T AT S

Wy

Data Exchange

The same data might sometimes be needed at different 1levels of the
system. For instance, some output data (or different representations
thereof) might reside inside the graphics system, inside the UIMS and
inside the application. This 1is done for efficiency reasons, i.e.
to minimise data exchange and data transformations. {Compare with
traditional "cache-ing"). However, modification of data at a lower
level must now also lead to modification of the corresponding data at
the higher levels., This can be done via properly controlled shared
access mechanisms. Alternatively, the higher levels might have to
inspect the data at the lower levels and deduct updates from there
(via an inverse transformation).

Interaction Primitives

It would be very helpful to the interaction designer if there existed
"standard interaction primitives" that were very well suited for
building complex user interfaces. The abstractions (LID's) that
exist in current graphics systems were mainly designed to enable
portability., They are considered inappropriate for building user
interfaces. It is unlikely that these interaction primitives can be
put on top of a graphics system. However, they might merely extend
the GS (and as such share the physical device drivers). An example
of such abstract interaction primitive is a "rubberband" function.
An appropriate set of these primitives has not yet been defined.

5. REFERENCES

Anson E (1982) The device model of interaction. Proceedings of
SIGGRAPH 82. Computer Graphics 3:107-114

Borufka HG, Kuhlmann HW, ten Hagen PJW (1982) Dialogue cells: a
method for defining interactions. IEEE CG&A, July:25-33

Herman I, Krammer G, Tolnay-Knefely T, Vincze A (1984) Picture book
about wuser interface management and associated representation
kernels, Proceedings of this workshop

Kamran A (1984) Issues pertaining to the design of the abstract
interaction handler. Proceedings of this workshop

Matthys J (1984) The input tool model - a personal experience.
Proceedings of this workshop

Pfaff G (1983) Construction of operator interfaces based on logical
input devices. Acta Informatica 19:151~166

Strubbe HJ (1984) Components of interactive
Proceedings of this workshop

ten Hagen PJW (1984) The relation between a UIMS and an application.
Separate Subgroup report. Proceedings of this workshop

van den Bos J, Plasmeijer MJ, Hartel P (1983) Input-Output tools: a
language facility for interactive and real-time systems. IEEE
Trans. Software Eng. 3:247-259

applications.

Report on Dialogue Specification Tools

M. Green

Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada

INTRODUCTION

One of the goals of User Interface Management Systems (UIMS) is the
automatic (or semi-automatic) construction of user interfaces. 1In
order to accomplish this a description of the user 1interface to be
implemented must be available. This report addresses three questions
related to user interface descriptions. These questions are: what
user interface descriptions are required to automatically produce a
user interface, how do these descriptions relate to the human factors
of user interfaces, and how can the existing user interface descrip-
tion techniques be classified? 1In order to address these questions
an abstract model of a UIMS has been developed. This model does not
represent how a UIMS should be structured or implemented, instead it
presents the logical components that must appear in a UIMS. Each of
these components has a different function, and different description
techniques are required for each one. The logical model of a UIMS is
shown in fig. 1. This model is similar to ones proposed by Edmonds
[Edmonds 1982], Green [Green 1984), and Olsen [Olsen 1984]). Each of
the components of this model will now be discussed.

i Dialogue I i Application |
USER <->| Bgesentatiog €<——»—>I: czlﬁtgol II<———->: ?n;igzice i
| | | | | |
| | | | | |
. ! !
| \ \
___________ B e e St

Fig. 1 Logical model of a UIMS

The presentation component is responsible for the external presenta-
tion of the user interface. This component generates the images that
appear on the display screen, and reads the physical input devices,
converting the raw input data into the form required by the other
components in the user interface. The wuser interface employs an
abstract representation for the input and output data. This
representation consists of a type or name that identifies the kind of

10

data, and the collection of values that define the data item. This
representation is similar to that used to represent tokens in a com-
piler {Aho and Ullman 1977]. For this reason the term token is used
for the chunks of information handled by the UIMS. The main purpose
of the presentation component is to translate between the external
physical representation of the tokens, and their internal abstract

representation. In most cases this translation is a simple one-to-
one mapping.

The external-internal mapping can be viewed as a dictionary, with one
entry for each of the external and internal data items. This entry
indicates how the token is to be translated. The presentation com-
ponent has no control over the contents of the dictionary, it cannot
change the external-internal mapping. The dictionary can only be
changed by the dialogue control component. The dictionary is a gen-
eralization of the physical/logical device bindings that appear in
some graphics ackages. In terms of Foley's language model [Foley
and van Dam 1982) the presentation component deals with the lexical
aspects of the user interface.

