
Physically Based Modeling: Principles and Practice
Constrained Dynamics

Andrew Witkin
Robotics Institute
Carnegie Mellon University

Please note: This document is 1997 by Andrew Witkin. This chapter may be
freely duplicated and distributed so long as no consideration is received in return,
and this copyright notice remains intact.

Constrained Dynamics

Andrew Witkin
School of Computer Science
Carnegie Mellon University

1 Beyond penalty methods

The idea of constrained particle dynamics is that our description of the system includes not only
particles and forces, but restrictions on the way the particles are permitted to move. For example,
we might constrain a particle to move along a specified curve, or require two particles to remain
a specified distance apart. The problem of constrained dynamics is to make the particles obey
Newton’s laws, and at the same time obey the geometric constraints.

As we learned earlier, energy functions provide a sloppy, approximate constraint mechanism.
A spring with rest lengthr makes the particles it connects “want” to be distancer apart. How-
ever, the spring force competes with all other forces acting on the particles—gravity, other springs,
forces applied by the user, etc. The constraint can only win this tug-of-war if its spring constant is
large enough to overpower all competing influences, so that very small displacements induce large
restoring forces. As we saw in the last section, this is really no solution because it gives rise to
stiff differential equations which are all but numerically intractible. The use of extra energy terms
to impose constraints is known as thepenalty method.If we want both accurate constraints and
numerical tractibility, then penalty methods will not fill the bill.

Penalty constraints work, to the extent they do, because the restoring forces cancel applied forces
that would otherwise break the constraints. The fundamental difficulty with penalty constraints is
that the applied forces and restoring forces communicate only indirectly, through displacements.
In effect, the displacements produced by applied forces act as signals that tell the constraint what
restoring force is required. This is not a good communication mechanism because it is impossible
to acheive accuracy without stiffness.

The basic approach to avoiding this problem is to directly calculate the forces required to main-
tain the constraints, rather than relying on displacements and restoring forces to do the job. The job
of theseconstraint forcesis to cancel just those parts of the applied forces that act against the con-
straints. Since forces influence acceleration, this means specifically that the constraint forces must
convert the particles’ accelerations into “legal” accelerations that are consistent with the constraints.

2 A bead on a wire

We introduce the approach using the simple example of a 2D particle constrained to move on the
unit circle. We can express the constraint by writing a scalar behavior function, as we did in Chapter
C to create energy functions,

C(x) = 1

2
(x · x − 1), (1)

F1

Maintaining Constraints Differentially

C = 0 C = 0

C = 0

Point-on-circle constraint:

C = 0 legal position
C = 0 legal velocity
C = 0 legal acceleration

C = 1
2
()x⋅x - 1

Add in a constraint force that
ensures legal acceleration.

Figure 1: If the initial position and velocity are consistent with the constraints, then the constraint
can be maintained by ensuring that the acceleration is always legal thereafter.

so that the legal positions ofx are all those that satisfyC(x) = 0. The functionC is an implicit
functionfor the constraint. Ifx is a legal position, then the legalvelocitiesare all those that satisfy

Ċ = x · ẋ = 0. (2)

In turn, the legalaccelerationsare all those that satisfy

C̈ = ẍ · x + ẋ · ẋ = 0. (3)

If we start out with a legal position and velocity, then to maintain the constraint, in principal, we
need only ensure that equation 3 is satisfied at every instant thereafter. See figure 1 The particle’s
acceleration is

ẍ = f + f̂
m

, (4)

wheref is the given applied force, andf̂ is the as yet unknown constraint force. Substituting forẍ in
equation 3 gives

C̈ = f + f̂
m

· x + ẋ · ẋ = 0, (5)

or
f̂ · x = −f · x − mẋ · ẋ. (6)

2.1 The principal of virtual work

We have only one equation and two unknowns—the two components off̂—so we cannot solve
for the constraint force without an additional condition. We get that condition by requiring that

SIGGRAPH ’97 COURSENOTES F2 PHYSICALLY BASED MODELING

the constraint force never add energy to nor remove energy from the system, i.e. the constraint is
passive and lossless. The kinetic energy is

T = m

2
ẋ · ẋ,

and its time derivative is
Ṫ = mẍ · ẋ = mf · ẋ + mf̂ · ẋ,

which is thework done byf and f̂. Requiring that the constraint not change the energy means that
the last term must be zero, i.e. that the constraint force does no work. A subtle point is that we are
enjoining the constraint force fromeverdoing work, rather than saying that it happens not to be at
the moment. We therefore require thetf̂ · ẋ vanish forevery legal̇x, i.e.

f̂ · ẋ = 0, ∀ẋ | x · ẋ = 0.

