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PCA Applications

- Data Visualization
- Data Compression
+ Noise Reduction

- Data Classification
 Trend Analysis

- Factor Analysis



Data Visualization

Example:

» Given 53 blood and urine samples
(features) from 65 people.

- How can we visualize the measurements?



+ Matrix format (65x53)

Instances

Data Visualization

H-vwWw B C H-RB C -Hgb H-Hct H-M C Vv -M C H -M HC
A1 8.00O0O0 4 .820 4 .100 41 .00 85 .000 9.00O0 34 [eNeNe)
A2 7 .300O0 5.020 4 .7 00 43 .00 86 .000 9.00O0 34 [eNeNe)
A 3 4 .3000 4 .480 4 .100 4 1.00 91 .000 2.000 35 [eNeXNe)
A 4a 7 .5000 a4 .470 4 .900 45 .00 1701 ._00O0 3.000 33 [eNeNe)
A5 7 .300O0 5.520 5.400 46 .00 84 .00O0 8.00O0 33 [eNeNe)
A 6 6 .9000 4 .860 6 .00O0 47 .00 97 .000 3.000 34 [eNeNe)
A 7 7 .800O0 4 .680 4 .7 00 43.00 92.000 1.000 34 [eNeXNe)
A 8 8.6000 4 .820 5.800 42.00 88 .000 3.000 37 [eNeNe)
A 9 5.1000 4.7 10 4 .00O0 43 .00 92.000 O.00O0 32 [eNeNe)

Difficult to see the correlations between the features...

Features




Data Visualization

- Spectral format (65 curves, one for each person)
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Difficult to compare the different patients...



Data Visualization

- Spectral format (53 pictures, one for each feature)
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Difficult to see the correlations between the features...
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How can we visualize the other variables???

... difficult to see in 4 or higher dimensional spaces...



Data Visualization

Is there a representation better than the coordinate axes?

Is it really necessary to show all the 53 dimensions?

e ... what if there are strong correlations between the
features?

How could we find
the smallest subspace of the 53-D space that
keeps the most information about the original data?

- A solution: Principal Component Analysis



Principle Component Analysis
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PCA:

Orthogonal projection of data onto lower-dimension
linear space that...

e maximizes variance of projected data (purple line)

e minimizes mean squared distance between
e data point and
e projections (sum of blue lines)
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Principle Components Analysis

Idea:
e Given data points in a d-dimensional space,
project into space while

as possible
e Eg, find best planar approximation to 3D data
e Eg, find best 12-D approximation to 104-D data

e In particular, choose projection that

in reconstructing original data

11



The Principal Components

- Vectors originating from the center of mass

* Principal component #1 points
in the direction of the largest variance.

- Each subsequent principal component...
e s orthogonal to the previous ones, and

e points in the directions of the largest
variance of the residual subspace

12



2D Gaussian dataset
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1st PCA axis
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2" PCA axis
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PCA algorithm I (sequential)

Given the centered data {x,, ..., X}, compute the principal vectors:

w, = argmax—z {(w'x.)’} 1st PCA vector
Iwl=1 m

We maximize the variance of proj ection of x

Wi - argmax—z {Iw" (x; - z w WJXI)] } k" PCA vector

[wl=1 m
\ J
S |

x" PCA reconstruction
We maximize the WA
variance of the projection
. . X
in the residual subspace

w, (w,™X) w,
>
w,(W,TX /

i

X'=w,(w,™x) +w2(w2Tx6)
w, 1



PCA algorithm II
(sample covariance matrix)

- Given data {x,, ..., x_}, compute covariance matrix 2.
= lzm (x, - X)(x- X)' where X= lzm X,
m =1 l m =1

- PCA basis vectors = the eigenvectors of =

- Larger eigenvalue O more important eigenvectors

17



PCA algorithm II

PCA algorithnm(X, k): top k eigenvalues/eigenvectors

% X =N x m data matrix,
% ... each data point x. = column vector, i=1..m

X < subtract mean x from each column vector x, in X

2 & XXT ... covariance matrix of X

{ A, u }._, y = eigenvectors/eigenvalues of
WA 222

Return { A, u; }_,
% top k principle components
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PCA algorithm III
(SVD of the data matrix)

