relational representation

of the given web site such that the likelihood of observing the hints from the relational

representation is maximized.

The contributions of the thesis will be a new approach for combining heterogeneous sub-

structures in document collections, an implemented system that will make massive amounts

of web data available to applications that use only structured data, and new search tech-

niques in probabilistic constraint satisfaction.

1

1 Introduction

1.1 Motivation

Even though the amount of information on the web has been growing at an incredible rate,
software applications have only been able to make use of it in limited ways, such as spidering
and indexing of words on a page, activities that do not require a deep understanding. This is
mainly because as data is transformed into web format, its inherent structure is replaced with
formatting structure that makes the data easier to absorb for humans but harder for computers.

There have been numerous attempts at getting applications to make more use out of the
information on the web. These attempts can be broadly grouped into extraction and labeling
attempts. The extraction work focuses on learning rules for extracting small segments of text.
Because this approach requires extra human effort to prepare training sets, it is limited to
converting only selected pieces of information to machine-processable form. In the labeling
approach, the data is labeled with agreed-upon tags. Labeling also requires extra human effort
for maintaining a common set of tags, assigning tags to data and keeping the tags attached to
data. Either approach is limited in its applicability because of the extra effort needed.

One of the early projects that fall into the extraction category is the WebKB project at
CMU[5]. The WebKB system starts with an ontology and a training set whose elements are
instances of the classes in the ontology and learns general procedures to extract new instances
from unseen pages. In contrast to most other extraction systems, WebKB applies multiple
learning algorithms, uses both content and link structure, and learns procedures that are general
enough to work on pages from sites different from those in the training set. However, it still
suffers from the limitations of the extraction approach, because information is extracted for only
the classes in the ontology for which a training set is maintained manually.

As a complement to the extraction and labeling techniques, I propose a new approach that
will enable automatic conversion of web-sites into relational form. In the relational form, the
data is organized into tables each row of which contains a single entity. Entities may be linked
to related entities through references.

As an example, let’s look at part of the relational representation of the data on a page showing
a list of products (fig. 5 in appendix A) and two pages that give detailed information about
individual products (fig. 6, 7). The main table of interest is the list of products. The tabular
form groups together similar entities, the products, and also separates one entity from the other
with rows.

t0:

Milwaukee 1 / 2 Hole - Hawg Drill 299.00 118169 1675 - 6 ref(t1, 0)
Milwaukee 3 / 8 Close Quarter Drill 159.00 118817 0375 - 6 ref(t1, 1)
Milwaukee 1 / 2 Magnum Drill 139.00 74453 0234 - 6 ref(t1, 2)
DeWalt 7.8 Amp . . . 129.00 124552 DW236K ref(t1, 3)
Milwaukee 8 Amp , 1 / 2 Drill 129.00 137724 0300 - 20 ref(t1, 4)
Hitachi 9 Amp 1 / 2 Drill 119.00 166939 D13VF ref(t1, 5)
Makita 1 / 2 Variable Speed Drill 99.00 128474 6303H ref(t1, 6)
Makita 3 / 8 Drill 59.97 167414 6408K ref(t1, 7)
DeWalt Heavy - Duty . . . 59.00 19808 D21008K ref(t1, 8)
Hitachi 3 / 8 6 Amp Drill 49.98 118433 D10VH ref(t1, 9)

Through the ref(. . .) notation, the last column links the entities to another table whose data
comes from the detail pages:

2

t1:

0 Milwaukee 1 / 2 Hole - Hawg Drill 1/2 300/1200 rpm
1 Milwaukee 3 / 8 Close Quarter Drill 3.5 Amp 3/8 0-1300 rpm
2 Milwaukee 1 / 2 Magnum Drill 5.5 Amps 1/2 0-850 RPM Keyed
. . .

The relational representation can also capture information that is not necessarily in relational
form to start with. For example, the following table represents the navigation links on the
product list page. Being a static set of links, they would normally not be maintained as a table.

t2:

http://www.lowes.com/lkn?action=topicSelect&topic=featuredBrands Brands
javascript:LILWindow('http://www. . .index.html') Design Tools
http://www.lowes.com/lkn?action=topicSelect&topic=buyGuide How To
. . .

http://www.lowes.com/lkn?action=topicSelect&topic=weeklyAd Weekly Ads

Some benefits of converting the data into relational form are:

• Having been around since the 1970s[1], relational representation of large volumes of data
is one of the best understood and most widely applied types of representation. (In fact,
the data for a large number of web sites is likely to be already in relational databases as
evidenced by the recent development of tools to convert relational data into semi-structured
form[3].) With the proposed approach, all the techniques for analyzing relational data
become applicable to web data. For example, one can query for the number of books
written by an author or for the stores that sell a book below the average price of that
book.

• Data becomes readily available for further processing by intelligent agents.

• Indices can be built for searching specific fields. For example, it becomes possible to find
pages about movies whose director is a particular person. Existing indices on the web
cannot distinguish between pages where the person is listed as a director and as an actor.

• A common task is to track incremental change on the web, such as the status of a shipment
or the current headlines. Having this information in relational form rather than as a
sequence of tokens improves the performance of such tracking applications because the
changes can be identified at a finer detail.

• As with other unsupervised learning approaches, at the very least the structure that is
discovered facilitates further analysis, by grouping data in chunks that can be analyzed as
a whole.

By converting web sites into relational form automatically, the new approach enables a deeper
machine-understanding of vast amounts of information that is available on the web.

1.2 Approach

The extraction and labeling work within the web domain have had varying amounts of success.
Most of these approaches focus on a particular structure of web pages, typically the syntactic
structure or the link structure. I propose to build a unifying framework where the multiple types
of substructure that are identified by multiple approaches can be combined. The new approach
finds a relational representation of a web site by integrating the output of a number of experts
each of which look for a particular type of structure.

3

The proposed approach relies on the observation that different types of substructure are
representative of the underlying structure over different pages of a web site and even over different
parts of a single page. If the different substructures can be combined effectively, the resulting
representation will be better than any other that uses only one substructure.

The relational form serves as the unifying representation because first, within it, it is possible
to represent explicitly the types of substructure that are typical of data on the web and second,
it is simple enough that it can be used easily by other agents.

Let’s look at some examples of substructure. The following is a list of some of the substruc-
tures that can be observed on the single page (fig. 5).

• Vertical Lists. There are several locations on the page where the boundaries of items
are aligned vertically. This is usually a good indication of an underlying list structure.
For example, on the left side of the page, the navigation bar contains a list of links to the
departments of the store. In the middle of the page is the list of products, which is the
main content of this page. However, not all vertically aligned elements are lists. The entry
for a product has several lines (name, item number, link to details, checkbox) which are
not items in a list.

• Horizontal Lists. Similar to but less common than vertical lists are horizontal lists.
Some examples on the page are the navigation bar on the top (Brands, Design Tools, . . .)
and at the bottom (Corporate, Help Desk, . . .). The elements of the latter are vertical
lists.

• Common Formatting. Visual cues are commonly used to show the structure of the data.
For example, the item and model numbers are set in small gray letters whereas the prices
are set in large, black, and bold letters indicating that the values in these fields are related
to others in the same field but different from other pieces of text on the page.

• Common Field Features. The values in a single field usually follow a specific pattern.
On this page, the item numbers are five or six digit integers. Model numbers among
products of the same brand also have common patterns. Like common formatting, this
hints at a relation between the values of the same field.

• Repeated Values. The URL attached to the name of a product and that attached to
the “View Details. . .” link are the same for a given product. This structure is valuable in
finding the boundaries of an item correctly. The two links and anything in between them
are likely to be information about the same item. In addition, the URL for the “Buy Now!”
button shares the product id (a superstring of the displayed item number) with the “View
Details. . .” URL.

• Numbered Lists. At the bottom of the page, the links to all the pages that contain parts
of the product list are indexed by the page numbers (1 and 2). Such sequences of integers
are good indicators of list structure. But also note the counter-example of “Page 1 of 2”.

Let us now look at some examples of substructure within a collection of pages (fig. 5, 6, 7)

• Common Page Structure. The navigation bars at the top, left and bottom of the pages
are identical. Also, among the product pages, there is even more common structure. For
example, below the product image there is a zoom button, and below the button is a list
of product attributes (some of which are common among multiple products). To the right
is a list of features for each product, and at the bottom is an optional image showing the
customer ratings.

4

Web Site Experts Hints Optimizer Relations

Figure 1: Architecture

• Common Content. Some of the content that is on the navigation page is also on the
product pages. For example, product name, item number, model, price and “Buy Now!”
URL. This is useful in associating the link on the navigation page with the text around it
correctly.

• Back Link. On product pages, the URL attached to the “View All Products in this
Category” link is the same as the URL of the product list page. This usually indicates a
hierarchical structure of the pages rather than just a navigational shortcut.

• Next Link. Links that include “next” as a substring of their labels almost always connect
to continuation of pages that contain lists.

The proposed approach (fig. 1) exploits the heterogeneous set of substructures by defining
a hint language in which the the expert responsible for each type of substructure expresses its
findings as hints to the optimizer. The best relational representation with respect to the hints
is then found by an optimization algorithm.

One piece of information that is missing from the relational representation is column labels
(zip code, price, last name, etc.). This is because the proposed approach focuses on finding the
inherent structure of data whereas column labels relate the data to an external, larger knowledge
base. However, the relational representation will make it significantly easier for other intelligent
agents to label the data.

2 Previous Work

The work leading to my proposal has been on developing a set of algorithms that discover some
of the substructures from collections of web pages and also building a system that combines
these algorithms in an ad hoc way. In sections 2.1 and 2.2, I describe the template substructures
and related algorithms. Section 2.3 is a description of of the ad hoc approach. In section 2.4,
I describe the implementations of the algorithms of sections 2.1, 2.2, and 2.3. The proposed
approach tackles the same problem as the ad hoc approach, namely converting whole web sites
into relational form automatically, but does this in a more elegant and flexible way.