This condition simply states thatx̂ must point in the direction ofx, so we can rewrite the constraint
force as

f̂ = λx,

whereλ is an unknown scalar. Substituting forf̂ in equation 6, and solving forλ gives

λ = −f · x − mẋ · ẋ
x · x

. (7)

Having solved forλ, we calculatêf = λx, thenẍ = (f̂ + f)/m, and proceed with the simulation in
the usual way.

In its general form, the condition we imposed onf̂ is known asthe principal of virtual work.[2]
See figure 2 for an illustration.

2.2 Feedback

If we were solving the differential equation exactly, this procedure would keep the particle exactly
on the unit circle, provided we began with valid initial conditions. In practice, we know that nu-
merical solutions to ODE’s drift. We must add an extra feedback term to prevent this numerical
drift from accumulating, turning the circle into an outward spiral. The feedback term can be just a
damped spring force, pulling the particle back onto a unit circle. The feedback force needs to be
added inafter the constraint force calculation, or else the constraint force will dutifully cancel it!
We will discuss feedback in more detail in the next section.

2.3 Geometric Interpretation

When the system is at rest, the constraint force given in equation 7 reduces to

f̂ = − f · x
x · x

x, (8)

which has clear geometric interpretation as the vector that orthogonally projectsf onto the circle’s
tangent. This interpretation makes intuitive sense because the force component that is removed by
this projection is the component that points out of the legal motion direction. The orthogonality of
the projection also makes sense, because it ensures that the particle will not experience gratuitous
accelerations in the allowed direction of motion.

SIGGRAPH ’97 COURSENOTES F3 PHYSICALLY BASED MODELING

Constraint Forces

Point-on-circle

f c = λ ∂C
∂x

• Restrict constraint
force to the normal
direction.

• Orthogonal to all legal
displacements.

• No work, no energy
gain or loss.

• One DOF: λ

Figure 2: In the case of a point-on-circle constraint, the principle of virtual work simply requires
the constraint force to lie in a direction normal to the circle.

Whenẋ is nonzero, we unfortunately lose this simple geometric picture, but we can still interpret
the addition of the constraint force as a projection. Rather than a force projection, it is the projection
of theaccelerationonto the set of legal accelerations. The velocity-dependent term in equation 7
ensures that the curvature of the particle’s trajectory matches that of the circle. some effort, we could
try to regain the geometric picture by visualizing a projection inphase space,but this is hardly worth
the trouble.

3 The general case

In the last section we derived the constraint force expression for a single particle subject to a single
scalar constraint. Our goal in this section is to extend this special case to the general one of a whole
system of particles, collectively subjected to a number of constraints. The derivation follows the
more detailed one presented in [5].

The key to making this a managable task is to adopt a uniform, monolithic view, much as we
do in solving ODEs. Rather than considering each particle separately, we lump their positions into
a singlestate vector,which we will callq. Unlike the phase-space vector that we hand to the solver,
this one contains positions only, not velocities,so, in 3D, it has length 3n.

To collapse all the particles’ equations of motion into one global equation, we next define amass
matrix,M , whose diagonal elements are the particles’ masses, and whose off-diagonal elements are
zero. The diagonal mass matrix forn 3D points is a 3n × 3n matrix whose diagonal elements are
[m1, m1, m1, m2, m2, m2, . . . , mn, mn, mn]. implementation, a diagonal matrix may be represented
as a vector. Multiplication of a vector by the matrix is then just element-by-element multiplication.
The inverseof a diagonal matrix is just the element-by-element reciprocal.

SIGGRAPH ’97 COURSENOTES F4 PHYSICALLY BASED MODELING

Finally, we concatenate the forces on all the particles, just as we do the positions, to create a
global force vector, which we denote byQ. Now we can write the global equation governing the
particle system as

q̈ = WQ,

whereW is the inverse ofM .
We will also use global notation for the constraints, concatenating all the scalar constraint func-

tions to form a single vector functionC(q). If we haven 3D particles, subject tom scalar con-
straints, then the output of this global constraint function is anm-vector, and its input is a 3n-vector.

At this point, you may well be wondering how all this global notation will ever actually apply
to a real network of particles and constraints. This is an example of just the same kind of duality
that we encountered in applying ODE solvers to mass-and-spring models. On the one hand, we
want to build particle-and-constraint models as networks of distinct interacting objects. On the
other, we want to allow the code that calculates constraint forces to act as if the system on which it
operates really were a structureless monolith, just as an ODE solver does. Soon, we will show very
concretely how this dual view can be maintained.