The dialogue control component defines the structure of the dialogue
between the wuser and the application program. This component
receives a linear sequence of input tokens from the presentation com-
ponent, and a linear sequence of output tokens from the application.
Based on these two seguences of tokens the dialogue control component
determines the structure of the interaction, and routes the tokens to
their appropriate destinations. The dialogue control component can
be viewed as the mediator between the user and the applications pro-
gram. The user, through the presentation component, makes requests
and supplies data to the application program. The input tokens
representing these requests and data are examined by dialogue con-
trol, and routed to the appropriate routines in the applications pro-
gram. Similarly the application program generates requests for data
and answers to the user requests. The dialogue control component
must channel these output tokens to the appropriate parts of the
presentation component.

Unlike the presentation component, the dialogue control component
must maintain a state and have control over it. ‘'The actions per-
formed by this component will usually depend upon the context of the
dialogue, therefore, any notations for it must be able to handle
dialoque states and state changes. This component can also control
the state of the presentation component, thus a means of specifying
these state changes is also required.

The application interface model is a representation of the applica-
tion from the viewpoint of the user interface. This component
defines the interface between the UIMS and the rest of the applica-
tion program. The application interface model defines the semantics
of the application. This representation includes the data objects
that are maintained by the application, and the routines the user
interface can use to communicate with the application. This com-
ponent contains the information required by dialogue control for
routing tokens to the appropriate place within the application, This
component also contains constraints on the use of the application
routines. This allows the user interface to check the semantic vali-
dity of the user input before the application routines are invoked.
This information can also be used in error recovery and undoing user
actions. This component of a user interface has not appeared expli~
citly in any of the existing UIMSs. But, most of them have some
mechanism for performing some of the functions we have assigned to

it. The exact nature of this component will evolve as it 1is incor-
porated into UIMSs and used in practice.

HUMAN FACTORS

In this section the relationship between the human factors of wuser
interfaces, and the three user 1interface components is explored.
There are two aspects to this relationship. First, how can human
factors experts help us design the three user interface components?
By dividing the user interface into three logical components it may
be possible to develop better design guidelines, than by considering
the user interface as a whole. Second, given descriptions of each

component, is it possible to evaluate these descriptions from a human
factors point of view?

Starting with the first aspect and the presentation component of the
user 1interface, it appears that name spaces are a key issue. The
presentation component is responsible for mapping between the user's
symbolism, and the internal representation of the user interface.
When the user approaches an application he has a certain set of sym-
bols he wuses to name the physical and conceptual objects in the
application. 1In order to have a smooth dialogue the presentation
component must deal with the user in terms of these symbols. The
design of this set of symbols is where human factors enters the
design of the presentation component. We need advice on how the sym-
bols should be designed, how the 'symbol space should be structured,
and the effects of interactions between symbols. Should the symbol
space be designed in such a way that all the symbols are obviously
disjoint, or is there something to be gained from the interaction
between symbols? In order to address these questions advice from
experts in human factors and cognitive psychology is needed.

In the dialogue control component the key human factors issue is com-
mand and dialogue structure. It is fairly well known that certain
command formats and dialogue structures are superior to others, and
numerous sets of guidelines have been produced for command language
design. It has also been shown that the interaction between commands
can have an effect on the usability of a user interface. There is
more readily available information on the design of this component
than the other two components. But, there are still a large number
of human factors issues to be addressed. One of the key issues Iis
the effect of chunking and closure on dialogue design. How can we
design a dialogue to take advantage of the wuser's natural chunking
ability? Also, how can we design a dialogue so the closures occur at
natural places, and the dialogue does not overload the wuser's pro-
cessing abilities?

There is very little we can say about the human factors of the appli-
cation interface model. The design of this component should be based
on the user's model of the application. 1In many ways this component
reflects the wuser's view of the semantics of the application. It
must provide the operations that the user wants to perform in the
application. If a particular operator is missing the user must con-
struct a sequence of operators which has the same effect, and this
may not always be possible. This imposes a greater cognitive load on
the user than invoking a single command.

