
Homework 2 Solutions
EM, Mixture Models,

PCA, Dualitys

CMU 10-715: Machine Learning (Fall 2015)
http://www.cs.cmu.edu/~bapoczos/Classes/ML10715_2015Fall/

OUT: Oct 5, 2015
DUE: Oct 19, 2015, 10:20 AM

1 An EM algorithm for a Mixture of Bernoullis [Eric; 25 pts]

In this section, you will derive an expectation-maximization (EM) algorithm to cluster black and white
images. The inputs x(i) can be thought of as vectors of binary values corresponding to black and white pixel
values, and the goal is to cluster the images into groups. You will be using a mixture of Bernoullis model to
tackle this problem.

For the sake of brevity, you do not need to substitute in previously derived expression in later problems.
For example, beyond question 1.1.1 you may use P (x(i)|p(k)) in your answers.

1.1 Mixture of Bernoullis

1. (2pts) Consider a vector of binary random variables, x ∈ {0, 1}D. Assume each variable xd is drawn
from a Bernoulli(pd) distribution, so P (xd = 1) = pd. Let p ∈ (0, 1)D be the resulting vector of
Bernoulli parameters. Write an expression for P (x|p).
Solution:

P (x|p) =

D∏
d=1

pxd

d (1− pd)1−xd

2. (2pts) Now suppose we have a mixture of K Bernoulli distributions: each vector x(i) is drawn from
some vector of Bernoulli random variables with parameters p(k), we will call this Bernoulli(p(k)). Let
{p(1), . . . , p(K)} = p. Assume a distribution π(k) over the selection of which set of Bernoulli parameters
p(k) is chosen. Write an expression for P (x(i)|p, π).

Solution: Let Ak be the event that x = x(i) was drawn from p(k). Then:

P (x|p, π) =
∑
k

P (x,Ak|p, π) =
∑
k

P (x|Ak,p, π)P (Ak|p, π) =
∑
k

πkP (x|p(k))

3. (2pts) Finally, suppose we have inputs X = {x(i)}i=1...n. Using the above, write an expression for the
log likelihood of the data X, logP (X|π,p).

Solution:

logL(p, π) =

N∑
i=1

logP (x(i)|p, π)

1.2 Expectation step

1. (4pts) Now, we introduce the latent variables for the EM algorithm. Let z(i) ∈ {0, 1}K be an in-

dicator vector, such that z
(i)
k = 1 if x(i) was drawn from a Bernoulli(p(k)), and 0 otherwise. Let

Z = {z(i)}i=1...n. What is P (z(i)|π)? What is P (x(i)|z(i),p, π)?
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Solution: Let A
(i)
k be the event that x(i) was drawn from p(k).

P (z(i)|π) =

K∏
k=1

π
z
(i)
k

k

P (x(i)|z(i),p, π) =

K∏
k=1

P (x(i)|z(i),p, π, A(i)
k )z

(i)
k =

K∏
k=1

[
P (x(i)|p(k))

]z(i)k

2. (2pts) Using the above two quantities, derive the likelihood of the data and the latent variables,
P (Z,X|π,p).

Solution:

P (Z,X|π,p) =

N∏
i=1

P (x(i), z(i)|π,p) =

N∏
i=1

P (x(i), |z(i), π,p)P (z(i)|π) =

N∏
i=1

[
K∏
k=1

[
P (x(i)|p(k))

]z(i)k

][
K∏
k=1

π
z
(i)
k

k

]

3. (5pts) Let η(z
(i)
k ) = E[z

(i)
k |x(i), π,p]. Show that

η(z
(i)
k ) =

πk
∏D
d=1(p

(k)
d )x

(i)
d (1− p(k)d )1−x

(i)
d∑

j πj
∏D
d=1(p

(j)
d )x

(i)
d (1− p(j)d )1−x

(i)
d

Let p̃, π̃ be the new parameters that we’d like to maximize, so p, π are from the previous iteration. Use
this to derive the following final expression for the E step in the expectation-maximization algorithm:

E[logP (Z,X|p̃, π̃)|X,p, π] =

N∑
i=1

K∑
k=1

η(z
(i)
k )

[
log π̃k +

D∑
d=1

(
x
(i)
d log p̃

(k)
d + (1− x(i)d ) log(1− p̃(k)d )

)]

Solution:

η(z
(i)
k ) = E[z

(i)
k |x

(i), π,p]

= P [z
(i)
k = 1|x(i), π,p]

=
P (x(i)|z(i)k = 1, π,p)P (z

(i)
k = 1|π,p)∑

k′ P (x(i)|z(i)k′ = 1, π,p)P (z
(i)
k′ = 1|π,p)