2.1 Templates

One of the most important types of substructure arises from the fact that an efficient way to
exchange information after similar information has been exchanged is to take the structure of the
first exchange and update it with the new parts. Having learned where the information about
the weather conditions are in the following segment:

<TD VALIGN=MIDDLE ALIGN=CENTER CLASS=obsInfo2 WIDTH=50%>

<B CLASS=obsTempTextA>54°F

5

</TD></TR>

<TR><TD VALIGN=TOP ALIGN=CENTER CLASS=obsInfo2>

<B CLASS=obsTextA>Partly Cloudy

</TD>

<TD VALIGN=TOP ALIGN=CENTER CLASS=obsInfo2>

<B CLASS=obsTextA>Feels Like
54°F

</TD></TR>

it is easy to write or read this segment:

<TD VALIGN=MIDDLE ALIGN=CENTER CLASS=obsInfo2 WIDTH=50%>

<B CLASS=obsTempTextA>77°F

</TD></TR>

<TR><TD VALIGN=TOP ALIGN=CENTER CLASS=obsInfo2>

<B CLASS=obsTextA>Fair

</TD>

<TD VALIGN=TOP ALIGN=CENTER CLASS=obsInfo2>

<B CLASS=obsTextA>Feels Like
75°F

</TD></TR>

This idea of preserving structure as much as possible leads to templates. A template is a
sequence of alternating slots and stripes where the stripes are the common strings among all the
pages and slots are the placeholders for pieces of data that go in between the stripes. A template
for the two segments above is shown below. The slots of the template are the labeled boxes.

<TD VALIGN=MIDDLE ALIGN=CENTER CLASS=obsInfo2 WIDTH=50%>

<B CLASS=obsTempTextA> actualTemperature °F

</TD></TR>

<TR><TD VALIGN=TOP ALIGN=CENTER CLASS=obsInfo2>

<B CLASS=obsTextA> currentCondition

</TD>

<TD VALIGN=TOP ALIGN=CENTER CLASS=obsInfo2>

<B CLASS=obsTextA>Feels Like
 feelsLikeTemperature °F

</TD></TR>

Pages generated using a single template are usually pages describing the details of a single
item. Some examples of such pages are pages returned in response to an ISBN query on a
bookstore site, a reverse phone-number lookup on white-pages, or a course number query on a
college registrar site. When pages are generated from a single template, we will say that they
are of the same page-type.

One way to find the template of a set of pages is to find the longest common subsequence
(LCS) of the token sequences of all the pages. A subsequence of a sequence is the same sequence
with some of the elements left out. A sequence is a common subsequence of a set of sequences if
it is a subsequence of all the sequences in the set. The LCS, which is not necessarily unique, is
a common subsequence that has the maximum length. The LCS immediately gives the stripes
of the template and with a little bookkeeping, the slots can also be found.

The LCS algorithm is simple and can be made to run on long documents with acceptable
memory usage[9], but it is not very fast. To improve the performance, we assume that the
stripes are unique strings within documents. (In practice, this assumption holds for most stripes
on detail pages.) With this simplification, the template is found by first finding all substrings
common to all the pages but that are also unique within each page, as suggested in [13]. Since
the substrings might occur in a different order on each page, the algorithm then finds the longest
sequence of substrings that is common to all the pages. This sequence of common substrings is
the sequence of stripes of the template. Once the template is known, it is easy to find the data
on a page by finding the substrings in between the stripes of the page.

Let’s look at an example run of the algorithm on the following three strings:

6

yahoo.html

google.html

cmu.html

Among these three strings, the set of common unique token sequences is {.html,
.html id=, , <a, =bookmark, >, bookmark, class=bookmark, href=, html id=,

html, id=}. Next for each input string, a non-overlapping set of occurrences of these
sequences is found. This determines an ordering of the token sequences for each string:

<a, href=, .html id=, class=bookmark, >, .html

<a, class=bookmark, href=, .html id=, >, .html

<a, class=bookmark, href=, .html id=, >, .html

The LCS of these three sequences is (<a, href=, .html id=, >, .html). So the tem-
plate is:

<a 0 href= 1 .html id= 2 > 3 .html

Using the template, the data can be extracted into a table:

yahoo 0 class=bookmark yahoo
class=bookmark google 1 google
class=bookmark cmu 2 cmu

2.2 Templates for Lists

Another common substructure of documents is tabular structure. In addition to reusing the
same structure for rows, tables also group together similar items in columns.

Tables are typically used when the results of a query that retrieves more than one record are
to be displayed. Multiple records are displayed in a list whose rows are generated by iterating
over the records. The list is usually plugged into an outer template.

Just as a page shares a common structure with pages of the same page-type, each row shares
a common structure with the other rows in the same list, and the template idea applies equally
well to the rows of a list as it does to pages. Let us call the template representing the common
structure of rows in a list a row template. We extend the basic template model so that slots are
either content slots as before, or list slots, which are containers for row templates.

As an example, let’s create a template to generate html segments like the following segment:

<h2>Cities in Pennsylvania</h2>

Aaronsburg

Aaronsburg

Abbottstown

Abington

Ackermanville

The outer template generates the first, second and last lines of the segment and “calls” the
inner template (represented by a double box) to generate the elements of the list:

<h2>Cities in state </h2>

cities

The inner template, cities, simply generates one row of the list.1

1In practice, more information needs to be specified before pages can be generated. In particular, in addition
to the slots being linked to the underlying data source, a method for determining the set of cities for a particular
instantiation of state needs to be specified.

7

e f g h

b

i

c d

a

e ge l g

b

i

j d

a

k b d

a

Tree 1 Tree 2 Template

Figure 2: Templates for Trees

d 1

c

d 2

c

d 3

c

d 4

c

d 5

c

b be e

a

d

c

b be e

a

d

c

d

c

b e

a

Figure 3: Row Templates

 city

The problem of inducing a template from a set of html pages becomes much harder with
the introduction of list slots. To simplify the problem, we work on the document object model
(DOM) tree of pages and make the following assumptions: The nodes representing the rows of a
list are the children of a single parent node, and there can be at most one list within the children
of a single parent node.2

Before going into the details of the template induction algorithm, we describe templates in the
domain of trees. Given a set S of sequences of DOM elements, the TreeTemplate algorithm
finds the LCS of S and then for each node in the LCS, builds a set of sequences of elements by
gathering the child nodes of the node from every tree, and calls itself with that set. For example,
given the root nodes of Tree 1 and 2 in figure 2, the algorithm first finds the LCS of the one
element sequences [a] and [a] and then proceeds down to the child sequences [b c d] and [b j

d k]. The LCS of these two is [b d], so it first recurses down to the child sequences of the two
b nodes and then to those of the two d nodes to get [e g] and []. The template is the tree of
LCSs found at each node. Once the template is computed, it can be used to extract the data in
the slots. This is done by finding the nodes in the original DOM structures that are not in the
stripes of the template. The nodes that fall into the slots are c, f, h, and i for Tree 1, and j, k,
l, and i for Tree 2. By keeping track of the slots that the nodes go into, the data can be aligned
in columns and represented in a table:

f i h c

l i j k

We now return to the template induction algorithm. HierarchicalTemplate has two
steps. In the first step, it processes the DOM tree of each page to find all the lists and the
corresponding row templates. In the second step, it finds the page template.

The first step processes the tree bottom-up. At each node, the algorithm looks for a repeating
pattern among the child nodes. This is done by using templates as a similarity measure between
two DOM subtrees. (Similar subtrees will have templates with more stripes than those that

2This assumption does not necessarily hold. One of the goals of the proposed approach is to be able to use
this same kind of substructure while relaxing these assumptions.

8

are not similar.) In particular, the algorithm looks for consecutive sequences of nodes whose
similarity measure is above a threshold. Those sequences that pass the similarity test are assumed
to be the rows of a list and are used as inputs to TreeTemplate to induce a row template.
As the algorithm traverses up towards the root, it replaces the repeating sequences with row
templates. For example, given the tree on the left in figure 3, the algorithm first finds row
templates for the inner lists within the children of b nodes. The resulting tree is shown in the
middle of the figure, where the row template is denoted by a triangle (instead of a line) connecting
it to its parent. Next, the algorithm examines the children of node a. With repeating subtrees
represented as row templates, the algorithm can detect the similarity between the first two and
the last two children of node a and induce the row template as shown on the right. We will refer
to this intermediate tree as a row-template tree.

The second step of the induction algorithm merges the row-template trees using a variation
of the basic template induction algorithm, in which row template nodes are matched only with
row template nodes and regular nodes only with regular nodes.

Another way to look at templates is to consider the web-publishing system as a function that
takes as input relational data and outputs a set of hyper-linked pages. Recovering the relational
data from the set of hyper-linked pages is equivalent to estimating this function with a template,
and inverting it to infer the underlying data.

2.3 Utilizing Multiple Types of Substructure

The template substructure of pages is useful in extracting data from a set of pages that are all of
the same page-type. But let us look at the case when the pages are not of the same page-type. If
we knew the page-type of each page, then we could easily find the template for each page-type.
Conversely, if we knew the template for each page-type, then we could determine the page-type
of each page. Lacking both pieces of information, clustering is a logical direction to follow, so
we look at it next.

The obvious approach to clustering web pages is to use templates as a similarity measure and
apply a standard clustering algorithm. The problem with this is that among pages from a single
web site, there is enough commonality that the differences are usually outweighed. In fact, some
clusters of pages which are easily identified by other types of substructure, such as links in a list,
can be found with the template substructure only if the the pages happen to share a template
among them but with not other pages.

An alternative, but ad hoc, approach is to use the template substructure in evaluating the
clusters which are found by other means. The advantage of this approach is that it allows a
second substructure to be used as the means to search through the cluster space. In the prototype
implementation, the pages are clustered into three groups: navigation pages, detail pages, and
“other” pages. The clustering algorithm generates hypotheses based on the link structure of the
site (for example, navigation pages are visited before detail pages, possibly point to one or two
other navigation pages, etc.) and evaluates the resulting clusters with a minimum description
length (MDL) metric based on templates.

The template-based MDL metric is derived from the observation that a template can be used
to compress a set of pages. After a template is induced, it is possible to factor out the stripes
from each page and encode the set as the template and a set of slots. If the template has enough
content in its stripes, the resulting encoding reduces the number of bits required to represent
the pages without loss of information. This idea can easily be turned into an evaluation metric
for clusters where the goal is to minimize the number of bits to represent all the pages. The
resulting MDL metric balances between the two extremes of having a single cluster of all the
documents but with a template that has no stripes, and having one cluster for every document
but with each template fully covering its document.

9

2.4 Implemented Systems

2.4.1 AutoWrap Version 1

The first version of AutoWrap is an implementation of the HierarchicalTemplate algo-
rithm. It takes as input a set of pages, builds a hierarchical template on the DOM trees of
the pages, uses the template to extract data, and outputs the extracted data in relational form.
Appendix B contains a set of example pages and the corresponding output of AutoWrap V1.