12

The design of both the presentation component and the application
interface model require a user's model of the application. In this
context a user's model is the model the user has of the application.
This model exists in the user's mind and he is usually not aware of
it. There are two problems with user's models. The first is, how do
we determine the model the user has of the application? Since the
user is usually not aware of this model, he cannot produce a written
version of it,. It may be possible to interview the user, and then
construct an approximate model from the results of the interview.
But, we currently have no way of knowing if this model is correct.
The second problem is, given that it is hard to extract the wuser's
model from the wuser, 1is it possible to design a user's model, and
then transfer it to the user? If this were possible the first prob-
lem disappears, and we are left with the problems of designing good
user’'s models and transferring them to the user. The problems of
user's modeling are beyond the scope of this workshop, but these
problems must be addressed in order to design good user interfaces.

The second human factors issue, the evaluation of user interface
descriptions, 1is motivated by the precise descriptions of the user
interface that are produced when a UIMS is used. The main purpose of
these descriptions 1is to facilitate the automatic or semi-automatic
production of a user interface. But, when such descriptions exist
there is a great potential to use them for other purposes. Some
techniques have already been developed for user interface evaluation,
The best known of these are the grammar based technigues of Reisner,
and the keystroke model of Card, Moran, and Newell. Both of these
techniques require a complete description of the user interface. A
UIMS should produce a human factors evaluation of a user interface at
the same time it was producing the implementation of it. This would
give the user interface designer a feel for how the wuser interface
will perform, and where it could be improved. This could lead to a
process of user 1interface debugging similar to the programming
language debugging that is currently done with compiler generators.

NOTATIONS

Over the past few years a number of UIMSs have been designed and
implemented. All of these systems have, in some form or another, the
three wuser interface components identified in section 1. The
designers of these systems have developed notations for these com-
ponents, largely without knowledge of what other UIMS designers were
doing. One of the major goals of this working group was to analyze,
and attempt to classify the notations that have been used 1in UIMSs,
The classification scheme presented here is by no means complete, but
it does cover most of the existing UIMSs. It is interesting to note
that most of the members of this working group already had a classif-
ication scheme in mind before the workshop. The classification
scheme that resulted from our discussions does not differ radically
from any of these preconceived schemes.

Our classification scheme is based on the three user interface com-
pcnents. Bach component has its ecwn set of notations. The notations
for dialogue control are further divided into three groups.

Presentation Component

For the presentation component the notations must deal with both
input and output. At the present time output notations deal mainly
with graphical output. The range of these notations should be
extended to cover sound, touch, and movement (as in robotics). Most
of the notations for graphical output are based on the routines pro-
vided by standard graphics packages. Calls to these routines are
combined to form the symbols presented to the wuser. This form of
notation is very similar to a programming language, and in most cases
the target language of the UIMS is used as the basis for the nota-
tion.

This is not an acceptable form of notation, for the following two
reasons. First, a textual language is used to describe something
that is graphical in nature. As a result the notation is both hard
to use and read. Given a collection of subroutine calls it is not an
easy task to determine the image they produce on the display screen.
What 1is really required is a graphical notation for the output sym-
bols. One attempt at this can be found in the MENULAY system [Buxton
et.al. 1983]. Second, by using a programming language notation the
user interface designer is forced to do the work of the UIMS. The
user interface designer should produce a high level description of
the symbol, and let the UIMS convert it into a program.

A similar situation exists on the input side of presentation com-
ponent notations, In most cases the input primitives provided by a
graphics package are used as the input symbols generated by the user.
Most of the UIMSs do not provide a mechanism for combining the input
primitives into more complex symbols at the presentation level.
Currently this function 1is performed by the dialogue control com-
ponent. The range of input primitive should be extended to cover
video, voice, and more complicated body gestures (such as character
recognition). As of yet no really useful input notations have
appeared.

The last issue to be dealt with in presentation component notations
is the external-internal mapping. This mapping is controlled by the
dialogue control component, but it resides in the presentation com-
ponent. There are several issues associated with this mapping. The
first is whether the mapping is a simple table lookup, or can some
form of simple decision making be involved. These decisions could be
based on the values of the token. For example, the presentation of
an output token may depend upon the magnitude of its values. A
detailed presentation would be given for small values, and an over-
view for large values. If decision making is included in the mapping
what form should it take, and how would it be expressed? The presen-
tation component contains the definitions of internal and external
tokens. The dialogue control component must be able to reference
these tokens 1in order to establish the mapping between them. How
does the presentation component assign a name to the tokens, and how
are these names passed to the dialogue control component? These
igsues must be addressed in any notation for the presentation com-
ponent.