=
πk
∏D
d=1(p

(k)
d )x

(i)
d (1− p(k)d )1−x

(i)
d∑

k′ πk′
∏D
d=1(p

(k′)
d )x

(i)
d (1− p(k

′)
d )1−x

(i)
d

Next we compute the log likelihood:

logP (Z,D|π,p) =

N∑
i=1

[
K∑
k=1

z
(i)
k log

[
P (x(i)|p(k))

]]
+

[
K∑
k=1

z
(i)
k log πk

]

=

N∑
i=1

K∑
k=1

z
(i)
k

[
logP (x(i)|p(k)) + log πk

]
=

N∑
i=1

K∑
k=1

z
(i)
k

[
log πk + log

D∏
d=1

(p
(k)
d )x

(i)
d (1− p(k)d )1−x

(i)
d

]

=

N∑
i=1

K∑
k=1

z
(i)
k

[
log πk +

D∑
d=1

(
x
(i)
d log(p

(k)
d ) + (1− x(i)d ) log(1− p(k)d )

)]

Taking the expected value and replacing E[z
(i)
k ] = η(z

(i)
k ) finishes the solution.

2



1.3 Maximization step

1. (4pts) We need to maximize the above expression with respect to π̃, p̃. First, show that the value of p̃
that maximizes the E step is

p̃(k) =

∑N
i=1 η(z

(i)
k )x(i)

Nk

where Nk =
∑N
i=1 η(z

(i)
k ).

Solution: Setting the derivative to 0:

d

dp
(k)
d

E[logP (Z,D|π,p)] =

N∑
i=1

η(z
(i)
k )

[
x
(i)
d

p
(k)
d

+
1− x(i)d
1− p(k)d

]
= 0

Multiply by the denominators:

N∑
i=1

η(z
(i)
k )
[
x
(i)
d (1− p(k)d ) + (1− x(i)d )p

(k)
d

]
=

N∑
i=1

η(z
(i)
k )
[
−p(k)d + x

(i)
d

]
= 0

Solving for p
(k)
d results in

p
(k)
d =

∑N
i=1 η(z

(i)
k )x

(i)
d∑N

i=1 η(z
(i)
k )

=

∑N
i=1 η(z

(i)
k )x

(i)
d

Nk

2. (4pts) Show that the value of π̃ that maximizes the E step is

π̃k =
Nk∑
k′ Nk′

The exponential families notation may be useful. Alternatively, you can use Lagrange multipliers.

Solution: We only need to minimize
∑N
i=1

∑K
k=1 η(z

(i)
k ) log πk since the rest is not a function of π.

In order to keep π a distribution, we require
∑
k πk = 1. Let λ be the dual variable for this constraint:

L(π, λ) = −
N∑
i=1

K∑
k=1

η(z
(i)
k ) log πk + λ

(
K∑
k=1

πk − 1

)
Taking the derivate w.r.t. πk:

d

dπk
L(π, λ) = −

N∑
i=1

η(z
(i)
k )

πk
+ λ = 0

solve for πk and we get

πk =

∑N
i=1 η(z

(i)
k )

λ
=
Nk
λ

Now we solve for λ:

L(λ) = −
N∑
i=1

K∑
k=1

η(z
(i)
k )(logNk − log λ) +

(
K∑
k=1

Nk − λ

)
Take the derivative w.r.t. λ:

1

λ

N∑
i=1

K∑
k=1

η(z
(i)
k )− 1 = 0

Solve for λ

λ =

N∑
i=1

K∑
k=1

η(z
(i)
k ) =

K∑
k=1

Nk
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2 Clustering Images of Numbers [Eric; 25 pts]

In this section you will use the above algorithm to cluster images of numbers. You will be using the MNIST
dataset. Each input is a binary number corresponding to black and white pixels, and is a flattened version
of the 28x28 pixel image.

We will use the following conventions:

• N is the number of datapoints, D is the dimension of each input, and K is the number of clusters.

• Xs is an N ×D matrix of the input data, where row i is the pixel data for picture i.

• p is a K × D matrix of Bernoulli parameters, where row k is the vector of parameters for the kth
mixture of Bernoullis.

• mix p is a K × 1 vector containing the distribution over the various mixtures.

• eta is a N ×K matrix containing the results of the E step, so eta[i,k] = η(z
(i)
k ).

• clusters is an N × 1 vector containing the final cluster labels of the input data. Each label is a number
from 1 to K.