Because only one template is induced for the given set of pages, it is crucial that the input
consists of pages that are of the same page-type. A single page that does not fit the template
causes the system to induce an empty template and an empty template in turn causes the tokens
of each page to be extracted as one large slot. This implies that the pages need to be classified
very accurately, which is a difficult task even when done manually.

In the normal case where the input set consists of pages of the same page-type, AutoWrap

V1 is still limited by the assumptions of HierarchicalTemplate. In particular, there is a
significant number of cases where a single parent node contains more than one list among its
children. This happens when a small number of lists with different row templates are put together
under one parent node. AutoWrap V1 picks the list whose rows are most similar to each other
and finds a row template for it, but leaves the nodes for the other lists untouched. As a result,
some of the lists are never discovered. For example, in the sequence [a 1 a 2 a 3 x b b b b],
AutoWrap would discover the list of b’s but not the list that contains the a’s.

AutoWrap V1 is not very good at finding the correct row breaks. This is because it
relies only on the template-based similarity between rows. This measure is useful for identifying
repeating sequences of nodes, but not for determining the boundaries of the unit of repetition.
For example, just by looking at the similarity between consecutive sequences in the sequence [a,
b, c, a, b, c, a, b, c, a], it is impossible to tell if each rows is [a, b, c] or [b, c, a].

2.4.2 AutoWrap Version 2

The second version of AutoWrap is a prototype implementation that utilizes the link and
template substructures of a web site. Instead of taking a set of pages, it takes a single entry
URL3 as input. Its built-in web spider creates a map of the pages connected to the entry page.
After the map is created, the system starts looking for a clustering of the pages into the three
clusters “navigation”, “detail” and “other”. The clustering that gives the best template-based
compression is chosen and data is extracted from the detail pages using the induced flat template.
Appendix C contains an example site, and the data extracted from the detail pages.

AutoWrap V2 suffers from the fact that it clusters pages into three predefined groups. This
means that the spidering step needs to be controlled so that most of the retrieved pages belong
to either the “navigation” or “detail” group. Otherwise, picking the navigation and detail pages
among a large set of “noise” pages becomes difficult and both performance and quality degrade
quickly.

One of the motivating factors for my thesis is that even though it is easy to put together
systems that handle particular types of web sites by focusing on particular types of structures,
these systems do not generalize well to other types of web sites. Extending them in ad hoc ways
lead to inelegant systems that are still limited to a few different types of web sites. My goal is
to make the next version of AutoWrap, which I will be developing based on the approach I
am proposing, an elegant and flexible solution for handling a wide variety of web sites.

3In case the URL is not sufficient to retrieve the page, the contents of the entry page can also be input.

10

3 Proposed Work

As with most large collections of information, the data on the web inherently exhibits multiple
types of substructure. Some of these substructures are obvious from the organization of the
pages. For example, a hierarchical data set, such as information about the schools, departments,
programs, and courses of a university, is usually presented so that the pages correspond to the
nodes of the hierarchy. Some others are apparent from page layout. The items of a list are
almost always aligned vertically or horizontally. And others are hinted at by visual or syntactic
similarities between data items. Fields such as dates, addresses, or phone numbers follow a
certain set of syntactic patterns. Other fields are typically typeset in bold, italic, small or large
fonts or in particular colors so that they are distinguishable from each other.

Current approaches to getting machines to understand the data on the web have been limited
to using a few substructures at a time. As a result, machines have been able to work either in
simplistic ways (e.g., indexing) or in limited domains (e.g., extracting job postings).

Thesis Statement: By combining the information available from multiple heterogeneous
substructures of a document collection, it is possible to recover the hidden relational structure
of the underlying data with high accuracy.

3.1 Types of Substructure

Below is a list of some of the types of substructure that can mirror the underlying structure
of the data. They also share the characteristic that each can be detected easily with simple
algorithms. We’ll refer to the algorithms that can discover substructures as substructure experts.

• Template Coverage. The stripes of a template should generate a large portion of the
tokens of a page.

• URL Patterns. Pages with similar URLs are of the same page-type.

• Next Links. Pages connected to one another by next-links are of the same page-type.

• Links in a List. Pages pointed by the links in a list column are of the same page-type.

• Indexed Items. Items indexed with consecutive integers are rows in a list.

• Redundant Data. The data around a link on a list page is also found on the detail page
pointed by the link.

• Page Layout. The layout of data on the displayed page matches that of the data.

• Domain Specific Knowledge. For example, mailing addresses should be aligned on a
column.

Before we look at how to turn these abstract substructures into actual experts in section 3.3,
I will describe the relational representation in which the experts will express their output.

3.2 Relational Representation

3.2.1 Definitions

A page is a sequence of tokens (t0, t1, ..., tn−1). A token is a string with the property that
breaking it down further does not yield shorter tokens that can possibly go into different cells
and result in a better relational representation. For instance, in most cases natural text can be
tokenized into sentences, and even paragraphs, with no negative effects on the relational form.

11

A set of pages together with the links between the pages form a site (P, l : token 7→ page)
where P is a set of pages and l is a function mapping tokens to pages. l is defined for only a
small subset of tokens, but for every token t that it is defined for, l(t) ∈ P .

We represent relations as tables whose rows are ordered. Each cell of the table is either a
content-cell that contains a sequence of tokens or a reference-cell that contains a reference to a
subset of rows from another table. Each row of a table has an associated key, not necessarily
unique. Formally, a table is a 5-tuple (rows, cols, k : i 7→ key, c : i × j 7→ (t0, t1, ..., tn−1), r :
i × j 7→ (table, key)) where rows is the number of rows, cols is the number of columns, k is a
function that maps row indices to keys, c is a function that maps cells to their contents, and
r is a function that maps cells to references to other tables. For any cell, only one of c and r

is defined. The functions k and r are analogous to primary keys and foreign keys in relational
databases. The pair r(i, j) = (t, k) is a reference to rows i0, i1, ..., in−1 of table t for which
k(ij) = k. In other words, (t, k) selects the rows of t that have a key of k. We will refer to the
sequence (i0, i1, ..., in−1) as ri(t, k). Circular references are not allowed.

Next, we define three functions ts, ts′, and ts′′ to map cells and tables into token sequences.
The token sequence of a set of adjacent cells is obtained by concatenating the tokens of each cell
in row-major order. When a cell is a reference-cell, the tokens are obtained from the set of rows
referred by the cell. Formally, we start by defining the token sequence function ts for a single
cell. The tokens of a content-cell are its contents: ts(t, i, j) = c(i, j) if c is defined for (i, j). The
tokens of a reference-cell are the tokens of the rows referred by it: ts(t, i, j) = ts′(r(i, j)) if c is
not defined for (i, j). Next, we define the token sequence of a set of rows, which is the sequence
obtained by concatenating the sequences of rows in order: ts′(t, k) = concat(ts′′(t, i) for i in
ri(t, k)). Finally, the token sequence for a row is the concatenation of the token sequences of the
cells in that row. ts′′(t, i) = concat(ts(t, i, j) for j in (0, 1, ..., cols− 1)).

The relational representation of a site (P, l) is (T, pt : page 7→ (table, key)) where T is a set of
tables and pt is a mapping from pages to references. For every page p ∈ P , the token sequence of
the reference is equal to the page: ts′(pt(p)) = p. In other words, any page can be reconstructed
by looking at some set of rows in one of the tables.

3.2.2 Example

The example site (fig. 4) is a dictionary of small counting numbers. The home page contains the
beginning of a list of numbers and a link to the next section of the list. Each number is linked
to a page where its definition, and decimal and binary representations can be found.

First, we will look at tokenization. Below is the html code for one of the pages.

<html><body>

<p>Home

<h1>One</h1>

<table border=1>

<tr>

<td>Definition</td>

<td>being a single unit or thing</td>

</tr>

<tr><td>Decimal</td><td>1</td></tr>

<tr><td>Binary</td><td>1</td></tr>

</table>

<p>Previous Next

</body></html>

We use a simple html-aware lexer. URLs, e.g., first.html and text blocks, e.g., being a

single unit or thing, are represented with single tokens based on the assumption that shorter

12

Definition
Decimal
Binary

being a single unit or thing
1
1

One
Home

Previous Next

Definition
Decimal
Binary

being one more than one
2
10

Two
Home

Previous Next

Definition
Decimal
Binary

being one more than two
3
11

Three
Home

Previous Next

Previous Next

One
Two

Previous Next

Three

Figure 4: Example Site

tokens would not lead to a better relational representation. So, the above page is represented
with the following sequence of tokens:

(<html, > <body, >, <p, >, <a, href, =, ’, first.html, ’, >, Home, </a, >, <,

h1, >, One, </h1, >, <table, border, =, 1, >, >, <tr, >, <td, >, Definition,

</td, >, <td, >, being a single unit or thing, </td, >, ...)

For notational convenience, we will let p0 be the token sequence for the home page, p1 the
token sequence for the next page of the list of numbers, and p2, p3 and p4 the token sequences
for the item pages of one, two and three respectively.

Next, we define the function l that maps tokens into pages. l describes the connectivity of
the site:

t l(t)

first.html p0
second.html p1
one.html p2
two.html p3
three.html p4

The tokens and the link function define the site: S = ({p0, p1, p2, p3, p4}, l).
Next, we will define a relational model for this site. Others are certainly possible. This one

is intuitively one of the better ones. The particular model contains three tables. The first table,
t0 represents the pages that contain the list of numbers. The second table, t1, represents the
lists within those pages. And the third table, t2, represents the item pages.

