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What have we seen so far?

Several algorithms that seem to work fine on training datasets:

* Linear regression

* Naive Bayes classifier

* Perceptron classifier

» Support Vector Machines for regression and classification

= Learning Theory

To answer these questions, we will need a few powerful tools
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Basic Estimation Theory




Tossing a Dice,
Estimation of parameters 6,,0,,...,0;
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Tossing a Dice
Calculating the Empirical Average




Tossing a Dice

Calculating the Empirical Average
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How fast do they converge? u-



Key Questions

* Do empirical averages converge?

* Does the MLE converge in the dice tossing problem?
* What do we mean on convergence?

* What Is the rate of convergence?

Applications:
* drug testing (Does this drug modifies the average blood pressure?)
* user Interface design (We will see later)



Outline

Theory:

« Stochastic Convergences:
— Weak convergence
— Convergence in probability
— Strong (almost surely)

e Limit theorems:
— Law of large numbers
— Central limit theorem

 Tail bounds:
— Markov, Chebyshev,Chernoff, Hoeffding, Bernstein, McDiarmid inequalities




Stochastic convergence

definitions and properties



Convergence of vectors

In R™ the Z,, — Z convergence definition is easy:

For each € > 0O, there exists a N > O treshold number such that,
for every n > N, we have |Z, — Z| < e.
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What do we mean on the convergence of random variables 7, — Z7?
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Convergence In Distribution =
Convergence Weakly = Convergence In Law

Let{Z, Z,, Z,, ...} be a sequence of random variables.
F;,, and F' are the cumulative distribution functions of Z,, and Z.

Notation: , 4 5, 2 D2 5 , £ 7 z 4 rp,

T~ 2, Zn= 2, L(Zp) = L(Z), Fn-—>F

Definition:

lim Fp(z) = F(z), Vz € R at which F' is continuous

n—oo

This is the "weakest” convergence.
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Convergence In Distribution =
Convergence Weakly = Convergence in Law

Zn(w) can be very different of Z(w)
Random variable Z,, can be independent of random variable Z.




Convergence In Distribution =
Convergence Weakly = Convergence in Law

Continuity Is important!

In this example the limit Z is discrete, not random (constant 0),
although Z is a continuous random variable.
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Convergence In Distribution =
Convergence Weakly = Convergence in Law

Example: Xn ~U[-1,1].
(Central Limit Theorem) 1 —n

Znﬂsz(Q,l) T




Convergence In Probability

Z1(w) — Z(w)]

N\ Zo(w) — Z(w))
6 % Z3(w) — Z(w)

[ 9

{w:|Z3(w) = Z(w)| > €}

This indeed measures how far the values of Z (») and Z(») are from each other. .



Almost Surely Convergence




Convergence in p-th mean, L, norm




Counter Examples




Further Readings on
Stochastic convergence

‘hitp://en.wikipedia.org/wiki/Convergence of random variables

Patrick Billingsley: Probability and Measure

Patrick Billingsley: Convergence of Probability Measures
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http://en.wikipedia.org/wiki/Convergence_of_random_variables

Finite sample tail

bounds

Useful tools!




Gauss Markov Inequality

Corollary: Chebyshev's inequality



Chebyshev inequality

Here Var(X) Is the variance of X, defined as:

Var(X) = E[(X — E[X])2]




Generalizations of

ChebysheV's inequalit
Chebyshev: Pr(|X — u| > a) < %,

where o2 is the variance and p = E[X] is the mean.

This is equivalent to this: Pr(-a< X —-—p<a)>1- ‘;—5

Symmetric two-sided case (X Is symmetric distribution)
452

Pr(k1 < X <kp)>1
(ko — k1)

Asymmetric two-sided case (X Is asymmetric distribution)
4[(n — kq) (ko — p) — o]
(ko — k1)

There are lots of other generalizations, for example multivariate X.
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Pr(k1 < X <ko) >




Higher moments?




Law of Large Numbers




Do empirical averages converge?