)

it

Dialogue Control Component

The dialogue control component has the most highly developed nota-
tions. Since most of the existing UIMSs have concentrated on this
component, it has more notations and there 1is considerably more
experience with their wuse. The notations that have been used for
this component mainly fall into three groups. The major difference
between these groups is the model the notations have of the user
interface. The transition network notations view the user interface
as a collection of states, and the user's actions cause transitions
between these states. The grammar group views the dialogue between
the user and the computer as a language, and uses grammar based tech-
niques to describe this interaction. The event group views the user
interface as a collection of events and event handlers. When the
user interacts with the computer, one or more events are generated,
which are processed by the event handlers, possibly generating more
events. This is not a complete classification scheme for dialogue
control notations, since at least one well known system does not fit
(the Tiger system of Kasik [Kasik 1982]).

The transition network group is the oldest group of notations for
dialogue control. This approach to user interface management dates
back to at least 1968 with the work of Newman [Newman 1968]). This
style of notation has been used in a number of systems since that
time, and a considerable amount of experience has been gained in its
use. A pure transition network, consisting solely of states and
transitions between these states, is not powerful enough to handle a
wide range of user interfaces, and tends to be hard to use. This is
due to the fact that most user interface have a large number of
states, with a large number of possible transitions between them. As
a result, several schemes have been developed for partitioning the
network. One approach is the user of subnetworks. A subnetwork is
an independent transition network having its own set of states and
transitions. A subnetwork can be used to replace any of the states
or transitions in another network. Once a subnetwork has been
entered it retains control of the dialogue until one of its terminal
states is reached. When this happens control returns to the point,
in the calling network, where the subnetwork was invoked. Thus, com-
pound dialogues can be built up from smaller dialogues, each
represented by a subnetwork. An extension of this approach is recur-
sive transition networks or RTNs, where the subnetworks are capable
of 1invoking themselves recursively. Experience with transition net-
works indicates that RTNs are necessary to handle the types of user
interfaces that arise in practice. An example of a notation based on
RTNs is SYNICS [Edmonds 1981].

Experience with transition network based systems indicated that a
multi-threaded implementation is desirable. This allows the user to
interact with several networks at the same time. This can be used in
help processing, where there is a separate network for the help com-
mand. The user can invoke the help network without fear of losing
his place in the original dialogue.

The grammar based notations use technigues from programming languages
for both the description, and implementation of the dialogue control
component. These notations are based on using context free grammar
to describe the dialogue between the user and the program. As with
transition diagrams, pure context free grammars do not form an ideal
notation for the dialogue control component, so numerous extensions
have been made. Most of these extensions give the dialogue designer

g ——

15

more control over the order in which the user's input is parsed. For
example, it may be possible to specify that the ordering of the sym-
bols in a production 1is arbitrary. This allows the user to enter
these symbols in any order. Other extensions deal with error detec-
tion, error recovery, and the ability to undo parts of the dialogue.
It should be noted that the descriptive power of RTNs and context
free grammars is the same. There is some indication that RTNs may be
easier to use than context free grammars. Two examples of grammar
based notations are SYNGRAPH [Olsen and Dempsey 1983] and DIALOG
[Derksen 1983] [Borufka,, et.al. 1982]. Closely related to this
approach is the work of van den Bos [van den Bos 1980].

The event model is not as well known, or as highly developed as the
other two groups of dialogue control notations. Since the event
model is not widely known a brief description of it 1is presented
here. The event notations are based on the concepts of events, and
special procedures called event handlers. In may ways events are
similar to the input and output tokens discussed in section 1. Each
event has a name and a collection of data values. An event 1is gen-
erated each time the user interacts with an input device. These
events are processed by one or more of the event handlers associated
with the 1input, or display device involved in the interaction. An
event handler is a procedure that performs a set of actions based on
the name of the event it receives. These actions include passing
output tokens to the presentation component, passing input tokens to
the application interface model, performing some calculation, or gen-
erating new events. The collection of events processed by an event
handler can be viewed as a state. The set of event handlers active
(able to receive events) at any one time defines the legal user
actions at that point in the dialogue. This set can be changed by
disassociating an event handler with a particular device, or associ-
ating an new event handler with a device. An event may be sent to
more than one event handler. In this case each event handler is
responsible for one aspect of the event's processing, such as the
different levels of feedback, error checking, and routing to high
levels of the user interface. The event model is in many ways simi-
lar to o?ject oriented programming as in Smalltalk [Goldberg and Rob-
son 1983]).

Most of the event based notations have the appearance of programming
languages. This is mainly due to the procedural nature of the event
handlers. These notations need some way of describing both the
events, and how the events are processed. In most notations both of
these components are combined into one description, that of the event
handler. That is, each event handler defines all the events it can
receive, even if these events are used in several event handlers.
This results in self contained event handlers, at the price of
increasing the redundancy of the descriptions, and possibly introduc-
ing inconsistencies. The description of an event handler contains
one section for each of the events it can process. The section for
an event starts with a description of the event itself, followed by
the sequence of actions required to process the event.