In the diagrams below, the contents of the cells in all but the leftmost column are the values
of the functions c and r. In some cells, where c(i, j) is a long string, it is abbreviated with an
ellipsis. Values of r(i, j) are in italics. The leftmost column represents the function k. Since the
tables can get rather wide, we break them apart into multiple lines and indicate the continuation
by double borders on the right side of columns to the left and on the left side of columns to the
right.

t0:

13

0 <html><body> (t1, 0) <p> Previous

1 <html><body> (t1, 1) <p> Previous

 Next </body></html>

 Next </body></html>

t1:

0 One

0 Two

1 Three

t2:

0 <html>...href=’first.html’>Home<h1> One </h1><table...Definition</td><td>

1 <html>...href=’first.html’>Home<h1> Two </h1><table...Definition</td><td>

2 <html>...href=’first.html’>Home<h1> Three </h1><table...Definition</td><td>

being a single unit or thing </td></tr><tr><td>Decimal</td><td> 1 </td>...ary</td><td>

being...one in number </td></tr><tr><td>Decimal</td><td> 2 </td>...ary</td><td>

being...two in number </td></tr><tr><td>Decimal</td><td> 3 </td>...ary</td><td>

1 </td></tr></table><p> Previous <a href=’ two.html

10 </td></tr></table><p> Previous <a href=’ three.html

11 </td></tr></table><p> Previous

’> Next </body></html>

’> Next </body></html>

Next </body></html>

To complete the relational representation we map the pages into the rows whose token se-
quences are the same as the pages. The relation representation of S is (t0, t1, t2, pt) where pt

is:

p pt(p)

p0 (t0, 0)
p1 (t0, 1)
p2 (t2, 0)
p3 (t2, 1)
p4 (t2, 2)

As mentioned above, alternative representations are possible. For example, we can represent
the tabular data on item pages as a separate table and refer to those rows from the main table.
Tables t′2 and t4 below replace table t2:

t′2:

0 <html>...href=’first.html’>Home<h1> One </h1><table border=1>

1 <html>...href=’first.html’>Home<h1> Two </h1><table border=1>

2 <html>...href=’first.html’>Home<h1> Three </h1><table border=1>

(t4, 0) </table><p> Previous <a href=’ two.html

(t4, 1) </table><p> Previous <a href=’ three.html

(t4, 2) </table><p> Previous

’> Next </body></html>

’> Next </body></html>

Next </body></html>

t4:

0 <tr><td> Definition </td><td> being a single unit or thing </td></tr>

0 <tr><td> Decimal </td><td> 1 </td></tr>

0 <tr><td> Binary </td><td> 1 </td></tr>

1 <tr><td> Definition </td><td> being one more than one in number </td></tr>

1 <tr><td> Decimal </td><td> 2 </td></tr>

1 <tr><td> Binary </td><td> 10 </td></tr>

2 <tr><td> Definition </td><td> being one more than two in number </td></tr>

2 <tr><td> Decimal </td><td> 3 </td></tr>

2 <tr><td> Binary </td><td> 11 </td></tr>

14

Within the the proposed relational formalism, the ordering of tokens within a page, the
grouping of similar structures, and the grouping of related structures are explicitly represented.
The first of these is imposed by the rules of the relational representation: the order of tokens
is preserved within the relations. The second, grouping of similar structures, is the grouping
represented by columns. Book titles go in their own column, author names go in a separate
column, etc. Similarly, the third, grouping of related structures, is the grouping represented by
rows. The title, author and price of a book all go into the same row.

3.3 Hints

The interface between the relational representation and the substructure experts is the hint
language. Each expert expresses the substructure it discovers in the hint language. A key
feature of the hint language is that it is simple enough that a relational instantiation can be
easily evaluated in how well it satisfies a set of hints.

I will develop the exact details of the hint language as part of my thesis work, but the idea is
to represent the various types of substructure as column and row hints. A column hint represents
the preference of an expert to have two or more token sequences to be aligned vertically, and a
row hint does the same but for horizontal alignment.

3.3.1 Substructures As Hints

• Template Coverage. Find the template between each pair of pages. For each slot and
stripe in the template, generate a column hint that contains the tokens in the slot or stripe
of the first page and the tokens in the slot or stripe of the second page.

• URL Patterns. Compare the URLs of each pair of pages. If the two URLs are similar
enough, generate a column hint that contains all the tokens of the first page and all the
tokens of the second page.

• Next Links. For each next (or previous) link, generate column hint that contains all the
tokens of the source page (the page containing the link) and all tokens of the target page
(the page pointed by the link).

• Indexed Items. Find sequences of consecutive integers on pages. For each sequence,
generate a column hint that contains the tokens of the integers.

• Redundant Data. For each link, find common sequences of tokens between the context
of the link and the target page. For each common sequence, generate a row hint that
contains the sequence on the source page and the sequence on the target page.

• Page Layout. Examine the layout of the page. For tokens that are required to be aligned
vertically and in close proximity, generate a column hint. Similarly, for horizontally aligned
tokens, generate a row hint.

• Domain Specific Knowledge. For example, for each token identified as a state abbre-
viation, if it is followed by another token identified as a zip abbreviation, generate a row
hint. Also, for each set of zip codes on a page, generate a column hint.

• Links in a List. When a column contains a set of links, generate a column hint containing
all the target pages.

15

3.4 High-Level Algorithm

The top-level algorithm of the system simply mirrors the proposed architecture (fig. 1).

Input – site: set of pages from a web site
Output – relational representation of the pages as defined in section 3.2

hints = ∅
for each expert

hints = hints ∪ getHintsFromExpert(expert , site)
find best relational representation r with respect to hints
return r

Finding the best relational representation is the most difficult task. It involves efficiently
evaluating a relational representation with respect to a large number of hints and searching
through the large space of relational representations. In the next two sections, I discuss these
issues in more detail.

3.5 Evaluating Relational Instances

After the substructure experts generate a set of hints, the next step is to find the optimal
relational instance. The optimality measure can be defined in several ways.

The simplest measure is the number of hints that are in agreement with the relational model.
The details of the hint language will determine the exact definition of agreement, but at a high-
level, a hint agrees with the relational instance if the token sequences in the hint are placed in
alignment within the instance.

A more powerful approach is to evaluate the relational instances using a probabilistic model.
In this approach, we view the relational model as a generator for row and column hints and
define a probability distribution of row and column hints given a relational instance. Then, by
the maximum likelihood principle, the optimal relation is the one that maximizes the probability
of the set of hints.

In contrast to typical applications of the maximum likelihood principle where the observed
data is directly modeled by the hypothesis, in the proposed approach the hypothesis models
the information output by experts. This indirection allows the output of multiple experts to be
unified in a probabilistic framework.

3.6 Search Space

Having defined the range of valid relational instances of a web site and a way to evaluate each
relational representation, the optimization task reduces to generating each relation instance,
evaluating it with respect to the heuristics and then picking the best candidate among the
set. In practice, the huge number of instances for a given site prohibits this generate-and-test
approach, and part of my thesis work will be investigating techniques to turn it the optimization
problem into a tractable problem.

3.7 Evaluation

The two criteria for evaluating the implemented system are the percentage of web sites covered
and the goodness of the relational instantiation for the sites that are covered.

Evaluating the system with respect to coverage involves selecting a random set of web sites
and counting the number of sites among that set for which the system outputs a relational
instantiation whose goodness is above a predefined threshold. Unfortunately, choosing a random

16

set of web sites is problematic and does not necessarily give a meaningful coverage ratio, because
unlike the concept of a web page, the concept of a web site is only loosely defined (Is Google a
web site? Are Amazon Books and Amazon Movie Showtimes one site or two?). So instead of
random samples of web-sites, I plan to use existing web site directories, which list a number of
other web sites, to generate sample sets. For example, the bookstore directory of Yahoo lists
more than 200 sites. Evaluating the system on this set of sites would give a coverage ratio that
is specific to bookstore sites, but also one that is easier to interpret (since the concept of a
bookstore site is somewhat better defined than that of a general web site). Running this kind of
evaluation on a number of different directories (retail, geographical, weather, automotive, health,
etc.) from multiple sources will give an overall coverage figure for the system.

To evaluate the output of the system, the output will be compared to a target relational
instantiation. The target relational instantiation can be generated automatically from indepen-
dent sources using the proposed system or other extraction tools, or even from the same web-site
with supervised extraction techniques. It can also be manually created. Given the lack of tools
that can create a full relational instantiation of a web site or the tedious effort needed to do
this manually, I will allow the target relational instantiation to be partial. A partial relational
instantiation places only a subset of the tokens into relations. This allows the target to focus
on the “interesting” pieces of the data. For example, given a set of pages from a bookstore, the
target might only have one relation whose rows represent the books and whose columns represent
the attributes (title, author, ISBN, price, etc.), but no other relations to represent other data
that might be available on the site (related books, reviews, etc.).

To evaluate the output with respect to the target, I will initially use the following simple
approach: Consider the neighboring (column-wise and row-wise) pairs of cells in the target
relations. For each such pair, check to see if the pair displays the same column or row arrangement
in the output as it does in the target relation. For example, if A is the left-neighbor of B in the
target relation, then we expect to find A to the left of B (but not necessarily as a neighbor) in
some row of one of the output relations. The recall of the system is given by the ratio of the
number of pairs that agree between the target and output to the number of total pairs in the
target. 4 Note that even though precision can be defined similarly, it is much less meaningful
unless the target relations contain all of the tokens. When the target is only a subset, then the
output contains pairs that are not in the target and the precision is inherently low.

The remaining issue is to find target relational instantiations for web-sites. Following is a list
of possible techniques:

• Synthetic. Create a set of web-sites using the relational model, but that are also repre-
sentative of typical real-world web sites. Use the system to find the relational model and
compare the discovered model to the original model, which becomes the target instantia-
tion.

• User Evaluation. Have a human user manually create the target for sample sites.

• Against Supervised Wrappers. As an alternative to user evaluation, compare the re-
lational data against the data extracted by wrappers generated by hand or by supervised
learning algorithms. Typically only a subset of the data available on a page will be ex-
tracted by such wrappers, but the data will be accurate both in content and relational
structure.

• Against Aggregation Sites. To reduce the number of supervised wrappers, use the
data available on aggregation sites. These sites gather data from a number of sites and
present it in a uniform format. Some examples are PriceGrabber, a comparison shopping

4Because A and B are token sequences, they can possibly be broken into multiple cells or even split across
relations in the output instantiation. Initially, I will use the cell that contains all of a given token-sequence as
the match, and if no such cell exists, I will assume that the neighboring relation does not hold.

17

Site URL
agirlsworlduk http://www.agirlsworld.co.uk
ajelectronicsuk http://www.ajelectronics.co.uk/
appliancebargains http://www.appliancebargains.co.uk/index.php
appliances4u http://www.appliance4u.co.uk/uk2shop.htm
chocolatestoreuk http://www.chocolatestore.com/
family123fr http://www.123famille.com
firstvitality http://www.1stvitality.co.uk/acatalog/index.htm
flowers800 http://www.0800flowers.com
furniture123fr http://www.123meuble.com/boutique/liste rayons.cfm?code lg=lg fr
uksurf http://www.surf.uk.com/index.html
unemilleordifr http://www.1000ordi.fr/
americangolferuk http://shop.american-golf-discount-online-golf-shop.co.uk/online shop/americangolf.html

Table 1: Sites for AutoWrap V1 evaluation

site, CiteSeer, and Google News. These kinds of sites are an easy source of labeled data
for other sites. They present extracted data from many different sites in pages that are
usually easy to extract from with supervised wrappers. This means that one supervised
wrapper for an aggregate site provides data for many different sites.

