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Motivation 
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What have we seen so far? 
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Several algorithms that seem to work fine on  training datasets: 

• Linear regression 

• Naïve Bayes classifier 

• Perceptron classifier 

• Support Vector Machines for regression and classification 

How good are these algorithms on unknown test sets? 

How many training samples do we need to achieve small error? 

What is the smallest possible error we can achieve? 

) Learning Theory 

To answer these questions, we will need a few powerful tools 



Basic Estimation Theory 
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Tossing a Dice,  

Estimation of parameters 1,2,…,6 
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Does the MLE estimation converge to the right value? 

How fast does it converge? 
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Tossing a Dice  

Calculating the Empirical Average  

Does the empirical average converge to the true mean?  

How fast does it converge? 



5 sample traces 
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How fast do they converge? 

Tossing a Dice,  

 Calculating the Empirical Average  



Key Questions 

I want to know the coin parameter 2[0,1] within  = 0.1 

error, with probability at least 1- = 0.95.  
How many flips do I need? 
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• Do empirical averages converge? 

• Does the MLE converge in the dice tossing problem? 

• What do we mean on convergence?  

• What is the rate of convergence?  

Applications:  
• drug testing (Does this drug modifies the average blood pressure?)  

• user interface design (We will see later) 



Outline 
Theory: 

• Stochastic Convergences: 

– Weak convergence  

– Convergence in probability  

– Strong (almost surely) 

Application:  

  A/B testing for page layout 
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• Limit theorems: 

– Law of large numbers  

– Central limit theorem  

• Tail bounds: 

– Markov, Chebyshev,Chernoff, Hoeffding, Bernstein, McDiarmid inequalities 



Stochastic convergence 

definitions and properties 
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Convergence of vectors 
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Convergence in Distribution = 

 Convergence Weakly = Convergence in Law 
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Notation: 

Let {Z, Z1, Z2, …} be a sequence of random variables. 

Definition: 

This is the “weakest” convergence. 



Only the distribution functions converge!  

(NOT the values of the random variables) 

1 

0 

a 
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Convergence in Distribution = 

 Convergence Weakly = Convergence in Law 



14 

Continuity is important! 

Proof: 

The limit random variable is constant 0: 

Example: 

In this example the limit Z is discrete, not random (constant 0),  

although Zn is a continuous random variable. 

0 
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Convergence in Distribution = 

 Convergence Weakly = Convergence in Law 
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Properties 

Scheffe's theorem: 

convergence of the probability density functions ) convergence in distribution 

Example: 
(Central Limit Theorem) 

Zn and Z can still be independent even if their distributions are the same! 

Convergence in Distribution = 

 Convergence Weakly = Convergence in Law 



Convergence in Probability 

16 

Notation: 

Definition: 

This indeed measures how far the values of Zn() and Z() are from each other. 



Almost Surely Convergence 
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Notation: 

Definition: 



Convergence in p-th mean, Lp norm 

Definition: 
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Notation: 

Properties: 



Counter Examples 
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Further Readings on  

Stochastic convergence 

•http://en.wikipedia.org/wiki/Convergence_of_random_variables  

 

•Patrick Billingsley: Probability and Measure 

 

•Patrick Billingsley: Convergence of Probability Measures 
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http://en.wikipedia.org/wiki/Convergence_of_random_variables


Finite sample tail 

bounds 
Useful tools!  
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Gauss Markov inequality 

Decompose the expectation 

If X is any nonnegative random variable and a > 0, then 

Proof: 

Corollary: Chebyshev's inequality 
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Chebyshev inequality 

If X is any nonnegative random variable and a > 0, then 

Proof: 

Here Var(X) is the variance of X, defined as: 
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Generalizations of  

Chebyshev's inequality 
Chebyshev:  

Asymmetric two-sided case (X is asymmetric distribution) 

Symmetric two-sided case (X is symmetric distribution)  

This is equivalent to this: 

There are lots of other generalizations, for example multivariate X. 
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Higher moments? 

Chebyshev: 

Markov: 

Higher moments: 
where n ≥ 1 

Other functions instead of polynomials? 

Exp function: 

Proof: (Markov ineq.) 
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Law of Large Numbers 
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Do empirical averages converge? 
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 Answer: Yes, they do. (Law of large numbers) 

Chebyshev’s inequality is good enough to study the question:  

Do the empirical averages converge to the true mean? 



Law of Large Numbers 
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Strong Law of Large Numbers: 

Weak Law of Large Numbers: 



Weak Law of Large Numbers 

Proof I: 

Assume finite variance. (Not very important) 

Therefore, 

As n approaches infinity, this expression approaches 1. 
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Fourier Transform  

and Characteristic Function 
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Fourier Transform 
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Fourier transform 

Inverse Fourier transform 

Other conventions:  Where to put 2? 
Not preferred: not unitary transf. 

Doesn’t preserve inner product 

unitary transf. 

unitary transf. 



Fourier Transform 
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Fourier transform 

Inverse Fourier transform 

Inverse is really inverse: 

Properties: 

and lots of other important ones… 

Fourier transformation will be used to define the characteristic function,  

and represent the distributions in an alternative way. 



Characteristic function 
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The Characteristic function provides an alternative way  

for describing a random variable 

How can we describe a random variable? 

• cumulative distribution function (cdf) 

 

• probability density function (pdf) 

Definition: 

The Fourier transform of the density/ 



Characteristic function 
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Properties 

For example, Cauchy doesn’t have mean but still has characteristic function. 