Application Interface Model

Since the application interface model has not explicitly appeared in
an existing UIMS, there have been no notations developed for it. 1In
most UIMSs the application procedures called by the user interface
form an implicit application interface model. While this identifies
the application procedure used by the user interface, it tells us

16

very little about the application, and these calls are usually embed-
ded in other descriptions making them hard to find. The application
interface model must contain certain information about the applica-
tion., To be useful the application interface model must cover at
least the following three areas. First, it must contain a descrip-
tion of the application data structures that are of interest to the
user and the user interface. The description of these data structure
is at an abstract level, and implementation details are usually not
important. The UIMS only needs to know the information that is
stored in the data structures, and how it can find it. Second, there
must be a description of the application procedures available to the
user interface, This description must include the name of the pro=~
cedure, and the operands it expects. This part of the description
defines the interface between the user interface and the application,
Third, the constraints on the application of the operators must be
outlined. These constraints include any pre-conditions for the
operators, and any ordering restrictions on them. This allows the
user interface to filter out some of the semantically illegal opera-
tions before they reach the application., While this is the minimum
amount of information that must be included in the application inter-
face model, there are several other things that would be useful. One
of these is the effects, or post-conditions of the operators. This
allows the user interface to anticipate the effects of commands, pro-
vide automatic help, and automatically perform some undo processing.
Another wuseful component of an application interface model is pro-
cedures for performing standard tasks in the application. These pro-
cedures could be used by the user interface to guide naive users, and
provide sophisticated help facilities.

Since notations for the applications interface model have not been
developed, a classification scheme for them cannot be presented.
Instead, several possible notations are presented, along with several
of the 1issues that arose in our discussions. One possible notation
is objects and operators. The objects correspond to the data struc-
tures in the application program, and the operators correspond to the
application procedure available to the user interface. A notation of
this kind, called UML, is described in [Green 1981) and [Green 1984].
In order to handle a wide range of user interfaces this type of nota-
tion must treat object descriptions as type definitions, and allow
the creation of arbitrary numbers of object instances. In a number
of applications a network of objects is required, so notations that
only support object hierarchies are not desirable. Another issue
related to this type of notation is the parameters to the operators.
An operator definition will contain a number of implicit parameters,
but should these be the only objects available to the operator?
Should there be global objects that represent the context of the

interaction? If there are, how are these global objects defined and
referenced?

Another possible notation for the application interface model is
based on relations (as in relational database [Date 1981]), and first
order logic. This idea was prompted by the work done by Garret and
Foley 1in graphical databases [Garret and Foley 1982). The relations
are used to represent the data structures in the application, while

statements in first order logic model the effect of the application
procedures.

Two issues that must be addressed by any notation for this component
are invariants, and sequential relationships between application pro-
cedures. Invariants state properties of the application that are
always true. There are two reasons why they are a useful part of the

—0a

17

applications interface model. First, they form a concise descrip-
tion of general properties of the application., 1In most cases these
properties could be described by other means, but this will |usually
entail a large amount of redundant material. Second, the UIMS can
use them to detect errors in user input, and as the basis for guiding
the user through interaction sequences. One issue related to invari-
ants is whether they should be passive or active, A passive invari-
ant describes some property of the application, while an active
invariant takes an active part in the computation. That 1is, either
the application, or the UIMS will perform whatever actions required
to maintain the truth of an active invariant.

Some of the procedures in the application cannot be performed in
arbitrary seguences. For example, a file cannot be processed until
it is open, therefore an open call must always precede any read or
writes on the file. This is an example of a sequencing constraint.

INTERRELATIONS BETWEEN COMPONENTS

Figure 1 shows the interfaces between the components in our model of
a user interface. These interfaces represent the flow of information
or control between the components. 1In order to completely describe
the uber interface, the nature of these interfaces must be under-
stood.