3.7.1 Evaluation of Existing Tools

To validate the recall metric I described in the previous section, I set up a small test suite to
evaluate AutoWrapV1. The test suite contains 44 page-sets (each page-set corresponding to a
wrapper) containing a total of more than 700 pages. The page-sets were collected from the sites
shown in Table 1.

For each page-set, a manually trained wrapper was available. These wrappers extract only
a a few items from each page-set, but they work with 100% recall and precision on the pages in
the test-suite. The output of each wrapper is one or more tables. For example, for a page that
lists the names of cities in a given state, a typical wrapper will output two tables: One for the
names of the states, and another for the names of the cities. The first table will have exactly as
many rows as there are pages, and the second one as many rows as the number of all cities listed.
The tables output by the wrappers define the target relational instantiation for the evaluation.

Next, I generated the relational instantiations using AutoWrap V1. AutoWrap V1 finds
a single template for a given set of pages and then uses the template to extract data, so I ran it
on each page-set separately. Note that this is a substantially easier task than what the proposed
system will be evaluated on. In that evaluation, the system will be run on all pages from a site,
without dividing the pages into page-sets.

To evaluate the output of AutoWrap V1 with respect to the target as defined by the manual
wrappers, I used the recall metric I defined earlier. Table 2 summarizes the results. The ‘tables’
and ‘cells’ columns contain the number of tables and cells in the target instantiation for each
wrapper. The counts for the ‘retrieved’ and ‘relevant’ columns are the sum of the counts for the
individual tables in the target-set.

The important observation to make is that the distribution of the recall score corresponds
to the expected performance of AutoWrap V1, namely that it performs poorly on most page-
sets but does very well on a few of them. This is evidence that the proposed recall score, or a
variation of it, is suitable for evaluating the relational output of the system that I will develop.

3.7.2 Thesis Statement Validation

To validate my thesis statement, I will run a sequence of experiments where I will evaluate the
output of the system over a test suite of web-sites as I vary the number of experts being used.
If my statement holds, then I expect to get better results, both in coverage and recall, as more
experts are used by the system.

18

Site Wrapper Pages Tables Cells Retrieved Relevant Recall
agirlsworlduk Wrapper1 2 3 126 10 111 0.09
agirlsworlduk DetailsWrapper 10 1 50 28 85 0.33
agirlsworlduk ListWrapper 29 2 1369 293 1900 0.15
ajelectronicsuk DetailsWrapper 28 1 140 135 247 0.55
ajelectronicsuk CategoryPageWrapper 8 2 90 14 88 0.16
ajelectronicsuk Wrapper1 1 2 45 0 43 0.00
ajelectronicsuk NoResultsWrapper 14 1 28 18 24 0.75
ajelectronicsuk ListWrapper 18 3 657 56 721 0.08
appliancebargains Wrapper1 1 3 92 41 52 0.79
appliancebargains DetailsWrapper 44 2 716 404 954 0.42
appliancebargains ListWrapper 11 2 186 2 92 0.02
appliancebargains SearchWrapper 6 2 129 126 126 1.00
appliances4u Wrapper1 2 2 120 0 118 0.00
appliances4u ListWrapper 15 2 3741 98 3859 0.03
chocolatestoreuk Wrapper1 1 2 14 6 6 1.00
chocolatestoreuk CategoriesListWrapper 7 2 135 10 133 0.08
chocolatestoreuk ProductListWrapper 11 2 198 16 196 0.08
chocolatestoreuk DetailsWrapper 19 2 169 83 229 0.36
chocolatestoreuk CategoryPageWrapper 7 1 14 5 19 0.26
family123fr NextListWrapper 38 3 3152 137 1737 0.08
family123fr DetailsWrapper 15 1 45 42 72 0.58
family123fr Wrapper1 1 2 32 15 15 1.00
family123fr ListWrapper 33 4 3197 139 1706 0.08
firstvitality EntryWrapper 1 2 15 5 13 0.38
firstvitality SectionWrapper 5 2 120 56 118 0.47
firstvitality DetailsWrapper 26 4 1677 116 1909 0.06
flowers800 Wrapper1 1 2 60 3 58 0.05
flowers800 ListWrapper 11 2 379 39 466 0.08
flowers800 DetailsWrapper 10 1 70 19 123 0.15
furniture123fr DetailsWrapper 15 2 116 55 84 0.65
furniture123fr Wrapper1 2 2 28 0 13 0.00
furniture123fr ListWrapper 24 2 526 35 273 0.13
furniture123fr CategoryWrapper 14 2 96 23 53 0.43
uksurf DetailsWrapper 15 1 105 30 100 0.30
uksurf Wrapper1 1 2 27 25 25 1.00
uksurf ListWrapper 9 2 414 16 412 0.04
unemilleordifr DetailsWrapper 64 1 192 305 305 1.00
unemilleordifr Wrapper1 1 2 141 0 139 0.00
unemilleordifr SubcategoryListingWrapper 20 2 2798 1717 4181 0.41
unemilleordifr ListWrapper 15 3 2394 1441 3532 0.41
americangolferuk ListWrapper 90 2 506 14 169 0.08
americangolferuk EntryPage 1 3 186 6 180 0.03
americangolferuk DetailsWrapper 20 2 142 4 7 0.57
americangolferuk NoResultsWrapper 67 1 134 0 193 0.00
Total 733 89 24571 5587 24886 0.22

Table 2: Results of AutoWrap V1 evaluation

19

4 Contributions

• Structuring the Web. The main contribution of my thesis will be a new approach for
combining heterogeneous substructures in semi-structured web sites to transform them into
relational form. In particular, the approach introduces a relational framework to represent
web-sites, a language for defining substructure experts, and an optimization algorithm that
allows the output of multiple experts to be combined.

• Implemented System. I will also have a fully implemented system capable of handling
many sites without any modification and many more with the addition of new experts.
With the system, massive amounts of data will be available to applications and research
that use only structured data.

• Probabilistic Constraint Satisfaction. Another contribution will be generalizing the
probabilistic-evidence approach I am taking. Littman’s crossword solver, Moore’s link
analysis tool, and the system I propose to develop use the same technique of combining
multiple “experts” by taking the output of the experts as inputs to a probabilistic constraint
satisfaction framework. One of my goals is to investigate the properties of this approach
in general. In particular, I hope to develop search techniques that are applicable in all
instances of the approach.

5 Schedule

Define hint language Summer 2004
Refine probabilistic model
Develop search algorithms
Convert existing experts

and build additional ones
Begin AutoWrap V3

implementation
Evaluate system Fall 2004
Refine search algorithms
Complete AutoWrap V3

implementation
Write dissertation Fall 2004 & Spring 2005

6 Related Work

• Grammar Induction. Starting from a set of positive and negative examples, grammar
induction aims to find a formal grammar or automata for a language that contains the
positive examples but not the negative ones. In general, grammar induction is a hard
problem.

The relational web problem can be cast as a limited form of grammar induction where
the relational structure is imposed on the space of grammars. For example, the grammar
rule for a page is in the form of pagei → cell1cell2 . . . celln and each cell rule is either
celli → literal or celli → relationj. In this formulation, the problem is to choose the
correct rules and instantiate the literals to correct token sequences.

AutoWrap is similar to Sequitur[14] in that both produce hierarchical representations
of their inputs. (In the case of AutoWrap, the representation is also relational.) The
representations are not generalized grammars that can generate other inputs, but they still
capture the structure of the input. Sequitur relies on two hard constraints to limit its

20

search space: Pairs of symbols are unique within the right side of grammar rules and every
rule is used more than once. AutoWrap generalizes the constraint idea in two ways: First,
the constraints, which are representations of different types of substructure, are external
to the search algorithm. Second, AutoWrap evaluates the constraints probabilistically
and avoids getting stuck with conflicting external constraints.

Another research project that is based on grammar induction and that aims to build
wrappers for web pages automatically is RoadRunner[6]. RoadRunner induces grammars
from a set of positive examples and restricts the form of the candidate grammars to turn
its search space into a tractable one.

The disadvantage of grammar induction approaches to wrapper generation is that the types
of grammars that can be induced within reasonable time bounds are not expressive enough
to capture the different types of substructure. The expressiveness issue is somewhat similar
to representing comment blocks within the grammar of a programming language. Even
though the structure of comment blocks is simple, representing them within the grammar
is not. AutoWrap works around this by simplifying the form of the “grammar” and using
external constraints to take advantage of multiple types of substructure.

• Relational Model Learning. The relational learning problem is to find a model that can
predict the values in a relation. The model, which can be decision trees, first order logic
formulas, Markov models, etc., is built based on a given set of tuples from the relation.
Once the model is learned, missing attributes can be predicted based on the values of
known attributes. We will look at Rapier and probabilistic relational models (PRMs), two
approaches that have been applied to the web domain, in detail.

Rapier’s[2] learning algorithm is based on ideas from inductive logic programming (ILP)
research. The extraction pattern language it uses is analogous to the first order logic
formulas of ILP in that the patterns are generalizations of the training examples. Rapier
uses a specific-to-general search to find patterns and guides its search using a compression-
based metric.

PRMs[7] extend Bayesian networks from modeling flat data sets to modeling richer rela-
tional data sets. Like Bayesian networks, PRMs are probabilistic networks that represent
the statistical dependencies of attributes within a single table, but in addition to Bayesian
networks, the dependencies in PRMs also include attributes from related tables. Once the
parameters of a PRM are determined, it assigns a probability to any instantiation of the
relational structure.

In general, relational model learning approaches are difficult to apply to the web wrapping
problem, because these approaches assume that their input is from a relational source. In
the web wrapping problem, the bulk of observable data is in the form of token sequences.
To apply relational model learning approaches, the web sites need to be converted into
relational form first.

One way to do the conversion is to use a meta-model where the relations do not model
the relations between the data but between the objects, such as pages and tokens, that
represent the data[8]. To capture the sequential relation between tokens, the meta-model
has to introduce either some “precedes” relation or indices to label the tokens. In the first
case, long range structures, such as between the header and footer of a page, are hard to
discover. In the second case, the indices need to be treated specially, because withing the
relational model, indices do not carry their usual ordering and closeness meaning.