As in the point-on-circle example, we assume that the configurationq and the velocityq̇ are
both initially legal, i.e. thatC = Ċ = 0. Then our problem is to solve for a constraint forceQ̂ that,
added to the applied forceQ, guarantees thaẗC = 0.

To do this, we will need to take derivatives ofC. In the previous section, we had a specific
algebraic expression for the constraint function, so we were able to derive expressions for their
derivatives as well. Now, since we are regardingC as an anonymous function of state, we will be
writing derivatives generically, using expressions such as∂C

∂q . To keep things down to earth, you
should think of expressions such as these, as well asC itself, as things we are able to evaluate
numerically by invoking functions.1

By the chain rule,

Ċ = ∂C
∂q

q̇.

The matrix∂C/∂q is called theJacobianof C. We will denote it henceforward byJ. Differentiating
again w.r.t. time gives

C̈ = J̇q̇ + Jq̈.

The quantityJ̇, the time derivative of the Jacobian, might be a little puzzling. By the chain rule we
could write it asJ̇ = ∂J/∂qq̇. However, taking the derivative of a matrix w.r.t. a vector yields a
rank 3 tensor (essentially, a 3D array). We can avoid introducing this new kind of object by writing,
equivalentlyJ̇ = ∂Ċ/∂q. Assuming we have an expression forĊ, this entails only differentiating a
vector expression w.r.t. a vector, which is less menacing.

Next, we use the system’s equations of motion to replaceq̈ by a force expression, giving

C̈ = J̇q̇ + JW(Q + Q̂).

SettingC̈ to zero and re-arranging gives

JWQ̂ − J̇q̇ − JWQ, (9)

1Speaking of derivatives, it is important to understand what a quantity such as∂C/∂q is. Since bothC andq are
vectors, the derivative of one with respect to the other is a matrix, obtained by taking the scalar derivative of each
component ofC w.r.t. each component ofq.

SIGGRAPH ’97 COURSENOTES F5 PHYSICALLY BASED MODELING

which is the counterpart, in general form, to equation 7. As in the point-on-circle example, we have
more unknowns than equations, and once again we introduce the principle of virtual work. The
legal velocities (i.e. the ones that don’t changeC) are all the ones that satisfyJẋ = 0. To ensure
that the constraint force does no work, we therefore require that

Q̂ · ẋ = 0, ∀ẋ | Jẋ = 0.

All and only vectorsQ̂ that satisfy this requirement can be expressed in the form

Q̂ = JTλ,

whereλ is a vector with the dimension ofC.
To understand what this expression means, it helps to regard the matrixJ as a collection of vec-

tors, each of which is the gradient of one of the scalar constraint functions comprisingC. Since our
fundamental requirement is thatC = 0, these gradients are normals to the constraint hypersurfaces,
representing the state-space directions in which the system isnot permitted to move. The vectors
that have the formJTλ are the linear combinations of these gradient vectors, and hence span exactly
the set ofprohibiteddirections. Restricting the constraint force to this set ensures that its dot prod-
uct with anylegal displacement of the system will be zero, which is exactly what the principle of
virtual work demands.

In matrix parlance, the set of vectorsJTλ is known as thenull space complementof J. The
null spaceof J is the set of vectorsv that satisfyJv = 0. The null space vectors are thelegal
displacements, while the null space complement vectors are theprohibitedones.

The components ofλ are known asLagrange multipliers.These quantities, which determine
how much of each constraint gradient is mixed into the constraint force, are the unknowns for which
we must solve. To do so, we replaceQ̂ by JTλ in equation 9, which gives

JWJTλ = −J̇q̇ − JWQ, (10)

which is a matrix equation in which all butλ are known. The matrixJWJT is a square matrix with
the dimensions ofC. Onceλ is obtained, it is multiplied byJT to obtainQ̂, which is added to the
applied force before calculating acceleration.

We already noted the need for a feedback term to prevent the accumulation of numerical drift.
This term can be incorporated directly into the constraint force calculation. Instead of solving for
C̈ = 0, as we did above, we solve for

C̈ = −ksC − kdĊ,

whereks andkd are spring and damping constants. By adding this term, we make the constraint
force perform the extra function of returning, with damping, to a valid state should drift occur. The
final constraint force equation, with feedback, is

JWJTλ = −J̇q̇ − JWQ − ksC − kdĊ. (11)

The values assigned toks andkd are not critical, since this term only plays the relatively undemand-
ing role of absorbing drift. See [1, 3, 5] for further discussion.