Singular Value Decomposition of the centered data matrix X.

m: number of instances,

X = [x1,...,%xm] € RVx™m, . _
X1 m] N: dimension
Xfeatures x samples = USVT

X = U S VT

significant

significant
noise

19
samples



PCA algorithm III

« Columns of U

e the principal vectors, { u®, ..., u® }
e orthogonal and has unit norm —so U'U =1

e Can reconstruct the data using linear combinations
of { u®, ..., u® }

Matrix S
e Diagonal
e Shows importance of each eigenvector

Columns of V7
e The coefficients for reconstructing the samples

20



Face recognition
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Challenge: Facial Recognition

- Want to identify specific person, based on facial image
- Robust to glasses, lighting,...

1 Can't just use the given 256 x 256 pixels

gSS

22



Applying PCA: Eigenfaces

Method A: Build a PCA subspace for each person and check
which subspace can reconstruct the test image the best

Method B: Build one PCA database for the whole dataset and
then classify based on the weights.

Example data set: Images of faces

e Famous Eigenface approach
[Turk & Pentland], [Sirovich & Kirby]

Each face x is ...

) * 256 X 256 values (luminance at location)
e X In [1%%%26 (view as 64K dim vector)
Form X = [ x,, ..., X ] centered data mtx

* Compute 2 = XXT
R S * Problem: 2 is 64K X 64K ... HUGE!!!

g
m faces

[l

~
Ssan|eA |eal
9G¢C X 949¢
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Computational Complexity

- Suppose m instances, each of size N
e Eigenfaces: m=500 faces, each of size N=64K

- Given NxN covariance matrix Z, can compute

e all N eigenvectors/eigenvalues in O(N3)
e first k eigenvectors/eigenvalues in O(k N?)

- But if N=64K, EXPENSIVE!

24



A Clever Workaround

« Note that m<<64K
« Use L=X"X instead of Z=XXT
- If v is eigenvector of L

then Xv is eigenvector of Z X =

Proof: L v=Vyv
X Xv=yyv
X (X'Xv) = X(YV) =YXV
XXHX v = y(Xv)
2 (Xv) = y(Xv)

-

J

-
m faces

~
San|eA |eal

25
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Principle Components (Method B)
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Reconstructing... (Method B)

. ... faster if train with...

e only people w/out glasses
e same lighting conditions

27



Shortcomings

Requires carefully controlled data:
e All faces centered in frame

e Same size

e Some sensitivity to angle

- Alternative:

e “Learn” one set of PCA vectors for each angle
e Use the one with lowest error

Method is completely knowledge free
e (sometimes this is good!)

e Doesn’t know that faces are wrapped around 3D objects
(heads)

e Makes no effort to preserve class distinctions

28



Facial expression
recognition

_ AALBERTA INGENUITY CENTRE FOR

MACHINE LEARNING




Happiness subspace (method A)
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Disgust subspace (method A)

J. L]
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Facial Expression Recognition
Movies (method A)

e n

EEEEEEEE
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Facial Expression Recognition
Movies (method A)

33




Facial Expression Recognition
Movies (method A)

1
e sV Converter

Disgust
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Image Compression
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Original Image

Divide the original 372x492 image into patches:
e Each patch is an instance that contains 12x12 pixels on a grid

View each as a 144-D vector

36



Relative rec. error
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PCA compression: 144D = 60D




PCA compression: 144D = 16D




16 most important eigenvectors
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PCA compressmn 144D = 6D
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6 most important eigenvectors
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PCA compression: 144D = 3D




3 most important eigenvectors
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PCA compression: 144D = 1D




60 most important eigenvectors
=it L AN
MRS REEREl
M=M= ===

cWENHESNEE
o 0 Y =S
ol N

Looks like the discrete cosine bases of JPG!...




2D Discrete Cosine Basis

http://en.wikipedia.org/wiki/Discrete_cosine_transform 4



Noise Filtering

- AALBERTA INGENUITY CENTRE FOR

A. I MACHINE LEARNING




Noise Filtering, Auto-Encoder...