2.1 Programming (20pts)

1. Implement the E step of the algorithm within [eta] = Estep(Xs,p,mix p), saving your calculated values
within eta.

2. Implement the M step of the algorithm within [p,mix p] = Mstep(Xs, model, alpha1, alpha2). p and
mix p returned by this function should contain the new values that maximize the E step. alpha1, alpha2
are Dirichlet smoothing parameters (explained below).

3. Implement [clusters] = MoBlabels(Xs,p,mix p). This function will take in the estimated parameters and
return the resulting labels that cluster the data.

4. Some hints and tips:

• The autograder will separately grade the accuracy of your implementation separately for the E-step
(4pts), M-step (4pts), and M-step with smoothing (2pts). Finally, it will run your implementation
for several iterations on a subset of the MNIST dataset (8pts). A small subset of the MNIST
dataset is provided for your convenience.

• Use the log operator to make your calculations more numerically stable. In particular, pay

attention to the calculation of η(z
(i)
k ).

• You will need to avoid zeros in π and p or else you will take log(0) = −∞. Use Dirichlet prior
smoothing with the parameters α1, α2 when updating these variables:

p̃(k) =

∑N
i=1 η(z

(i)
k )x(i) + α1

Nk + α1D

π̃k =
Nk + α2∑

k′ Nk′ + α2K

• Initialize your parameters p by randomly sampling from a Uniform(0, 1) distribution and normal-
izing each p(k) to have unit length, and πk = 1/k.

• Running your implementation on the MNIST dataset with K = 20 clusters and α1 = α2 = 10−8

for 20 iterations should give you some results similar to the following (our reference code runs in
approximately 10 seconds):
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2.2 Analysis

1. (5pts) For each cluster, reshape the pixels into a 28x28 matrix and print the resulting grayscale images.
What do you see? Explain, and include one such image in your writeup. See https://www.gnu.org/

software/octave/doc/interpreter/Representing-Images.html for help on printing the matrix, or
use the provided helper function show clusters(p, a, b) which will print the mixtures in p in an a × b
grid.

2. (2pts) Using your implemented MoBlabels function, cluster the data. Using the true labels given in
yTrain, how many unique digits does each cluster typically have? Are there any clusters that picked
out exactly one digit?

3 Kernel PCA [Fish; 15 pts]

Principal component analysis (PCA) is used to emphasize variation and is often used to make data easy to
explore and visualize. Suppose we have data x1, x2, · · ·xN ∈ Rd that has zero mean. PCA aims at finding
a new coordinate system such that the greatest variance by some projection of the data comes to lie on the
first coordinate, the second greatest variance on the second coordinate, and so on. The basis vectors of the
new coordinate system are the eigenvectors of the co-variance matrix, i.e.,

1

N

N∑
i=1

xix
T
i =

d∑
i=1

λiviv
T
i , (1)

where v1, v2, · · · , vd are orthogonal (< vi, vj >= 0 for i 6= j). Then we can plot our data points on our
new coordinate system. The position of each data points in the new coordinate system can be derived by
projecting x on to the basis of the new coordinate system, i.e., v1, v2, · · · vd.

3.1 kernel PCA

Often we will want to make linear or non-linear transformation on the data so that they are projected to a
higher dimensional space. Suppose there is a transformation function φ : Rd → Rl. We map all the data to
a new space through this function, and we have φ(x1), φ(x2), · · · , φ(xN ). We again want to do PCA on the
transformed data in the new space. How can we do this?

1. (2pts) Write out the co-variance matrix, C, for φ(x1), φ(x2), · · · , φ(xN ). (Define φ(x) = 1
N

N∑
j=1

φ(xj))
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Solution:

C =
1

N

K∑
i=1

(
φ(xi)− φ(x)

)(
φ(xi)− φ(x)

)T
(2)

2. (2pts) Now we want to find the basis vectors for the orthogonalized new space by solving eigenvectors
of C. Using the definition of an eigenvector, λv = Cv, explain why v is a linear combination of(
φ(x1)− φ(x)

)
,
(
φ(x2)− φ(x)

)
, · · · ,

(
φ(xN )− φ(x)

)
. Since v is a linear combination of these vectors,

v =
∑N
i=1 αi

(
φ(xi)− φ(x)

)
.