SIGGRAPH ’97 COURSENOTES F6 PHYSICALLY BASED MODELING

4 Tinkertoys: Implementing Constrained Particle Dynamics

The general formula of equation 11 is just a skeleton. To actually simulate anything, a specific
constraint functionC(q) must be provided, in a form that lets us evaluate the function itself and
its various derivatives. One way to flesh out the skeleton would be to write down an expression
for such a function, symbolically take the required derivatives, substitute these expressions into
equation 11 and, after simplifying and massaging the resulting mess, write code that performs the
numerical evaluations required for a simulation. This is essentially what we did in section 2, but
only for a trivially simple example. As an exercise, you might try working through a somewhat
more complicated example, say a double pendulum. If you actually do try it, you will probably
be able to carry it through to a working implementation, but it will be readily apparent that this
derive-and-implement methodology does not scale up!

Instead of hand-deriving and hand-coding models, we want to build models interactively by
snapping the pieces together, drawing freely from a set of useful pre-defined constraints, such as
distance and point-on-curve constraints. The main problem we must solve to acheive this goal is
to evaluate the global matrices and vectors that comprise equation 11. The evaluations must be
quick, and also dynamic in the sense that we can freely change the structure of the model on the fly.
Naturally, we want constraints to be modular just as forces are.

In this section we describe an architecture for constrained particle dynamics simulation that
meets these objectives. The approach is to represent individual constraints using objects similar
to those that represent forces. Each constraint object is responsible for evaluating the constraint
function it represents, and also that functions derivatives. These evaluations produce fragments of
the vectors and matrices comprising equation 11. The fragments are then combined dynamically by
the constrained particle system.

4.1 The constrained simulation loop

The machinery required to support constraints fits neatly into our basic particle system architecture.
From the standpoint of the ODE solver, the main job of the particle system, in both the unconstrained
and constrained case, is to perform derivative evaluations. The sequence of steps that the particle
system must perform to evaluate the derivative is nearly the same, with one important addition:
calculating the constraint force. This is how the extra step fits in:

1. Clear forces: zero each particle’s force accumulator.

2. Calculate forces: loop over all force objects, allowing each to add forces to the particles it
influences.

3. Calculate constraint forces: On completion of the previous step, each particle’s force accu-
mulator contains the total force on that particle. In this step, the global equation 11 is set up
and solved, yielding a constraint force on each particle, which is added into the applied force.

4. Calculate the derivative: Divide force by mass to get acceleration, and gather the derivatives
into a global vector for the solver.

In this section, we are concerned exclusively with the third step in this sequence.

SIGGRAPH ’97 COURSENOTES F7 PHYSICALLY BASED MODELING

Matrix Block Structure

C

x i

xj

J

• Each constraint
contributes one or more
blocks to the matrix.

• Sparsity: many empty
blocks.

• Modularity: let each
constraint compute its
own blocks.

Figure 3: The block-sparse Jacobian matrix. The constraints are shown above, and the particles
along the right side. Each constraint/particle pair corresponds to a block in the matrix. A block is
non-zero only if the constraint depends on the particles. Here, we show a binary constraint, such as
a distance constraint, that connects two particles. The two shaded blocks are that constraint’s only
contributions to the sparse Jacobian.

4.2 Block-structured matrices

Each individual constraint contributes a slice to the global constraint vectorC, just as each particle
contributes a slice to the global state vectorq. In addition to a list of particles, and a list of forces,
a constrained particle system must also maintain a list of constraints. Evaluating the global vectors
such asC andĊ is straightforward, assuming that each constraint points to a function that performs
its own portion of these evaluations. We simply loop over the constraints, invoking the functions,
and placing the results in the global vectors with appropriate offsets. This is essentially the same
gather operation that we use for communication with the ODE solver.

The main new ingredient is that we must evaluate global matrices as well as vectors. Whereas
constraints and particles each occupy a slice of their respective global vectors, eachconstraint-
particle pair occupies ablockof the global derivative matrix. The vector slice that is “owned” by
a constraint can be described by an offset and a length, sayi and i length. Similarly, a particle’s
global station can be described byj and j length. While j length is always the dimension of the
space that the particles live in,i length may vary from constraint to constraint. The derivative of a
constraint with respect to a particle occupies ani length× j lengthblock of the Jacobian matrixJ,
with originn at position(i, j). See figure 3.