A second way is to start with a known relational model for the data[16]. This approach is
useful in classifying and clustering pages when the underlying relational model is known,
but applying it to new sites requires additional manual modeling work.

21

In contrast to relational model learning approaches, where the algorithms look for a model
that best fits the relational data, AutoWrap searches for a relational representation of
the (sequential and linked) data that best represents the multiple types of substructure of
the data.

• Data Mining in Graphs. Subdue[4] is a system that discovers substructures in struc-
tural data represented as graphs. Objects in the system are represented by nodes or small
subgraphs, and relations between them by edges. Substructures are subgraphs that occur
multiple times in the graph. Subdue builds a dictionary of substructures and replaces
the occurrences, which may match only approximately to the substructures, by references
to the entries of the dictionary. The process is repeated on the resulting graph and sub-
structures are allowed to contain references to existing substructures. In this way, nested
substructures can be discovered.

The HierachicalTemplate algorithm and the Subdue approach are similar in that
starting from instances of a concept, both induce the concept and replace the instances
with references to the concept and so are able to discover complex structures. In the case
of HierachicalTemplate, the instances are the rows of a list and the concept is the row
template. In Subdue, the instances are the subgraphs and the concept is a pattern that
matches the subgraphs.

In some ways, the HierachicalTemplate algorithm is a specialized version of Subdue,
because it works on a particular graph, the DOM tree, and looks for a particular kind of
substructure. As in the relation learning case, applying graph mining techniques to the
web wrapping problem suffers from the fact that the token sequences are not easily put
into structured form.

• Wrapper Induction. In its simplest form, a wrapper is a function that maps web pages
to labels[12]. A label is usually just a substring of the page it is mapped from. The wrapper
induction algorithms take as training examples a set of labeled pages and typically find
regular-expression like patterns to locate the labels within the pages.

Extensions to the basic wrapper, such as in Stalker[11], are possible so that the induced
wrapper extracts structured data instead of labels. The input to Stalker is the embedded
catalog, which defines the hierarchical structure of the data in terms of lists, groups and
items, and a set of training examples, which are labeled pages. A page is labeled by marking
up the data to be extracted on the page and linking it to its role in the embedded catalog.
Stalker then learns a set of extraction rules using a covering algorithm and attaches them
to the embedded catalog. The embedded catalog together with the attached rules is a
wrapper that can extract structured data.

Wrapper induction systems like Stalker are very useful in reducing the time to generate a
wrapper by hand, but they have several shortcomings: First, an induced wrapper typically
works on a single type of page. Second, a wrapper makes available only the type of data
that it is trained on (e.g., if a wrapper is built to extract zip codes, it will not extract state
abbreviations). And most importantly, wrapper induction requires human effort to create
training sets.

In contrast, AutoWrap can wrap a web site without any training sets and will turn most,
if not all, data that is on the site into machine processable form. In fact AutoWrap’s
output can be viewed as the result of building and applying all possible wrappers for a
given site.

• Table Extraction. Table extraction research focuses on detection and understanding
of tables in text and web documents. Detection involves locating the tables on a page,
or more generally on a set of pages. Understanding involves segmenting the data into

22

cells and aligning them correctly. The current techniques either rely on the layout of the
document or on the syntax and semantics of its content. Either technique works well on
some documents and not others, but combining the two approaches is also possible[10].

AutoWrap is attacking a bigger problem, which includes table extraction as a sub-
problem (in fact, it could use a table extraction algorithm as one of its experts). Even
though the problem is bigger, AutoWrap is potentially at an advantage, because it starts
with a richer input that can include multiple samples of a single table structure and other
types of substructure linked to the tabular data.

• Probabilistic Constraint Satisfaction. AutoWrap takes a similar approach to Pro-
verb[15], a crossword puzzle solver. Proverb has a number of “experts” that given a
clue, output their list of best candidate answers together with probabilistic preferences
assigned to each candidate. The solution to the puzzle is found by globally optimizing
the probability assignment for the particular choice of answers. AutoWrap’s multiple
substructure experts are analogous to Proverb’s experts, and the hints play the role of
probabilistic preferences.

References

[1] M. M. Astrahan and others. System r: Relational approach to database management. In
J. Mylopoulos and M. L. Brodie, editors, Readings in Artificial Intelligence and Databases,
pages 560–580. Kaufmann, San Mateo, CA, 1989.

[2] M. E. Califf and R. J. Mooney. Relational learning of pattern-match rules for information
extraction. In Working Notes of AAAI Spring Symposium on Applying Machine Learning
to Discourse Processing, pages 6–11, Menlo Park, CA, 1998. AAAI Press.

[3] Michael J. Carey, Jerry Kiernan, Jayavel Shanmugasundaram, Eugene J. Shekita, and
Subbu N. Subramanian. XPERANTO: Middleware for publishing object-relational data
as XML documents. In The VLDB Journal, pages 646–648, 2000.

[4] Diane J. Cook and Lawrence B. Holder. Graph-based data mining. IEEE Intelligent Sys-
tems, 15(2):32–41, 2000.

[5] Mark Craven, Dan DiPasquo, Dayne Freitag, Andrew K. McCallum, Tom M. Mitchell,
Kamal Nigam, and Seán Slattery. Learning to extract symbolic knowledge from the World
Wide Web. In Proceedings of AAAI-98, 15th Conference of the American Association for
Artificial Intelligence, pages 509–516, Madison, US, 1998. AAAI Press, Menlo Park, US.

[6] Valter Crescenzi, Giansalvatore Mecca, and Paolo Merialdo. Roadrunner: Towards auto-
matic data extraction from large web sites. In Proceedings of 27th International Conference
on Very Large Data Bases, pages 109–118, 2001.

[7] Lise Getoor, Nir Friedman, Daphne Koller, and Benjamin Taskar. Learning probabilistic
models of relational structure. In Proc. 18th International Conf. on Machine Learning,
pages 170–177. Morgan Kaufmann, San Francisco, CA, 2001.

[8] Lise Getoor, Eran Segal, Ben Taskar, and Daphne Koller. Probabilistic models of text
and link structure for hypertext classification, 2001. IJCAI Workshop on ”Text Learning:
Beyond Supervision”.

[9] D. S. Hirschberg. A linear space algorithm for computing maximal common subsequences.
Commun. ACM, 18(6):341–343, 1975.

23

[10] M. Hurst. Layout and language: An efficient algorithm for text block detection based on
spatial and linguistic evidence. In Proc. Document Recognition and Retrieval VIII, pages
56–67, 2001.

[11] Craig A. Knoblock, Kristina Lerman, Steven Minton, and Ion Muslea. Accurately and reli-
ably extracting data from the web: A machine learning approach, pages 275–287. Intelligent
Exploration of the Web. Springer-Verlag, Berkeley, CA, 2003.

[12] Nicholas Kushmerick. Wrapper induction: Efficiency and expressiveness. Artificial Intelli-
gence, 118(1-2):15–68, 2000.

[13] Kristina Lerman, Craig Knoblock, and Steven Minton. Automatic data extraction from
lists and tables in web sources, 2001. Automatic Text Extraction and Mining workshop
(ATEM-01).

[14] C. Nevill-Manning and I. Witten. Identifying hierarchical structure in sequences: A linear-
time algorithm. Journal of Artificial Intelligence Research, 7:67–82, 1997.

[15] Noam M. Shazeer, Michael L. Littman, and Greg A. Keim. Solving crossword puzzles as
probabilistic constraint satisfaction. In AAAI/IAAI, pages 156–162, 1999.

[16] Benjamin Taskar, Eran Segal, and Daphne Koller. Probabilistic classification and clustering
in relational data. In Bernhard Nebel, editor, Proceeding of IJCAI-01, 17th International
Joint Conference on Artificial Intelligence, pages 870–878, Seattle, US, 2001.

A Sample Pages

The pages in this appendix are for the discussion in the introduction.

24

Figure 5: Product List

25

Figure 6: Product Details 1

26

Figure 7: Product Details 2

27

B AutoWrap V1 Sample

The first two figures are samples of pages collected from the Allegheny County Real Estate Web
site. (The figures are the displayed versions of these pages. AutoWrapruns on the html source.)
Each page gives detailed information about a particular property. AutoWrap V1 was run on
the collection of forty such pages. The next two figures show the extracted data. Some columns
were removed from the raw output to make the tables fit on the printed pages, and column
labels were added manually to improve readability. In the first table, each row corresponds to
a sample page. The attributes column (M) contains cells that refer to the second table. Each
reference includes an identifier that selects the related rows of the second table. Note that the
second table would have been better represented with only the three columns id, key, and value.

28

Go to Allegheny County Web site ALLEGHENY COUNTY
REAL ESTATE WEB SITE

 4/9/2004 12:51:23 PM
Search Results Search Page Help Home

OWNER GENERAL INFORMATION
Municipal Code: 828 FOREST HILLS

 Block Lot: 0234-M-00076-0000-00 School District: Woodland Hills
 Previous Block Lot: 0234-M-00076-0000-00 Neighborhood Code: 82810

 Owner Name: DURANTI THEODORA R MARIA D BERTA
 Property Location: 238 CASCADE DR

PITTSBURGH, PA 15221

 Tax Code: Taxable Sale Date: 10/8/2003
 Owner code: Regular Sale Price: $1
 State Code: Residential Deed Book: 11812
 Use Code: Single Family Deed Page: 588
 Homestead: Yes Abatement: No
 Farmstead: No Lot Area (SQFT): 7,998

 2003 Market Value: $112,900

 County Assessed Value Full Market Value
 Total Land Value $18,900 Total Land Value $18,900
 Total Building Value $79,000 Total Building Value $94,000
 Total Market Value $97,900 Total Market Value $112,900

Address Information

 Tax Bill Mailing: DURANTI THEODORA R
1231 BARTOW ST
PITTSBURGH, PA 15205-

Change Notice Mailing: 1231 BARTOW ST

PITTSBURGH, PA 15205-

Legal Disclaimer

F
ig

u
re

8
:

D
eta

ils
1

2
9

Go to Allegheny County Web site ALLEGHENY COUNTY
REAL ESTATE WEB SITE

 4/9/2004 12:54:31 PM
Search Results Search Page Help Home

OWNER GENERAL INFORMATION
Municipal Code: 108 PITTSBURGH - 8TH WARD

 Block Lot: 0026-M-00170-0000-00 School District: City Of Pittsburgh
 Previous Block Lot: 0026-M-00170-0000-00 Neighborhood Code: 10802

