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• Karl Booksh Research group
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PCA Applications

• Data Visualization
• Data Compression
• Noise Reduction
• Data Classification
• Trend Analysis
• Factor Analysis
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Data Visualization

Example:

• Given 53 blood and urine samples 
(features) from 65 people.

• How can we visualize the measurements?
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Data Visualization
• Matrix format (65x53)

H -W B C H -R B C H -H g b H -H c t H -M C V H -M C H H -M C H CH -M C H C

A 1 8 . 0 0 0 0  4 . 8 2 0 0  1 4 . 1 0 0 0  4 1 . 0 0 0 0  8 5 . 0 0 0 0  2 9 . 0 0 0 0  3 4 . 0 0 0 0  

A 2 7 . 3 0 0 0  5 . 0 2 0 0  1 4 . 7 0 0 0  4 3 . 0 0 0 0  8 6 . 0 0 0 0  2 9 . 0 0 0 0  3 4 . 0 0 0 0  

A 3 4 . 3 0 0 0  4 . 4 8 0 0  1 4 . 1 0 0 0  4 1 . 0 0 0 0  9 1 . 0 0 0 0  3 2 . 0 0 0 0  3 5 . 0 0 0 0  

A 4 7 . 5 0 0 0  4 . 4 7 0 0  1 4 . 9 0 0 0  4 5 . 0 0 0 0  1 0 1 . 0 0 0 0  3 3 . 0 0 0 0  3 3 . 0 0 0 0  

A 5 7 . 3 0 0 0  5 . 5 2 0 0  1 5 . 4 0 0 0  4 6 . 0 0 0 0  8 4 . 0 0 0 0  2 8 . 0 0 0 0  3 3 . 0 0 0 0  

A 6 6 . 9 0 0 0  4 . 8 6 0 0  1 6 . 0 0 0 0  4 7 . 0 0 0 0  9 7 . 0 0 0 0  3 3 . 0 0 0 0  3 4 . 0 0 0 0  

A 7 7 . 8 0 0 0  4 . 6 8 0 0  1 4 . 7 0 0 0  4 3 . 0 0 0 0  9 2 . 0 0 0 0  3 1 . 0 0 0 0  3 4 . 0 0 0 0  

A 8 8 . 6 0 0 0  4 . 8 2 0 0  1 5 . 8 0 0 0  4 2 . 0 0 0 0  8 8 . 0 0 0 0  3 3 . 0 0 0 0  3 7 . 0 0 0 0  

A 9 5 . 1 0 0 0  4 . 7 1 0 0  1 4 . 0 0 0 0  4 3 . 0 0 0 0  9 2 . 0 0 0 0  3 0 . 0 0 0 0  3 2 . 0 0 0 0  

In
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Features

Difficult to see the correlations between the features...
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Data Visualization
• Spectral format (65 curves, one for each person)
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Difficult to compare the different patients...
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Data Visualization
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• Spectral format (53 pictures, one for each feature)

Difficult to see the correlations between the features...
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Data Visualization

How can we visualize the other variables???

… difficult to see in 4 or higher dimensional spaces...
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Data Visualization
• Is there a representation better than the coordinate axes?

• Is it really necessary to show all the 53 dimensions?
• … what if there are strong correlations between the 

features?

• How could we find 
 the smallest subspace of the 53-D space that
 keeps the most information about the original data?

• A solution: Principal Component Analysis
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Principle Component Analysis

Orthogonal projection of data onto lower-dimension 
linear space that...
• maximizes variance of projected data (purple line)

• minimizes mean squared distance between 
• data point and 
• projections (sum of blue lines)

PCA:
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Principle Components Analysis

Idea: 
• Given data points in a d-dimensional space, 

project into lower dimensional space while 
preserving as much information as possible
• Eg, find best planar approximation to 3D data
• Eg, find best 12-D approximation to 104-D data

• In particular, choose projection that 
 minimizes squared error 
in reconstructing original data
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• Vectors originating from the center of mass

• Principal component #1 points 
in the direction of the largest variance.

• Each subsequent principal component…
• is orthogonal to the previous ones, and 
• points in the directions of the largest 

variance of the residual subspace

The Principal Components
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2D Gaussian dataset
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1st PCA axis
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2nd PCA axis
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PCA algorithm I (sequential)
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We maximize the 
variance of the projection 
in the residual subspace

We maximize the variance of projection of x

x’ PCA reconstruction

Given the centered data {x1, …, xm}, compute the principal vectors:

1st PCA vector

kth PCA vector
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PCA algorithm II 
(sample covariance matrix)

• Given data {x1, …, xm}, compute covariance matrix Σ 

• PCA basis vectors = the eigenvectors of Σ

• Larger eigenvalue ⇒ more important eigenvectors
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PCA algorithm II 
PCA algorithm(X, k): top k eigenvalues/eigenvectors

     % X = N × m data matrix, 
 % … each data point xi = column vector, i=1..m

•  

• X  subtract mean x from each column vector xi in X

•  Σ  X XT   … covariance matrix of X

• { λi, ui }i=1..N = eigenvectors/eigenvalues of Σ
 ... λ1 ≥ λ2 ≥ … ≥ λN

• Return { λi, ui }i=1..k
% top k principle components
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PCA algorithm III 
(SVD of the data matrix)

Singular Value Decomposition of the centered data matrix X.