A typical constraint influences at most just a few particles. The value of the constraint function
depends on only these particles; its derivative with respect to all other particles is zero. This means
that the matricesJ and J̇ are typically very sparse. Of then blocks per constraint in ann-particle
system, a unary constraint contributes only one non-zero block, a binary one two non-zero blocks,

SIGGRAPH ’97 COURSENOTES F8 PHYSICALLY BASED MODELING

etc. Given this structure, a natural way to represent the sparse matrices is by lists of the non-zero
blocks. In this scheme, each matrix block is represented by a structure that specifies the block’s
origin, (i, j), and dimensions,(i length, j length), and that contains ani length × j length float
array holding the block’s data, e.g.

struct{
int i;
int j;
int ilength;
int jlength;
float *data;

};

To support constrained particle dynamics using block-sparse matrices, as we will soon see,
we must implement only two operations: matrix times vector, and matrix-transpose times vector.
Both are simple operations, looping over the matrix blocks, and performing an ordinary matrix
multiplication for each block, using the block’si and j as offsets into the destination and source
vectors.

4.3 Building the matrices

In addition to holding lists of particles and forces, the constrained particle system will hold a list of
constraints, block-sparse matrices to representJ andJ̇, and vectors to holdC, Ċ, etc. The structures
that represent the constraints may be similar in many respects to the structures we use to represent
simple forces, i.e. they point to the particles on which they depend and they point to functions that
perform their type-specific operations.

When a constraint is instantiated, matrix blocks must be created for each particle on which the
constraint depends, and the blocks must be added to the global matrices. Since the number and
shape of blocks involved varies with the constraint type, this initialization may be handled by the
constraint in a type-specific way. Thereafter, the constraint must be able to evaluate its portions of
the vectorsC andĊ, and of the matricesJ andJ̇. The results of the matrix evaluations are placed in
the matrix blocks that were created by the constraint on initialization.

All the required global quantities can then be computed simply by looping over the constraints,
and invoking the functions that perform these evaluations.

4.4 Solving the linear system

The solution of sparse linear systems is a field unto itself. Of the many available options, we give
one that is simple and readily available. A matrix equation of the formMx = b may be solved
iteratively by finding a vectorx that minimizes(Mx −b) · (Mx −b). A conjugate gradient algorithm
that solves this problem is given in Numerical Recipes [4], Chapter 2. The conjugate gradient
algorithm offers the advantage that it gives a least-squares solution for over-determined systems, and
tolerates redundant constraints. The solver takes as arguments two routines which contitute its only
access the matrix: vector-times-matrix, and vector-transpose-times matrix. Sparsity is exploited
by implementing these routines efficiently. The routine requiresO(n) iterations to solve ann × n
matrix, and the cost of each iteration isO(m), wherem is the number of non-zero entries in the
matrix.

SIGGRAPH ’97 COURSENOTES F9 PHYSICALLY BASED MODELING

The matrix of equation 11 isJWJT , whereJ is block-sparse andW is diagonal. We need never
actually calculate the matrix. Instead we need only calculateJWJTx, given a vectorx. We do this
by calculatingJTx, using the block-sparse matrix-transpose multiply routine described above, then
performing an element-by-element multiplication of the result by the vector representing the diag-
onalW. Finally, the resulting vector is multiplied byJ. Since the compound matrix is symmetric,
we do not need a separate function for multiplication by the transpose.

Evaluating the right hand side vector of equation 11 is a straightforward application of the
block-sparse matrix routines, and standard vector operations.

Finally, once the linear system has been solved, the vectorλ is multiplied byJT to produce the
global constraint force vector̂Q, which is then scattered into the particles’ force accumulator.

4.5 Summary

To introduce constraints into a particle system simulation, we add the additional step of constraint
force calculation to the derivative evaluation operation. After the ordinary applied forces have been
calculated, but before computing accelerations, we perform the following steps:

• Loop over the constraints, letting each evaluate its own portion ofC, Ċ, J and J̇. Each
constraint points to one or more matrix blocks that receive its contributions to the global
matrices.

• Form the right-hand-side vector of equation 11.

• Invoke the conjugate gradient solver to obtain the Lagrange multiplier vector,λ.

• Multiply λ by JT to obtain the global constraint force vector, and scatter this force to the
particles.