 Owner Name: MILLARD JACQUES A & ROEY VANASKY
 Property Location: 100 MOREWOOD AVE

PITTSBURGH, PA 15213

 Tax Code: Taxable Sale Date: 7/7/1993
 Owner code: Regular Sale Price: $66,800
 State Code: Residential Deed Book: 9003
 Use Code: Single Family Deed Page: 14
 Homestead: Yes Abatement: No
 Farmstead: No Lot Area (SQFT): 3,228

 2003 Market Value: $59,400

 County Assessed Value Full Market Value
 Total Land Value $12,300 Total Land Value $12,300
 Total Building Value $32,100 Total Building Value $47,100
 Total Market Value $44,400 Total Market Value $59,400

Address Information

 Tax Bill Mailing: VALLEY NATIONAL BANK
1460 VALLEY RD
WAYNE, NJ 07470-

Change Notice Mailing: 100 MOREWOOD AVE

PITTSBURGH, PA 15213-1121

Legal Disclaimer

F
ig

u
re

9
:

D
eta

ils
2

3
0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

A B C D E F G H I J K L M N O
School District Neighorhood Attributes

828 FOREST HILLS 234 M 76 Woodland Hills 82810 DURANTI THEODORA R MARIA D BERTA 238 CASCADE DR <tbl=3 id=0> 112 900
828 FOREST HILLS 234 H 158 Woodland Hills 82810 MCCARTY MARY JANE 100 CASCADE RD <tbl=3 id=1> 96 500
828 FOREST HILLS 234 H 156 Woodland Hills 82810 GOOD CHARLES S DONNA T 102 CASCADE RD <tbl=3 id=2> 87 500
828 FOREST HILLS 234 H 54 Woodland Hills 82810 PERRY JOHN GLORIA J (W) 103 CASCADE RD <tbl=3 id=3> 105 500
828 FOREST HILLS 234 H 154 Woodland Hills 82810 DATESH JOHN N JR EDWINA S (W) 104 CASCADE RD <tbl=3 id=4> 96 000
828 FOREST HILLS 234 H 152 Woodland Hills 82810 REARICK JUDITH A 106 CASCADE RD <tbl=3 id=5> 108 600
828 FOREST HILLS 234 H 150 Woodland Hills 82810 GAMBINO MICHAEL J SALLY A (W) 108 CASCADE RD <tbl=3 id=6> 138 900
828 FOREST HILLS 300 B 60 Woodland Hills 82811 STEINER MIRIAM L 127 CASCADE RD <tbl=3 id=7> 150 300
828 FOREST HILLS 234 H 148 Woodland Hills 82810 RUFFALO JOHN P DENISE M (W) 220 CASCADE RD <tbl=3 id=8> 121 500
828 FOREST HILLS 234 H 146 Woodland Hills 82810 KING JAMES W JUDITH A (W) 222 CASCADE RD <tbl=3 id=9> 115 100
828 FOREST HILLS 234 H 144 Woodland Hills 82810 RUSSO ANTHONY M PATRICIA A 224 CASCADE RD <tbl=3 id=10> 88 000
828 FOREST HILLS 234 M 56 Woodland Hills 82810 MATICH MARK MARY A (W) 225 CASCADE RD <tbl=3 id=11> 113 200
828 FOREST HILLS 234 H 142 Woodland Hills 82810 STAUFF JAMES M JR KATHERINE E (W) 226 CASCADE RD <tbl=3 id=12> 135 000
828 FOREST HILLS 234 M 54 Woodland Hills 82810 CHORLE BERNADETTE 227 CASCADE RD <tbl=3 id=13> 86 600
828 FOREST HILLS 234 M 66 Woodland Hills 82810 MCEWEN ROGER G SUSAN E MC EWEN 228 CASCADE RD <tbl=3 id=14> 95 100
828 FOREST HILLS 234 M 52 Woodland Hills 82810 GUY RICHARD J JR 229 CASCADE RD <tbl=3 id=15> 90 000
828 FOREST HILLS 234 M 68 Woodland Hills 82810 MANSFELD WALTER V JACQUELINE E (W) 230 CASCADE RD <tbl=3 id=16> 115 300
828 FOREST HILLS 234 M 50 Woodland Hills 82810 RISHEL DOUGLAS M LINDA L (W) 231 CASCADE RD <tbl=3 id=17> 145 400
828 FOREST HILLS 234 M 70 Woodland Hills 82810 PATALSKI EDWARD J ELAINE (W) 232 CASCADE RD <tbl=3 id=18> 105 500
828 FOREST HILLS 234 M 72 Woodland Hills 82810 NAGEL GEORGE W MARY D 234 CASCADE RD <tbl=3 id=19> 118 400
108 PITTSBURGH - 8TH WARD 51 J 108 City Of Pittsburgh 108C3 OLANDER H WARD OLANDER H WARD 50 % SHIRLEY OLANDER 50 %MOREWOOD AVE <tbl=3 id=20> 1 925 , 600
108 PITTSBURGH - 8TH WARD 51 J 177 0001 - 00 City Of Pittsburgh 108C9 PORT AUTHORITY OF ALLEG CO MOREWOOD AVE <tbl=3 id=21> 1 400
108 PITTSBURGH - 8TH WARD 51 J 178 0001 - 00 City Of Pittsburgh 108C9 PORT AUTHORITY OF ALLEG CO MOREWOOD AVE <tbl=3 id=22> 1 500
108 PITTSBURGH - 8TH WARD 51 J 181 0001 - 00 City Of Pittsburgh 108C9 PORT AUTHORITY OF ALLEGHENY COUNTY MOREWOOD AVE <tbl=3 id=23> 300
108 PITTSBURGH - 8TH WARD 51 J 181 0002 - 00 City Of Pittsburgh 108C9 PORT AUTH OF ALLEG CO MOREWOOD AVE <tbl=3 id=24> 5 200
108 PITTSBURGH - 8TH WARD 51 J 183 0001 - 00 City Of Pittsburgh 108C9 PORT AUTHORITY OF ALLEGHENY COUNTY MOREWOOD AVE <tbl=3 id=25> 4 100
108 PITTSBURGH - 8TH WARD 51 J 183 0002 - 00 City Of Pittsburgh 108C9 PORT AUTH OF ALLEG CO MOREWOOD AVE <tbl=3 id=26> 2 600
108 PITTSBURGH - 8TH WARD 51 J 187 0001 - 00 City Of Pittsburgh 108C9 PORT AUTHORITY OF ALLEGHENY COUNTY MOREWOOD AVE <tbl=3 id=27> 16 300
108 PITTSBURGH - 8TH WARD 51 J 187 0002 - 00 City Of Pittsburgh 108C9 PORT AUTH OF ALLEG CO MOREWOOD AVE <tbl=3 id=28> 1 300
108 PITTSBURGH - 8TH WARD 51 J 190 0001 - 00 City Of Pittsburgh 10802 PORT AUTHORITY OF ALLEGHENY COUNTY MOREWOOD AVE <tbl=3 id=29> 13 500
108 PITTSBURGH - 8TH WARD 51 J 190 0001 - 01 City Of Pittsburgh 108C9 PORT AUTH OF ALLEGHENY CO MOREWOOD AVE <tbl=3 id=30> 14 700
108 PITTSBURGH - 8TH WARD 51 J 193 0001 - 00 City Of Pittsburgh 108C9 PORT AUTHORITY OF ALLEGHENY COUNTY MOREWOOD AVE <tbl=3 id=31> 11 100
108 PITTSBURGH - 8TH WARD 26 M 170 City Of Pittsburgh 10802 MILLARD JACQUES A ROEY VANASKY 100 MOREWOOD AVE <tbl=3 id=32> 59 400
108 PITTSBURGH - 8TH WARD 26 M 204 City Of Pittsburgh 10802 SHEPHERD ' S HEART FELLOWSHIP 103 MOREWOOD AVE <tbl=3 id=33> 75 400
108 PITTSBURGH - 8TH WARD 26 M 202 City Of Pittsburgh 10802 JIANG YUAN 105 MOREWOOD AVE <tbl=3 id=34> 56 700
108 PITTSBURGH - 8TH WARD 26 M 201 City Of Pittsburgh 10802 SHARP KENNETH G 107 MOREWOOD AVE <tbl=3 id=35> 83 700
108 PITTSBURGH - 8TH WARD 26 M 198 City Of Pittsburgh 10802 CHATHA PREVEZ IQBAL DR IFIKHAR AHMED CHATHA 113 MOREWOOD AVE <tbl=3 id=36> 55 100
108 PITTSBURGH - 8TH WARD 26 M 183 City Of Pittsburgh 10802 SHADYOAK PROPERTIES 114 MOREWOOD AVE <tbl=3 id=37> 53 300
108 PITTSBURGH - 8TH WARD 26 M 197 City Of Pittsburgh 10802 LINDQUIST OLGA M 115 MOREWOOD AVE <tbl=3 id=38> 54 600
108 PITTSBURGH - 8TH WARD 26 M 196 City Of Pittsburgh 10802 BARTOLINI NAZZARENO F DONNA M (W) 117 MOREWOOD AVE <tbl=3 id=39> 63 900

2003 Market ValueMunicipal Code Block Lot No Owner Name Property Location

F
ig

u
re

1
0
:

E
x
tra

cted
T
a
b
le

(0
)

3
1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

A B C D E
Id Key Value Key Value
0 Tax Code Taxable Sale Date 10/8/2003
0 Owner code Regular Sale Price $1
0 State Code Residential Deed Book 11812
0 Use Code Single Family Deed Page 588
0 Homestead Yes Abatement No
0 Farmstead No Lot Area (SQFT) 7 , 998
1 Tax Code Taxable Sale Date 3/3/2004
1 Owner code Regular Sale Price $ 121 , 000
1 State Code Residential Deed Book 11964
1 Use Code Single Family Deed Page 48
1 Homestead No Abatement No
1 Farmstead No Lot Area (SQFT) 7 , 098
2 Tax Code Taxable Sale Date
2 Owner code Regular Sale Price $0
2 State Code Residential Deed Book 0
2 Use Code Single Family Deed Page 0
2 Homestead Yes Abatement No
2 Farmstead No Lot Area (SQFT) 7 , 500
3 Tax Code Taxable Sale Date 8/13/1993
3 Owner code Regular Sale Price $ 90 , 000
3 State Code Residential Deed Book 9031
3 Use Code Single Family Deed Page 543
3 Homestead Yes Abatement No
3 Farmstead No Lot Area (SQFT) 7 , 500
4 Tax Code Taxable Sale Date 7/18/1983
4 Owner code Regular Sale Price $ 81 , 000
4 State Code Residential Deed Book 6694
4 Use Code Single Family Deed Page 225
4 Homestead Yes Abatement No
4 Farmstead No Lot Area (SQFT) 7 , 500
5 Tax Code Taxable Sale Date 10/4/1993
5 Owner code Regular Sale Price $ 92 , 000
5 State Code Residential Deed Book 9068
5 Use Code Single Family Deed Page 292
5 Homestead Yes Abatement No
5 Farmstead No Lot Area (SQFT) 7 , 500
6 Tax Code Taxable Sale Date 3/21/1996
6 Owner code Regular Sale Price $ 127 , 000
6 State Code Residential Deed Book 9654
6 Use Code Single Family Deed Page 54
6 Homestead Yes Abatement No
6 Farmstead No Lot Area (SQFT) 7 , 500

Figure 11: Extracted Table (3)

32

C AutoWrap V2 Sample

This sample was created by running the system on a small set of pages from Yahoo Sports.
The entry page is shown in figure 12. The spidering rule was set to fetch another list page (by
chasing one of the “Players by Last Name” links), all the player pages (e.g., fig. 13) linked to
the list pages, and a few other pages (e.g., fig. 14). After finding the navigation and detail
pages, AutoWrap V2 extracted the data shown in figure 15 from the detail pages. Only the
first few columns of this table are shown and columns that contain tokens that are not visible
in the displayed pages have been removed.