Answer: Yes, they do. (Law of large numbers)



Law of Large Numbers

X1,...,Xp i.i.d. random variables with mean u = E[X]]

Empiricial average: u, = 1 Zz_l




Weak Law of Large Numbers

Proof I:

2
- . o)
Using Chebyshev’s inequality on X, results in Pr(|gn —pu| >¢) < >

Therefore, 52

Prlpn —p|l <e)=1-Pr(jin —p[>¢e) 21 - —.
ne

As n approaches infinity, this expression approaches 1.
= [in Lt 1 for n — 00.
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Fourier Transform

and Characteristic Function




Fourier Transform

Other conventions: Where to put 277
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Fourier Transform

Properties:

Inverse is really inverse: FoF llgl=g rloF[f] =
and lots of other important ones...

Fourier transformation will be used to define the characteristic function,
and represent the distributions in an alternative way.
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Characteristic function

The Characteristic function provides an alternative way
for describing a random variable

The Fourier transform of the density/



Characteristic function

ox(®) =E[et0)] = [ ) apy(a) = [ &0 fy(a)da




Weak Law of Large Numbers

~ D
Proof Il: Goalt i — 4.

Properties of characteristic functions :
(t)=px(L) and (t)=px(t)py(t) IfXLY.
P1y ex (5 PX+Y px(t)py

n =230 X

= @, (1) = [@X (i)r = [1 + ip% + o (f

n

mn .
)| et = 1

. _mean

Levi's continuity theorem =- Limit Iis a constant distribution with mean p
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“Convergence rate” for LLN

Gauss-Markov:
Pr(lfin —ul <) >1 - Bl — 3 _ 5 Doesn’t give rate

2

Chebyshev:
den—ﬂ‘<s)21—g—:1_5' j‘yn_u‘<(€:\/%

n€2
with probability 1-5

Can we get smaller, logarithmic error in 8?77
|og%<<% ifO<d<1
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Further Readings on LLN,

Characteristic Functions, etc

http://en.wikipedia.org/wiki/Levy continuity theorem

http://en.wikipedia.org/wiki/Law_of large _numbers

http://en.wikipedia.org/wiki/Characteristic_function_(probability theory)

http://en.wikipedia.org/wiki/Fourier_transform
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http://en.wikipedia.org/wiki/Levy_continuity_theorem
http://en.wikipedia.org/wiki/Law_of_large_numbers
http://en.wikipedia.org/wiki/Characteristic_function_(probability_theory)
http://en.wikipedia.org/wiki/Fourier_transform

More tail bounds

More useful tools!




Hoeffding's inequality (1963)

It only contains the range of the variables,
but not the variances.




“Convergence rate” for LLN
from Hoeffding

Hoeffding Let 2 =1%7"_ (b —a;)3

1=1

- —2ne?
= Pr(lin - ul > ) < 2000 (25
C

1 2
2n )

9
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Proof of Hoeffding's Inequality

A few minutes of calculations.



Bernstein’s inequality (1946)

It contains the variances, too, and can give
tighter bounds than Hoeffding.



Benett's inequality (1962)

Benett's inequality = Bernstein’s inequality.
2

Proof:
U . 9 ne ne

h > t = ne noh(—)z...z
(u) 2 24+ 2u/3 no? 202—|—%s

2




McDiarmid’'s
Bounded Difference Inequalit

Suppose X1, Xo,..., X, are independent and assume that

(In other words, replacing the i-th coordinate x; by some other

value changes the value of f by at most ¢;.)
It follows that




Further Readings on

Tall bounds

http://en.wikipedia.org/wiki/Hoeffding's inequality

http://en.wikipedia.org/wiki/Doob martingale (McDiarmid)

http://en.wikipedia.org/wiki/Bennett%27s inequality

http://en.wikipedia.org/wiki/Markov%27s _inequality

http://en.wikipedia.org/wiki/Chebyshev%27s _inequality

http://en.wikipedia.org/wiki/Bernstein inegualities (probability theory)
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http://en.wikipedia.org/wiki/Hoeffding's_inequality
http://en.wikipedia.org/wiki/Doob_martingale
http://en.wikipedia.org/wiki/Bennett's_inequality
http://en.wikipedia.org/wiki/Markov's_inequality
http://en.wikipedia.org/wiki/Chebyshev's_inequality
http://en.wikipedia.org/wiki/Bernstein_inequalities_(probability_theory)

Limit Distribution?