Solution:

λv =
1

N

K∑
i=1

(
φ(xi)− φ(x)

)(
φ(xi)− φ(x)

)T
v (3)

v =
1

λN

K∑
i=1

(
φ(xi)− φ(x)

)〈
φ(xi)− φ(x), v

〉
(4)

v =

N∑
i=1

αi

(
φ(xi)− φ(x)

)
. (5)

3. (2pts) Before starting to derive α and find out v, we introduce kernel function here. A kernel function
is in the form of k(xi, xj) = 〈φ(xi), φ(xj)〉 . Notice that we do not need to know the function φ to
calculate k(xi, xj). We can simply define a function that is related to xi, xj and k(xi, xj) = k(xj , xi). A
classic example is Radial basis function (RBF) kernel, which is k(xi, xj) = exp(−||xi − xj ||2/2σ2). In
order to use these kernel function, we need to get rid of all the φ(xi) and replace them with the kernel
function. A kernel matrix is defined as K ∈ RN×N and Kij = k(xi, xj). Since we are dealing with

non-centered data, we first use a modified kernel matrix K̃ij =
〈(
φ(xi)− φ(x)

)
,
(
φ(xj)− φ(x)

)〉
. By

using the results in question 3.1.1 and 3.1.2 and the definition of eigenvectors, show that

NλK̃α = K̃2α. (6)

Solution: Define a matrix Φ = [φ(x1)− φ(x), φ(x2)− φ(x), · · · , φ(xN )− φ(x)]. So we have v = Φα,
C = 1

NΦΦT and K̃ = ΦTΦ. Rewrite λv = Cv with these notations, we have

λΦα =
1

N
ΦΦTΦα (7)

Multiply both side by ΦT , we have

λΦTΦα =
1

N
ΦTΦΦTΦα (8)

NλK̃α = K̃2α (9)

4. (2pts) Show that the solutions α in

Nλα = K̃α. (10)

are also solutions for equation 6.

Solution: If α satisfies (10), then it will also satisfies (6).

5. (3pts) Show that

K̃ = (I − eeT )K(I − eeT ). (11)
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Thus, by solving the eigenvectors of K̃, we get α.

Solution: Define Θ = [φ(x1), φ(x2), · · · , φ(xN )] . Rewrite K̃ and have

K̃ =

(
Θ− 1

N
Θ11T

)T (
Θ− 1

N
Θ11T

)
(12)

= ΘTΘ− 1

N
11TΘTΘ− 1

N
ΘTΘ11T +

1

N2
11TΘTΘ11T (13)

= K − eeTK −KeeT + eeTKeeT (14)

= (I − eeT )K(I − eeT ) (15)

6. (2pts)After obtaining α, we get the un-normalized basis vector v. To normalize it, what is the factor
you need to multiply to v ?

Solution:

‖v‖2 =
√
vT v =

√
αTΦTΦα =

√
αT K̃α. (16)

We need to normalize v by this factor. You shuold not simply write divide by
√
v, because you do not

know what is φ, and again you need to obtain everything by going through the kernel functions.

7. (2pts) For a data point x, what is its position in the normalized new space? Explain why you can get
the new coordinate without explicitly calculate φ(x).

Solution: Projection on to the a basis vector Φα is

1√
αT K̃α

(
φ(x)− φ(x)

)
Φα =

1√
αT K̃α

N∑
i=1

αiK̃(x, xi), (17)

so only kernel function is needed. (You can also expend out K̃ and calculate it using K.)

4 Huber function and its application in solving dual problem
[Fish; 35pts]

4.1 Huber function

Define a function

B(x, d) = min
λ≥0

λ+
x2

λ+ d
. (18)

where d > 0.

1. (3pts) Show that the function

B(x, d) =

{
x2

d if |x| ≤ d
2|x| − d if |x| > d

(19)

with the minimizer λ∗ = max(0, |x| − d). B is often called a huber function.

Solution: Differentiate B(x, d) with λ, we have 1 − x2

(γ+d)2 = 0. Solving the function and we get

λ = |x| − d. To match the constraint that λ ≥ 0, we need to have |x| ≥ d. Besides, with λ = |x| − d, we

have B(x, d) = |x|−d+ x2

|x| = 2|x|−d. On the other side, if |x| < d, notice that g(λ) = (λ+d) + x2

λ+d is

an increasing function since g′(λ) = 1− x2

(λ+d)2 ≥ 1− x2

d2 > 0, which means you can obtain the minimum

value at λ = 0. So we have minλ≥0

(
λ+ d+ x2

(λ+d) − d
)

= d+ x2

d − d = x2

d at λ = 0.
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2. (3pts) Is the function B convex in x? (Assume d is a fixed constant)

Solution: At the range of |x| < d, ∂B(x,d)
∂x = 2x

d and ∂2B(x,d)
∂x2 = 2

d ≥ 0, so the function is convex

in this range. Next we examine the part when |x| > d, ∂B(x,d)
∂x = 2sign(x) and ∂2B(x,d)

∂x2 = 0, so it is
convex. Then we examine the 2 points where |x| = d, you can see that the differentiation approching
from the 2 directions (from |x| < d and |x| > d) at this point are both 2sign(x), so the differentiation
exists and the twice differentiation is again 0. So the function is also convex at this point. We thus
conclude that the function is convex by showing that twice differentation is greater and equal to zero
at all points.