33

Yahoo! My Yahoo! Mail

Welcome, bgzn
[Sign Out, My Account] Sports Home

 Home NFL MLB NBA NHL NCAA Men's Hoops Golf NASCAR Tennis More... Fantasy

 NBA Home Scores & Schedule Standings Stats Teams Players Injuries

Players
Search by Name: GO!

 Players by Last Name

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

 Players by Position

 NBA: PG | SG | G | SF | PF | F | C
 Eastern: PG | SG | G | SF | PF | F | C
 Western: PG | SG | G | SF | PF | F | C

 Players by Name: V

 Name Position Team

 Remon Van de Hare C Orlando Magic
 Nick Van Exel PG Golden State Warriors
 Keith Van Horn SF Milwaukee Bucks
 Jacque Vaughn PG Atlanta Hawks
 Alexander Volkov G Los Angeles Lakers
 Jake Voskuhl C Phoenix Suns
 Slavko Vranes C Portland Trail Blazers
 Milos Vujanic PG Phoenix Suns

ADVERTISEMENT

Search: for Yahoo! Sports Search

Copyright © 2004 Yahoo! Inc. All rights reserved. Privacy Policy - Terms of Service - Copyright Policy - Help - Ad Feedback

Copyright © 2004 STATS, Inc. All Rights Reserved

Figure 12: List of Players

34

Yahoo! My Yahoo! Mail

Welcome, bgzn
[Sign Out, My Account] Sports Home

 Home NFL MLB NBA NHL NCAA Men's Hoops Golf NASCAR Tennis More... Fantasy

 NBA Home Scores & Schedule Standings Stats Teams Players Injuries

Last updated through games completed on Apr 12, 2004

Nick Van Exel #37 | Point Guard | Golden State Warriors
Height: 6-1 Weight: 195 Born: Nov 27, 1971 - Kenosha, Wisconsin College: Cincinnati
Draft: 1993 - 2nd round (37th overall) by the Los Angeles Lakers

Profile | Splits | Career Stats | Game Log | News & Notes | Photos

Injured List as of Mar 1, 2004 (Chronic left knee i nflammation)

 Recent News

 • Musselman could be out despite Golden State's revival Apr 10 (AP)
 • Warriors 97, Rockets 90 Apr 7 (AP)
 • Warriors 103, Cavaliers 100 Apr 3 (AP)
More News

 Guard Comparisons

 Scoring Assists Steals 3PT Made

Van Exel

League Average

League Leader

 Next Game (4/13 vs. LAL) FG 3PT FT Rebounds Misc

 G Min M A Pct M A Pct M A Pct Off Def Tot Ast TO Stl

 Last game vs LAL 0 27 5 10 50.0 0 2 0.0 3 4 75.0 0 2 2 4 2 0

 Career vs. LAL 21 36.1 7.0 17.4 40.2 1.9 5.5 33.9 3.3 4.0 83.3 0.2 3.0 3.2 7.7 2.4 0.5

 Away (this year) 22 29.8 4.3 11.3 38.3 1.1 3.4 32.4 1.2 1.6 75.0 0.5 2.1 2.6 4.8 2.0 0.5

 3+ Days Rest (this year) 7 25.0 4.7 9.4 50.0 0.6 2.9 20.0 2.1 3.6 60.0 0.3 1.3 1.6 4.3 1.7 0.6

 Season Outlook FG 3PT FT Rebounds Misc

 G Min M A Pct M A Pct M A Pct Off Def Tot Ast TO Stl Blk

 Last 5 Games 5 28.2 2.6 9.4 27.7 0.6 3.6 16.7 2.0 2.4 83.3 0.4 3.4 3.8 4.2 1.6 0.4 0.2

 Feb 21 (SEA) 1 33 2 10 20.0 0 5 0.0 4 6 66.7 0 6 6 5 3 0

 Feb 24 (@ IND) 1 30 4 11 36.4 2 5 40.0 2 2 100.0 0 2 2 3 3 1

 Feb 25 (@ MEM) 1 11 0 1 0.0 0 0 0.0 2 2 100.0 0 0 0 3 1 0

 Feb 27 (@ MIN) 1 32 4 10 40.0 0 3 0.0 2 2 100.0 1 5 6 7 1 1

 Feb 28 (@ CHI) 1 35 3 15 20.0 1 5 20.0 0 0 0.0 1 4 5 3 0 0

 2003 Year to Date 39 32.2 4.8 12.3 39.0 1.2 3.9 30.7 1.8 2.5 70.7 0.4 2.3 2.7 5.3 2.0 0.5 0.1

 Recent Career FG 3PT FT Rebounds Misc

 Year Team G Min M A Pct M A Pct M A Pct Off Def Tot Ast TO Stl

 2001 DAL 27 28.0 4.8 11.6 41.1 1.3 3.6 34.7 2.4 2.9 84.4 0.3 2.8 3.1 4.2 1.5 0.5

 2002 DAL 73 27.8 4.7 11.4 41.2 1.6 4.3 37.8 1.5 2.0 76.4 0.5 2.4 2.9 4.3 1.7 0.6

 2003 GS 39 32.2 4.8 12.3 39.0 1.2 3.9 30.7 1.8 2.5 70.7 0.4 2.3 2.7 5.3 2.0 0.5

 Career 762 34.6 5.6 13.8 40.6 1.8 5.1 35.5 2.3 2.9 79.6 0.5 2.5 3.0 7.1 2.2 0.9

Search: for Yahoo! Sports Search

Copyright © 2004 Yahoo! Inc. All rights reserved. Privacy Policy - Terms of Service - Copyright Policy - Help - Ad Feedback

Figure 13: Player Page

35

Yahoo! My Yahoo! Mail

Sign In
New User? Sign Up Sports Home

 Home NFL MLB NBA NHL NCAA Men's Hoops Golf NASCAR Tennis More... Fantasy

 NBA Home Scores & Schedule Standings Stats Teams Players Injuries

Apr 12 | Apr 13 | Apr 14

Page Refresh: Off | 30 seconds | 60 seconds

Scores & Schedule: Apr 13

Get scores any way you want them. Follow your favorite teams with

personalized team scores.

2003 - 2004 Season
Oct 2003
Nov 2003
Dec 2003
Jan 2004

Feb 2004
Mar 2004
Apr 2004

 << April 2004

S M T W

4 5 6 7

11 12 13 14

18 19 20 21

25 26 27 28

 NBA Scores

 Tuesday, Apr. 13, 2004

Detroit 54-27 (Road: 23-17) 7:30pm

Toronto 31-49 (Home: 17-23) ET

Preview - Add to Calendar - Buy Tickets

Memphis 50-30 (Road: 19-21)

Dallas 50-30 (Home: 35-5)

Preview - Add to Calendar - Buy Tickets

LA Clippers 27-53 (Road: 9-31) 10:00pm

Phoenix 28-52 (Home: 18-22) ET

Preview - Add to Calendar - Buy Tickets

Golden State 36-44 (Road: 10-30)

LA Lakers 54-26 (Home: 33-7)

Preview - Add to Calendar - Buy Tickets

Search: for Yahoo! Sports Search

Copyright © 2004 Yahoo! Inc. All rights reserved. Privacy Policy - Terms of Service - Copyright Policy - Help - Ad Feedback

Copyright © 2004 SportsTicker Enterprises LP. All Rights Reserved

 Figure 14: “Other” Page

1
2
3
4
5
6
7
8
9
10
11

A B C D E F G
Name Number | Position Team Height Weight Born College
Milos Vujanic 99 | Point Guard pho">Phoenix Suns 6-2 190 =- Partizan, Yugoslavia None
Alexander Volkov 6 | Guard lal">Los Angeles Lakers 6-10 220 Mar 28, 1964 - Omsk, USSR Kiev Institute
Remon Van de Hare | Center orl">Orlando Magic 7-2 253 May 23, 1982 - Amsterdam, Holland None
Galen Young 3 | Shooting Guard sea">Seattle SuperSonics 6-6 230 Oct 16, 1975 - Memphis, Tennessee Charlotte
Nick Van Exel 37 | Point Guard gsw">Golden State Warriors 6-1 195 Nov 27, 1971 - Kenosha, Wisconsin Cincinnati
Xue Yuyang | Forward-Center den">Denver Nuggets 7-1 210 Oct 4, 1982 - Henan, China None
Slavko Vranes 29 | Center por">Portland Trail Blazers 7-5 275 Jan 30, 1983 - Belgrade, Serbia-Montenegro None
Jake Voskuhl 43 | Center pho">Phoenix Suns 6-11 245 Nov 1, 1977 - Tulsa, Oklahoma Connecticut
Keith Van Horn 44 | Small Forward mil">Milwaukee Bucks 6-10 245 Oct 23, 1975 - Fullerton, California Utah
Jacque Vaughn 11 | Point Guard atl">Atlanta Hawks 6-1 190 Feb 11, 1975 - Los Angeles, California Kansas

Figure 15: Extracted Data

36