There are two issues related to the interface between the presenta-
tion component and dialogue control component that effect user inter-—
face notations. One of these issues is the form of the tokens flow-
ing between these components. The are a number of ways in which this
flow can be viewed. 1In one view, dialogue control treats the presen-
tation component as a collection of logical devices. In this view
there are problems related to the definition of §ev§ce classes, and
device characteristics. One device characteristic is the type of the
value produced by the device. Most graphics packages have a fixed
set of types that can be used for device values. 1In the case of ;he
presentation component, a fixed type structure may be too restric-
tive. on the other hand, the full type definition facilities of
modern programming languages may be more than is required here, and
needlessly complicate the interface between these components. Work
needs to be done on the set of types required to support tbe communi-
cations between these two components. A related i§sue is the han-
dling of picks. In existing graphics packages there is one type for
all pickable objects. This type usually refers to the display file
segment containing the object selected,.and not ghe object itself.
With the presentation component, each pickable object type could have
its own device type, and the pick would contain a pointer into the
application data structure identifying the object selected. This
would relieve the dialogue control component of determining tpe
object selected by the user. Another important devige characteristic
is its mode (as in the GKS model of graphical input ({Rosenthal
et.al. 1982]). What are the interpretations of event, sample, and
request modes at the level of the presentation component?) If the
logical device view 1is not taken, some of these issues disappear.
Another view of this interface is to treat the output of the presen-
tation component as a simple stream of tokens, without any informa-
tion on the devices that produced them (either logical or physical).
In this view the problem of device modes does not occur, but the type
problems remain.

18

Another important feature of this interface is the manner in which
dialoque control exerts its control over the presentation component.
Dialoqgue control is responsible for the state of the presentation
component, it controls the external-internal mapping. How much
information does dialogue control need in order to adequately perform
this function? It must at least know the names of all the internal
and external tokens, otherwise it will not be able to define the map-
ping. But, does it need more detailed information about these
tokens? For example, should the physical devices associated with the
external tokens be available to dialogue control? Or, is there a set
of general device properties that would serve 1its needs? Another
issue is whether dialogue control or the presentation component is
responsible for enabling or initializing devices. The presentation
component deals directly with the devices, so there is some argument
for having it responsible for device initialization and control. Oon
the other hand, dialogue control is responsible for the state of the
presentation component, so it knows when the devices should be
enabled. It may be necessary to share this responsibility between
these two components.

At the present time there are far more issues associated with this
interface than there are answers. More experience with UIMS imple-
mentations is required before a more detailed description of this
interface can be produced.

The major issue associated with the interface between dialogue con-~
trol and the application interface model, 1s the access dialogue
control has to the application data structure. In particular, can
dialogue control directly access the application data structure
without informing the application? An argument can be made that
dialogue control must always call an application routine whenever it
wants to change the application data structure. This 1isolates the
user interface from the implementation of the application data struc-
ture, and ensures that all modifications to the data structure are
legal. On the other hand, this approach can be too inefficient for
some applications, and places the burden of error recovery and undo
processing on the application. This was an issue at the previous
workshop is Seattle, and still appears to be unresolved. One possi-
ble, but inefficient, solution is to give the UIMS its own copy of
the application data structure. The UIMS is free to modify this data
structure without informing the application routines. At key points
in the dialogue {(determined by dialogue control) the UIMS copy of the
data structure is used to update the application copy. 1In this
approach error recovery and undo processing can easily be accom-
plished by restoring the UIMS copy of the data structure from the
application's version.

There are two issues associated with the 1interface between the
presentation component and the applicatien interface model. The
first issue deals with picking. The result of a picking operation
should be some object in the application data structure that is
currently displayed on the screen. The presentation component is
responsible for the allocation of screen space, and the aEpearance of
everything on the screen. But, it does not know about the applica-

tion data structure. When a pick occurs the presentation component
knows the coordinates of the pick, but it doesn't know how to relate
these coordinates to the contents of the application data structure.
Some form of cooperation between the two components is required to
determine the object the user selected. There needs to be some
correlation mechanism between the coordinates in the ypresentation

19

component, and the data structure maintained by the application.

The other issue involves the flow of output data from the application
to the presentation component. In theory, all the information from
the application, that is to be displayed, must go through dialogue
control. In most cases dialogue control is not interested in the
actual data, it assigns the data a format or template, and passes it
on to the presentation component. Since dialogue control does not
need to process this data, it could be directly transferred to the
presentation component, saving some processing time. This flow of
data is represented by the arc flowing from the application interface
model to the presentation component in fig. 1. Dialogue control has
control over this flow of information, it assigns the formats to the
output data, and establishes the pipe line between the application
and the presentation component. Once the pipe line has been esta-
blished, dialogue control does not take part in the information’
transfer. This approach is particularly effective when large amounts
of data must be transferred from the application to the screen.