3. (3pts) Derive the gradient of function B at any given point (x, d). (Remember d > 0.)

Solution: x ≥ d, ∂x,dB(x, d) = (2,−1), x ≤ −d, ∂x,dB(x, d) = (−2,−1), −d ≤ x ≤ x, ∂x,dB(x, d) =

( 2x
d ,−

x2

d2 ).

4. (3pts) Function B is often used as a penalty term in classification or regression problems, which have
the form

min
x
L(x) +B(x, d), (20)

where L is the loss function, and d is a parameter with positive value. Describe how parameter d
affects the penalty term B on the solution.

Solution:

When d is large, than it acts like l2 penalty. When d is small, then it acts as l1 penalty.

4.2 An application of using Huber loss to solve dual problem

Consider the optimization problem

min
x

N∑
i=1

(
1

2
dix

2
i + rixi) (21)

s.t. aTx = 1, xi ∈ [−1, 1] for i = 1, 2, · · ·n. (22)

1. (3pts) Show that the problem has strictly feasible solutions if and only if ||a||1 > 1.

Solution: By Cauchy-schwarz inequality, we have

1 = aTx ≤ ‖a‖1 ‖x‖∞ , ‖x‖∞ < 1, ‖a‖ > 1. (23)

For the other direction, if ‖a‖1 > 1, you can set xi = sign(ai)
‖a‖1

and this is a feasible solution to the

question.

2. (3pts) Re-express xi ∈ [−1, 1] as x2i ≤ 1, for i = 1, 2, · · · , n. Write down the dual of this problem.

Solution: The langrange function for this question

L(x, u, v) =

N∑
i=1

(
1

2
dix

2
i + rixi) + u(aTx− 1) +

N∑
i=1

vi(x
2
i − 1). (24)

The dual problem is

sup
u,v

inf xL(x, u, v). (25)

Now we solve x so that we can have a function that only contains u, v.

∂L(x, u, v)

∂xi
= dixi + ri + uai + 2vixi = 0, (26)

xi = −ri + uai
di + 2vi

. (27)
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plug this into the Lagrange function and we have

N∑
i=1

(
1

2
di

(ri + uai)
2

(di + 2vi)2
− ri

ri + uai
di + 2vi

− uai
ri + uai
di + 2vi

+ vi

(
(ri + uai)

2

(di + 2vi)2
− 1

))
− u (28)

=

N∑
i=1

(
−

1
2 (ri + uai)

2

2vi + di
− vi

)
(29)

So the dual problem is

max
u,v

N∑
i=1

(
−

1
2 (ri + uai)

2

2vi + di
− vi

)
− u (30)

s.t.vi ≥ 0 for i ∈ [N ] (31)

Or you can write it as

min
u,v

u+
1

2

N∑
i=1

[
(ri + uai)

2

2vi + di
+ 2vi

]
(32)

s.t.vi ≥ 0 for i ∈ [N ] (33)

3. (6pts) Write down the KKT condition for this problem. Does it characterize the optimal solution?

Solution: Yes, KKT characterize the optimal solution. # Stationary:
∇xL(x, u, v) = 0
# Primal feasible:
x2i ≤ 1
aTx = 1
# Dual feasible:
vi ≥ 0, for i ∈ [N ]
Complementary Slackness:
vi(x

2
i − 1) = 0 for i ∈ [N ].

4. (5pts) Show that we can further reduce the dual problem to a one-dimensional convex problem

min
µ
µ+

1

2

N∑
i=1

B(ri + µai, di), (34)

where B is the Huber function defined in the previous section.

Solution: Look at (30), it is exactly in this form, where 2vi is the λ, and (ri + uai) is x.

5. (3pts) Describe an algorithm to solve this dual problem. What is the time complexity for your algo-
rithm? We have shown that Huber function is convex and derive its gradient in the question 4.1.3,
so we can simply apply gradient descent to solve it. The time complexity is O(Nk), where k is the
number of step.

6. (3pts) How can you recover an optimal primal solution x after solving the dual?

Solution: After deriving u, v, we can recover x by

xi = −ri + uai
di + 2vi

(35)

as stated in (25).
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