Central Limit Theorem

Let X1,..., X, bei.i.d E[X,;] = u and Var[X;] = 2.
n

_M%O

Generalizations: multi dim, time processes



Central Limit Theorem In Practice

unscaled
T
> X
1=1

scaled
v Z =




Proof of CLT

| E[Y,] = O
— X — 1 Xy 1 sy !
I_et }/:L _— ZO' and let Zn — ﬁzgl p — %zgl Y; V(JJT(}/Z) — 1

n t t2 t2\1" _2/2
= 0z, ) =[] oy, | —=| = L-o-to|— )| —e /% noo

i=1 n \

N
., C , characteristic function
Levi’'s continuity theorem + uniqueness =- CLT of Gauss distribution
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How fast do we converge to

Gauss distribution?

Cumulative probability

1.0+

| Fnlx) = (x)|
0.8+
0.64

08~

Berry-Esseen Theorem

0.2-

Let X1,...,Xn be i.i.d. "
E[X1] = u, IE‘Z[XQ]—UQ E[|X1]3] = p < S o2
Let Z,, = —

"i=1

Fy, is the cdf of Z, d(z) is the cdf of N(0,1).

Independently discovered by A. C. Berry (in 1941) and C.-G. Esseen (1942)
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Did we answer the guestions

we asked?

* Do empirical averages converge?

* What do we mean on convergence?

* What Is the rate of convergence?

* What is the limit distrib. of “standardized” averages?

Next time we will continue with these guestions:

J How good are the ML algorithms on unknown test sets?
1 How many training samples do we need to achieve small error?
1 What is the smallest possible error we can achieve?
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Further Readings on CLT

http://en.wikipedia.org/wiki/Central_limit_theorem

http://en.wikipedia.org/wiki/Law_of the_iterated |ogarithm
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http://en.wikipedia.org/wiki/Central_limit_theorem
http://en.wikipedia.org/wiki/Law_of_the_iterated_logarithm

ounds In practice

Funed s om Racehon.
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A/B testing

_ ..i.'.'

—_— are different. —

ers see
this version.
l_n_.l Only the headlines Lu—"

How many trials do we need to decide which page attracts
more clicks?
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A/B testing

Let us simplify this question a bit:

Assume that in group A
p(click]A) = 0.10 click and p(noclick|A) = 0.90

Assume that in group B
p(click|B) = 0.11 click and p(noclick|A) = 0.89

Assume also that we know these probabilities in group A, but
we don’t know yet them in group B.

We want to estimate p(click|B) with less than 0.01 error

55



Chebyshev Inequality

~ __ 1<n _ )1 click
Hn = 2ui=1 % ' {o no click
2
—~ o)
Chebyshev: Prilin —pl 2 e) = —

* In group B the click probability is p = 0.11 (we don’t know this yet)
« Want failure probabillity of 0=5%

- If we have no prior knowledge, we can only bound the variance by 0% =
0.25 (Uniform distribution hast the largest variance 0.25)

52 o2 N 0.25
Pr(|fin — pl > €) <;<5 — 52 <" 0.05-0.012

= 50,000 < n

* If we know that the click probability is < 0.15, then we can bound c? at
0.15*0.85 =0.1275. This requires at most 25,500 users.
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Hoeffding's bound

* Hoeffding Let 2=1yn_ (b —ay)?

R —2ne?
= Pr(|ign — p| >¢e) < 2exp 5
C

 Random variable has bounded range [0, 1] (click or no click),
hence c=1

« Solve Hoeffding's inequality for n:

5y 2 Cn 2

2exp( 226 ) <5 = ( 228 ) <log(s/2) = —2ne? < ¢?log(8/2)
C C

c?10g(2/8) . l0g(2/0.05)

D2 5. 0012 18440

= n >

This Is better than Chebyshev.
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Thanks for your attention ©