=N
2




Noisy image

50



Denoised image
using 15 PCA components
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PCA Shortcomings
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PCA, a Problematic Data Set

PCA doesn’t know labels!

53



- PCA maximizes variance, sk,

PCA vs Fisher Linear Discriminant
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PCA, a Problematic Data Set

PCA cannot capture NON-LINEAR structure!

55



PCA Conclusions

PCA

e finds orthonormal basis for data

e Sorts dimensions in order of “importance”
e Discard low significance dimensions

Uses:

e Get compact description

e Ignore noise

e Improve classification (hopefully)

Not magic:
e Doesn’t know class labels
e Can only capture linear variations

One of many tricks to reduce dimensionality!

56



PCA Theory
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Justification of Algorithm II

Let X = [x1,...,%Xm] € RV*xm
Let x € RNV | m: number of instances, N: dimension
g
Let U= | : | € RVXN orthogonal matrix, UUL =1y
0T
N N
y =Ux, x=Uly = X gy,
1=
.. M approximation of x
X= Y wy, (M <N) "~ |
i=1 using M basis vectors only.
2 g2y — 1 & S
e = E{|lx =x[[<} == ¥ |[|x; —X;||, average error
=1

GOAL: ,
arg min 2, st UTUu =1y
58




Justification of Algorithm II

N M
= E{x—x|2 =E{| 3wy — 3 wyl?}

N N
= E{ Y wyuwwylt= > E{y}
i=M+1 i=M+1

N
= > E{(ux)x'w)}
i=M+1
N

Z uiTE{XXT}uz’ X is centered!

1=M+1
N /
= Z u,L-TEuZ-
1=M+1



Justification of Algorithm II

GOAL: arg min g2
Upf4150 0N

Use Lagrange-multipliers for the constraints.

N
g2 — > Ai(u;‘;rui —1)

L =
1=M+1
N N
= Y u;-rZui— > )\i(u’{ui—l)
1=M-+1 1=M-+1
oL

== [22117; — 2)\7;11Z'] =0
8uz~

60



Justification of Algorithm II

oL
8u7;

p— [22117; — 2)‘@'“2'] = 0= EU_Z' = )\7;11@'

= [u;, \;] = eigenvector/eigenvalue of X.

2 ol T Al T ol
e = Z u; 2u; = Z u; \u; = Z Aj
1=M41 =M1 =M1

The error €2 is minimal
it Apry1,... Ay are the smallest eigenvalues of X,
and uyr41,...,uy are the corresponding eigenvectors.
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Kernel PCA
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Kernel PCA

Performing PCA in the feature space

Let X = [x1,...,%Xm] € RV*xm
m: number of instances, N: dimension

Lemma




Kernel PCA

_mxw om N
- 7;;:1\ Am JXi o z';l a;Xy X =[x1,...,Xm] € RV,
a;

Lemma
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Kernel PCA

Proof

m
u=\u, u= Y o;X;
= T

= XZTEu — AX;-ru

= xI (4 %Xx Za = Ax?! ga-x-
zmklkk 7% zjzljj

:>_ Z Z (X Xk:)(Xk j)a = A Z (X X])a

M= 19=1
= %Kza = AMKa where K ¢ Rme
- Ko = mM o If K is invertible (strictly pos def)

65



Kernel PCA

- How to use a to calculate the projection of a new sample ¢?
T dc T -
u't = (Z Oéij) t = Z OéjK(Xj,i])
=1 =1
Again, we don't need values of X!

Let K;j = (¢(x:), 9(x;))

Where was I cheating? ©

The data should be centered in the feature space, too!
But this is manageable...

Rig = (90 = - 3 a, 60x) = 3 o0x0))
k=1 k=1

66



Input points before kernel PCA
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http://en.wikipedia.org/wiki/Kernel_principal_component_analysis 67



Second component

30 -
first component only
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Output after kernel PCA

The three groups are distinguishable using the

First component
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We haven't covered...

e Artificial Neural Network Implementations
o Mixture of Probabilistic PCA
e Online PCA, Regret Bounds

69
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Thanks for the Attention! ©
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