Xfeatures × samples = USVT

X VTSU=

samples

significant

noise

no
is

e noise

si
gn

ifi
ca

nt

sig.



20

PCA algorithm III
• Columns of U

• the principal vectors, { u(1), …, u(k) }
• orthogonal and has unit norm – so UTU = I
• Can reconstruct the data using linear combinations 

of { u(1), …, u(k) }

• Matrix S 
• Diagonal
• Shows importance of each eigenvector

•  Columns of VT 
• The coefficients for reconstructing the samples



Face recognition
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Challenge: Facial Recognition
• Want to identify specific person, based on facial image
• Robust to glasses, lighting,…

⇒ Can’t just use the given 256 x 256 pixels
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Applying PCA: Eigenfaces

• Example data set:  Images of faces 
• Famous Eigenface approach

[Turk & Pentland], [Sirovich & Kirby]
• Each face x is …
• 256 × 256 values (luminance at location) 

• x in ℜ256×256    (view as 64K dim vector)

• Form X = [ x1 , …, xm ] centered data mtx
• Compute  Σ = XXT 
• Problem: Σ is 64K × 64K … HUGE!!!

256 x 256 
real values

m faces

X = 

x1, …, xm

Method A: Build a PCA subspace for each person and check 
which subspace can reconstruct the test image the best 

Method B: Build one PCA database for the whole dataset and 
then classify based on the weights.
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Computational Complexity

• Suppose m instances, each of size N
• Eigenfaces: m=500 faces, each of size N=64K

• Given N×N covariance matrix Σ, can compute 
• all N eigenvectors/eigenvalues in O(N3)
• first k eigenvectors/eigenvalues in O(k N2)

• But if N=64K, EXPENSIVE!
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A Clever Workaround

• Note that  m<<64K
• Use L=XTX instead of Σ=XXT

• If v is eigenvector of L
then Xv is eigenvector of Σ

Proof:       L  v = γ v
             XTX v = γ v
     X (XTX v)  =  X(γ v) = γ Xv
     (XXT)X v  =  γ (Xv)
           Σ (Xv)  =  γ (Xv)

256 x 256 
real values

m faces

X = 

x1, …, xm
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Principle Components (Method B)
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Reconstructing… (Method B)

• … faster if train with…
• only people w/out glasses
• same lighting conditions
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Shortcomings
• Requires carefully controlled data:

• All faces centered in frame
• Same size
• Some sensitivity to angle

• Alternative:
• “Learn” one set of PCA vectors for each angle
• Use the one with lowest error

• Method is completely knowledge free
• (sometimes this is good!)
• Doesn’t know that faces are wrapped around 3D objects 

(heads)
• Makes no effort to preserve class distinctions



Facial expression 
recognition
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Happiness subspace (method A)
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Disgust subspace (method A)
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Facial Expression Recognition
Movies (method A)
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Facial Expression Recognition
Movies (method A)
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Facial Expression Recognition
Movies (method A)



Image Compression
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Original Image

• Divide the original 372x492 image into patches:

• Each patch is an instance that contains 12x12 pixels on a grid

• View each as a 144-D vector
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L2 error and PCA dim
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PCA compression: 144D ) 60D
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PCA compression: 144D ) 16D
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16 most important eigenvectors
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PCA compression: 144D ) 6D
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PCA compression: 144D ) 3D
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PCA compression: 144D ) 1D
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60 most important eigenvectors

Looks like the discrete cosine bases of JPG!...
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2D Discrete Cosine Basis

http://en.wikipedia.org/wiki/Discrete_cosine_transform



Noise Filtering



49

Noise Filtering, Auto-Encoder…
x x’

U x
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Noisy image
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Denoised image 
using 15 PCA components



PCA Shortcomings
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PCA, a Problematic Data Set

PCA doesn’t know labels!
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PCA vs Fisher Linear Discriminant

• PCA maximizes variance,
independent of class
⇒ magenta

• FLD attempts to separate classes
⇒ green line
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PCA, a Problematic Data Set

PCA cannot capture NON-LINEAR structure!
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PCA  Conclusions
• PCA 

• finds orthonormal basis for data
• Sorts dimensions in order of “importance”
• Discard low significance dimensions

• Uses:
• Get compact description
• Ignore noise
• Improve classification (hopefully)

• Not magic:
• Doesn’t know class labels
• Can only capture linear variations

• One of many tricks to reduce dimensionality!



PCA Theory
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Justification of Algorithm II

GOAL:
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Justification of Algorithm II

x is centered!
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Justification of Algorithm II
GOAL:

Use Lagrange-multipliers for the constraints.
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Justification of Algorithm II



Kernel PCA
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Kernel PCA
Performing PCA in the feature space

Lemma

Proof:
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Kernel PCA

Lemma
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Kernel PCA
Proof
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• How to use α to calculate the projection of a new sample t?

Kernel PCA

Where was I cheating? 

The data should be centered in the feature space, too!
But this is manageable...
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Input points before kernel PCA

http://en.wikipedia.org/wiki/Kernel_principal_component_analysis
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Output after kernel PCA

The three groups are distinguishable using the 
first component only 
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We haven’t covered...

• Artificial Neural Network Implementations

• Mixture of Probabilistic PCA 

• Online PCA, Regret Bounds 
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Thanks for the Attention! 