SUMMARY

in this report we have presented some of the issues pertaining to the
notations used in UIMSs. At the present time there are a small
number of implemented UIMSs, so there 1is some experience to draw
upon. This is the first workshop of this nature where there has been
a significant number of participants with implementation experience.
This experience seemed to raise more issues than it resolved. The
conclusion that can be drawn from this is there is still a consider-
able amount of work to be done in notations for UIMSs.

One of the major problems encountered by this working group was the
inability to compare different UIMSs. The systems discussed in this
group have been used to produce user interfaces for different appli-
cation areas, with different interaction styles and requirements.
This makes it very difficult to compare the ease of use {(for the user
interface designer), and the quality of the resulting user interface.
This problem could be partially solved by constructing a standard set
of user interface problems. Each of the UIMSs could be used to solve
these problems, and the results used as a means of comparison. This
set of problems could be viewed as a benchmark test for user inter-
face management systems. Along with developing the problems, tech-
niques for measuring ease of use and the quality of the user inter-
face must also be developed.

REFERENCES

[Aho and Ullman 1977] Aho A.V., J.D. Ullman, Principles of Compiler
Design, Addison-Wesley, Reading Mass., 1977.

[Borufka, et.al. 1982] Borufka, H.G., H.W. Kuhlmann, P.J.W. ten
Hagen, "Dialogue Cells: A Method for Defining Interactions", IEEE
Computer Graphics and Applications, vol.2 no.5, p.25, 1982.

[Buxton et.al. 1983] Buxton W., M.R. Lamb, D. Sherman, K.C. Smith,
"Towards a Comprehensive User Interface Management System”, SIG-

P

PR A A
; e

ALE

20

GRAPH'B3, p.35, 1983.

[Date 1981)] Date C.J., An Introduction to ODatabase Systems,
Addison-Wesley, Reading Mass., 1981,

[Derksen 1983] Derksen J., "Een ontwerp van programmeergereedschap
vocr dialoogsystemen gebaseerd op dialoogcellen (Tools for dialo-
gue systems based on dialogue cells)", TNO-IBBC rapport nr. B1l-
83-62/68.0.0004, 1983 (in Dutch).

[Edmonds 1982] Edmonds E.A., "The man-computer interface - a note on

concepts and design”, Int. J. Man-Machine Studies, vol.16, p.231,
1982.

(Edmonds 1981] Edmonds E.A., "Adaptive Man-Computer Interfaces", in

Coombs M.J., J.L. Alty (ed.), Computing Skills and the User
Interface, Academic Press, London, 1981.

[Foley and Van Dam 1982) Foley J., A. Van Dam, Ffundamentals of

Interact ive Computer Graphics, Addison-Wesley, Reading Mass.,
1982.

{Garret and Foley 1982} Garret M.T., J.D. Foley, "Graphics Program-
ming Using a Database System with Dependency Declarations". ACM
Transactions on Graphics, vol.1, no.2, p.109, 1982.

[Goldberg and Robson 1983] Goldberg A., D. Robson, Smalltalk-80: The

lLanguage and fts Implementation, Addison-Wesley, Reading Mass.,
1983.

{Green 1984] Green M., "Design Notations and User Interface Manage-
ment Systems", in this volume, 1984.

[Green 1981] Green M., "A Methodology for the Specification of
Graphical User Interfaces", SIGGRAPH'B1, p.99, 1981.

[Kasik 1982) Kasik D.J., "A user Interface Management System”, SIG-

GRAPH'B2, p.99, 1982.

[Newman 1968) Newman W.M., "A System for Interactive Graphical Pro-
gramming", SJCC 1968, Thompson Books, Washington DC., 1968.

[Olsen 1984] Olsen D., "Presentational, Syntactic and Semantic Com-

ponents of Interactive Dialogue Specification®", in this volume,
1984.

[Olsen and Dempsey 1983] Olsen D., E. Dempsey, "SYNGRAPH: A Graphic
User Interface Generator", SIGGRAPH'83, p.43, 1983.

[(Rosenthal et.al. 1982) Rosenthal D.S.H., J.C. Michener, G.Pfaff, R.

Kessener, M. Sabin, "The Detailed Semantics of Graphics Input
Devices", SIGGRAPH'B2, p.33, 1982.

[van den Bos 1980] van den Bos, J., "High-level graphics input tools
and their semantics", in Guedj, R.A., et.al. (eds.), Methodology
of Interaction, North Holland, p.159, 1980.