Continuous on the entire space, even if X is not continuous. 

Bounded, even if X is not bounded 

Levi’s: continuity theorem 

Characteristic function of constant a: 



Weak Law of Large Numbers 

Proof II: 
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Taylor's theorem  for complex functions 

The Characteristic function 

Properties of characteristic functions :  

Levi’s continuity theorem ) Limit is a constant distribution with mean  

mean 
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“Convergence rate” for LLN 

Gauss-Markov: 
Doesn’t give rate 

Chebyshev: 

Can we get smaller, logarithmic error in δ??? 

with probability 1- 



• http://en.wikipedia.org/wiki/Levy_continuity_theorem 

 

• http://en.wikipedia.org/wiki/Law_of_large_numbers  

 

• http://en.wikipedia.org/wiki/Characteristic_function_(probability_theory) 

 

• http://en.wikipedia.org/wiki/Fourier_transform   
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Further Readings on LLN,  

Characteristic Functions, etc 

http://en.wikipedia.org/wiki/Levy_continuity_theorem
http://en.wikipedia.org/wiki/Law_of_large_numbers
http://en.wikipedia.org/wiki/Characteristic_function_(probability_theory)
http://en.wikipedia.org/wiki/Fourier_transform


More tail bounds 

More useful tools!  
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Hoeffding’s inequality (1963) 

It only contains the range of the variables,  

but not the variances. 
39 



“Convergence rate” for LLN  

from Hoeffding  
Hoeffding 
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Proof of Hoeffding’s Inequality 
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A few minutes of calculations.  



Bernstein’s inequality (1946) 

It contains the variances, too, and can give 

tighter bounds than Hoeffding. 
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Benett’s inequality (1962) 

Benett’s inequality ) Bernstein’s inequality. 
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Proof: 



McDiarmid’s  

Bounded Difference Inequality 

It follows that 
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Further Readings on  

Tail bounds 
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http://en.wikipedia.org/wiki/Hoeffding's_inequality  

 

http://en.wikipedia.org/wiki/Doob_martingale (McDiarmid) 

 

http://en.wikipedia.org/wiki/Bennett%27s_inequality 

 

http://en.wikipedia.org/wiki/Markov%27s_inequality   

  

http://en.wikipedia.org/wiki/Chebyshev%27s_inequality  

 

http://en.wikipedia.org/wiki/Bernstein_inequalities_(probability_theory)  

http://en.wikipedia.org/wiki/Hoeffding's_inequality
http://en.wikipedia.org/wiki/Doob_martingale
http://en.wikipedia.org/wiki/Bennett's_inequality
http://en.wikipedia.org/wiki/Markov's_inequality
http://en.wikipedia.org/wiki/Chebyshev's_inequality
http://en.wikipedia.org/wiki/Bernstein_inequalities_(probability_theory)


Limit Distribution? 
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Central Limit Theorem 
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Lindeberg-Lévi CLT: 

Lyapunov CLT:   

+ some other conditions 

Generalizations:  multi dim, time processes 



Central Limit Theorem in Practice 

unscaled 

scaled 
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Proof of CLT 

From Taylor series around 0: 

Properties of characteristic functions :  

Levi’s continuity theorem + uniqueness ) CLT 
characteristic function 

 of Gauss distribution  



How fast do we converge to 

Gauss distribution? 

Berry-Esseen Theorem 
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 Independently discovered by A. C. Berry (in 1941) and C.-G. Esseen (1942) 

CLT: 

It doesn’t tell us anything about the convergence rate. 



Did we answer the questions 

we asked? 

• Do empirical averages converge? 

• What do we mean on convergence?  

• What is the rate of convergence?  

• What is the limit distrib. of “standardized” averages? 

 How good are the ML algorithms on unknown test sets? 

 How many training samples do we need to achieve small error? 

 What is the smallest possible error we can achieve? 

Next time we will continue with these questions: 
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• http://en.wikipedia.org/wiki/Central_limit_theorem  

 

• http://en.wikipedia.org/wiki/Law_of_the_iterated_logarithm  

Further Readings on CLT 
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http://en.wikipedia.org/wiki/Central_limit_theorem
http://en.wikipedia.org/wiki/Law_of_the_iterated_logarithm


Tail bounds in practice 
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• Two possible webpage layouts 

• Which layout is better? 

 

Experiment 

• Some users see A 

• The others see design B 

 

How many trials do we need to decide which page attracts 

more clicks? 

 

  

A/B testing 
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A/B testing 
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Assume that in group A  

 p(click|A) = 0.10 click and p(noclick|A) = 0.90 

Assume that in group B  

 p(click|B) = 0.11 click and p(noclick|A) = 0.89 

Assume also that we know these probabilities in group A, but 

we don’t know yet them in group B.  

 We want to estimate p(click|B) with less than 0.01 error 

Let us simplify this question a bit: 



• In group B the click probability is  = 0.11 (we don’t know this yet) 

• Want failure probability of =5% 

Chebyshev Inequality 
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Chebyshev: 

• If we have no prior knowledge, we can only bound the variance by σ2 = 

0.25 (Uniform distribution hast the largest variance 0.25) 

• If we know that the click probability is < 0.15, then we can bound 2 at 

0.15 * 0.85 = 0.1275. This requires at most 25,500 users. 



Hoeffding’s bound 

• Random variable has bounded range [0, 1] (click or no click),  

hence c=1 

• Solve Hoeffding’s inequality for n: 
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This is better than Chebyshev. 

• Hoeffding 



Thanks for your attention  
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