5 Lagrangian Dynamics: modeling objects other than particles

In the previous sections we have seen how to constrain the behavior of a particle system through
the use of constraint forces. Our starting point for the derivation was the use ofimplicit functions—
functions of state that are supposed to be zero—to represent the constraints. Each scalar implicit
function defines a hypersurface in state space, and the legal states of the system are those that lie on
the intersection of all the hypersurfaces.

Suppose instead that we represented the constraints using a parametric function—a function
q(u), with dimu < dimq, so thatq(u) specifies all and only the legal states. In the case of a unit
circle, the parametric function would of course bex = [cosθ, sinθ], leavingθ as the single degree
of freedom.

In order to use parametric functions to represent constraints, we need to express the constrained
system’s equations of motion in terms of the new, constrained degrees of freedom,u, rather than
the unconstrainedq. These new equations, which we will derive in this section, are known as
Lagrange’s equations of motion.[2].

A clear advantage of the parametric constraint representation is that the extra degrees of freedom
are actually removed from the system, rather than being neutralized through the use of constraint
forces. This, as one would expect, can lead to better performance. However, Lagrangian dynamics
has a very serious drawback: it is often difficult or impossible to find a parametric function that

SIGGRAPH ’97 COURSENOTES F10 PHYSICALLY BASED MODELING

captures the desired constraints. Moreover, in contrast to the implicit form, there is no automatic
way to combine multiple constraints. Lagrangian dynamics is therefore unsuitable as a vehicle for
interactive model building. Its important role is as an off-line tool for defining new primitive objects
that are more complex than particles.

As before, we begin with a collection of particles whose positions are described by a global state
vectorq, a diagonal mass matrixM , and a global applied force vectorQ. We also retain the idea of
a constraint force vector̂Q that satisfies the principle of virtual work. Now, however, theq’s are not
independent variables, but are given by a functionq(u). Our goal is to solve for̈u, accounting for
the constraint forces.

In developing the constraint force formulation we made extensive use of the Jacobian of the
implicit constraint function. The Jacobian of the parametric function,

J = ∂q
∂u

,

has a different meaning but is equally important. By the chain rule, thelegal particle velocities are
given by

q̇ = Ju̇.

The principle of virtual work therefore requires that

Q̂TJu̇ = 0, ∀u̇,

which simply means thatJTQ̂ = 0. As before, we can write the unconstrained equations of motion
as

Mq̈ = Q + Q̂.

Now, however, instead of solving for the constraint force, we can simply make it go away, by
multiplying both sides of the equation byJT , giving

JTMq̈ − JTQ = 0. (12)

Sinceq is a function ofu, we can now removëq from the expression, leaving̈u as the unknown.
Once again invoking the trusty chain rule,

q̈ = Jü + J̇u̇.

Substituting this expression into equation 12 gives

JTMJü + JTMJ̇u̇ − JTQ = 0. (13)

which is a matrix equation to be solved forü. Although you will usually see it expressed in a
superficially quite different form, equation 13 is equivalent to the classical Lagrangian equation of
motion. As we’ve expressed it here, its close relation to the constraint force formulation should be
strikingly clear.

5.1 Hybrid models

The Lagrangian dynamics formulation is well-suited to creating compound objects off-line, while
constraint force methods are well-suited to creating constrained models on the fly. In [5] we describe
an architecture that combines both methods, allowing constraints to be applied dynamically to com-
plex objects that had been pre-defined using Lagrangian dynamics. In [6], Lagrangian dynamics is
used to create simplified non-rigid bodies.

SIGGRAPH ’97 COURSENOTES F11 PHYSICALLY BASED MODELING

References

[1] Ronen Barzel and Alan H. Barr. A modeling system based on dynamic constaints.Computer
Graphics, 22:179–188, 1988.

[2] Herbert Goldstein.Classical Mechanics. Addision Wesley, Reading, MA, 1950.

[3] John Platt and Alan Barr. Constraint methods for flexible models.Computer Graphics, 22:279–
288, 1988.

[4] W.H. Press, B.P. Flannery, S. A. Teukolsky, and W. T. Vetterling.Numerical Recipes in C.
Cambridge University Press, Cambridge, England, 1988.

[5] Andrew Witkin, Michael Gleicher, and William Welch. Interactive dynamics.Computer Graph-
ics, 24, 1990. Proc. 1990 Symposium on 3-D Interactive Graphics.

[6] Andrew Witkin and William Welch. Fast animation and control of non-rigid structures.Com-
puter Graphics, 24(4):243–252, July 1990. Proc. Siggraph ’90.

SIGGRAPH ’97 COURSENOTES F12 PHYSICALLY BASED MODELING