Working Group Members:

Jan Derksen, Ernest Edmonds, Mark Green, Dan Olsen, Robert Spence

Report on the Interface of the UIMS to the Application

G. Enderle

SEL AG, Helmuth-Hirth-Strasse 42, 7000 Stuttgart 40, Federal Republic of Germany

SCOPE AND GOAL

The goal of the workshop was to find, evaluate, and describe models,
principles, methods, and tasks for the design of User Interface
Management Systems. This working group concentrated on aspects of this

overall goal that are related to the interface between the application
and the UIMS.

One application was given specific attention: Computer Aided Design
(CAD). CAD is an application that, on one hand, relies on Computer
Graphics as one basic component of the whole system. On the other

hand, CAD is also an application area where a favourable user interface
is of special importance. The application is the most relevant part of
the interactive system. If we look at the application-UIMS interface
from the viewpoint of the application, we can identify certain
requirements which a UIMS must fulfil to serve the application in an
optimal way. A probiem of specific interest at the application-UIMS
interface is the division of responsibility for graphical output
between the application and the UIMS.

PROBLEM AREAS

Three major problem areas related to the application interface of a
UIMS were addressed:

- The configuration of a UIMS with respect to a specific
application,

- The responsibility for creating and managing graphical output,

The services and functions available at the communication
interface between the application and the UIMS.

In order to gain a common base for the discussion of these questions,

an overall structure of the interactive system had to be agreed on.
In all problem areas, special attention was paid to CAD aspects.

STRUCTURE OF USER INTERFACE MANAGEMENT SYSTEMS

The application-UIMS interface can be situated at different places
within the overall system depending on the design of the structure of

Bl |
User Interface

L Management Systems
|
| Proceedings of the Workshop on User Interface
§ 1 Management Systems held in Seeheim, FRG,
: I November 1-3, 1983
. Edited by Giinther E. Pfaff
|
3
§ } With 69 Figures
B
w
4
4
=
B
F‘K

Springer-Verlag
ﬁ‘ ! Berlin Heidelberg New York Tokyo

e

ARG (- % AP

=3

S

o £

e
=

-

Eurographic Seminars

Edited by G. Enderle and D. Duce

for EUROGRAPHICS -

The European Association for Computer Graphics
PO. Box 16

CH-1288 Aire-la-Ville

Editor:

Giinther E. Pfaff
GTS/GRAL
Alsfelderstrafe 7
D-6100 Darmstadt

ISBN 3-540-13803-X Springer-Verlag Berlin Heidelberg New York Tokyo
ISBN 0-387-13803-X Springer-Verlag New York Heidelberg Berlin Tokyo

Library of Congress Cataloging in Publication Data.

‘Workshop on User Interface Management Systems (1983 : Secheim-Jugenheim,
Germany) User inteiface systems. (EurographicSeminars) Bibliograph
1. Interactive computer systems-Congresses. 2. Comp graphics-Cong;

L Pfaff, G. (Giinther), 1951.. 11. Title. I1L. Series. QA76.9.158W67 1983 001.64°404 85-2831
ISBN 0-387-13803-X (U.S.)

This work is subject to copyright. All rights are reseived, whether the whole or part of
the material is concerned, specifically those of translation, reprinting, re-use of itlustra-
tions, broadcasting, reproduction by photocopying, machine or similar means, and
storage in data banks. Under § 54 of the German Copyright Law where copies are made
for other than private use, a fee is payable to ‘Verwertungsgesellschaft Wort’,

Munich,

© 1985 EUROGRAPHICS The European Association for Computer Graphics,

P.O. Box 16, CH-1288 Aire-la-Ville

Printed in Germany

y: .

The use of regi d names, trad ks, etc. in this publication does not impty, even

in the absence of a specifie statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Printing: Beltz Offsetdruck, Hemsbach/Bergstr. Bookbinding: J. Schaffer O1G, Griinstadt
2145/3140-543210

Editors Introduction

The book contains the proceedings and reports of the “Workshop on
User Interface Management Systems”, held in Seeheim, Federal Re-
public of Germany, November 1-3, 1983. The workshop brought toge-
ther experts in using and developing techniques for managing the dialo-
gue between users and interactive graphics systems. The purpose of the
workshop was to produce an agreed report contrasting existing ap-
proaches, and outlining directions for future work. Four different areas
were defined and addressed at the workshop, namely

a) role, model, structure and construction of a UIMS

b) dialogue specification tools

c) interface of the UIMS to the application

d) user’s conceptual model

Allparticipants prepared papers each inoneofthose problem areas. The
papers have been rewritteninthe light of the issues discussed during the

workshop. Also a subgroup report was produced for each problem area
summarizing

