
Lecture 24:
Toolkits for 3D Programming and
the UIs of Games

05-431/631 Software Structures for User
Interfaces (SSUI)
Fall, 2022

© 2022 - Brad Myers 1

Logistics
 Turn in 1-pagers tomorrow (Wed by 3:05)
 We will try to turn them around right away

© 2022 - Brad Myers 2

Overview
 3D isn’t just 2D +1
 Many new issues

 Mentioned somewhat in lecture 22 on EUD
tools
 Alice 3D

© 2022 - Brad Myers 3

Why is 3D Harder?
 Objects have six degrees of

freedom (DoF)
 X, Y, Z
 Roll, pitch, yaw

 Also camera position
 Occlusion and resolution issues
 Difficulty of orienting oneself

 People are not very good at 3D
manipulation or reasoning
 Mouse is basically 2D

 Generally, dealing with complex,
hierarchical objects

 Full real-world simulation
 Look and behaviors

© 2022 - Brad Myers 4

Why Hard, cont.
 Rick Carey, Tony Fields, Andries van Dam, Dan Venolia. 1994. Why is 3-D

interaction so hard and what can we really do about it? (panel). In Proceedings
SIGGRAPH '94. ACM, pp. 492-493. http://doi.acm.org/10.1145/192161.192299

 3D picking is hard – which object is selected?
 Occlusion, hierarchy, accuracy of pointing device

 Designing widgets for 3D manipulation is hard
 Interfere with graphics
 Should they have shadows?

 Harder to get interactive speeds for direct
manipulation

© 2022 - Brad Myers 5

http://doi.acm.org/10.1145/192161.192299

Where 3D displayed?
 Desktops – just on a screen in the usual way
 3D “Cave” or other large displays (ACM ref)

 Display on one or up to all walls and ceiling
 Virtual Reality (VR) or Augmented Reality (AR) headsets

 AR – can see through the display, so
pictures are superimposed on the view

 Examples:
 Google Glass
 Meta Quest (formerly Oculus)
 Microsoft HoloLens
 3D displays

6

Credit: https://newatlas.com/vr/voxon-photonics-3d-hologram-volumetric-displays/

© 2022 - Brad Myers

http://dl.acm.org/citation.cfm?doid=129888.129892
https://x.company/glass/
https://www.meta.com/quest/
https://www.microsoft.com/en-us/hololens

3D Control
 Regular Mouse or touch – 2D
 Possibly with extra knobs or buttons

 “Mouse in the air” tracked in 3D = “bat”; 6 DoF
 “bat” translates to fledermaus in German
 (mouse that flies through the air)

 Fixed camera tracking object in 3D space
 Moving the end of an articulated motorized arm
 3D physical objects incorporating the above

© 2022 - Brad Myers 7

https://doi.org/10.1109/38.20319

Types of 3D sensors

© 2022 - Brad Myers 8

 Earliest: Boxes with sets of knobs
for each dimension

 Polhemus trackers (“bat”)
 Starting in 1969
 Magnetic cube on part to be tracked

and nearby receiver
 6 DOF
 Limited sensing area
 Company still selling similar products
 Often attached to gloves, head-trackers, etc.

 DataGlove
 Starting about 1982
 Measured finger bending =

pose of hand
 Incorporated Polhemus tracker

on the wrist
 Nintendo “PowerGlove” – 1989

 Unsuccessful – only 2 games

http://www.polhemus.com/

Virtual reality on five
dollars a day

 Randy Pausch. 1991. Virtual reality
on five dollars a day.
In Proceedings of the SIGCHI
Conference on Human Factors in
Computing Systems (CHI '91),
ACM, pp. 265-270.
http://dl.acm.org/citation.cfm?doid=
108844.108913

 Combined with
inexpensive virtual
reality headset

9© 2022 - Brad Myers

http://dl.acm.org/citation.cfm?doid=108844.108913

Minority Report, 2002
 Using data gloves to interact with large 2-D

displays in the air (or on a surface)
 MIT Media Lab advised on science (John

Underkoffler)

10© 2022 - Brad Myers

http://www.imdb.com/title/tt0181689/
http://web.mit.edu/invent/iow/underkoffler.html

History of 3D sensors,
cont.

 Lots of motion capture research
and systems
 Motion capture rooms with cameras
 Used for many movies, etc.

 Example: Alita: Battle Angel

 Kinect
 Introduced 2010
 Two cameras

 Leap Motion
 2013
 Camera based – designed to look

upwards
© 2022 - Brad Myers 11

3D “arm” Controllers
 Motors to measure 3D movements

and provide force feedback
 3D Systems Phantom Premium
 Medical Applications, etc.
 3D editing and drawing (video 0:40)

 Falcon from HapticHouse

© 2022 - Brad Myers 12

https://www.3dsystems.com/haptics-devices/3d-systems-phantom-premium
http://www.youtube.com/watch?v=u9jdhUvOmMw
https://hapticshouse.com/collections/frontpage/products/white-falcon-3d-touch-haptic-controller

Mouse-Based 3D manipulation
 Formerly: used 4-panel display
 Mouse works in conventional way in each panel
 Still tricky to manipulate
 Now, mostly replaced with real-time motion on a single view

© 2022 - Brad Myers 13

3D Handles
 Extend idea of handles on 2D objects to 3D
 Need handles for move, stretch, rotate, etc. in

each dimension
 Many approaches for doing this. E.g.,
 Scott S. Snibbe, Kenneth P. Herndon, Daniel C. Robbins, D. Brookshire

Conner, and Andries van Dam. 1992. Using deformations to explore 3D
widget design. In Proceedings SIGGRAPH '92, ACM, pp. 351-352.
http://doi.acm.org/10.1145/133994.134091

© 2022 - Brad Myers 14

http://doi.acm.org/10.1145/133994.134091

Why are games harder?
 (Next few slides adapted from Erik Harpstead, 05-830)

 3D
 Rapidly shifting design requirements
 Multi-platform development
 Integration of many different forms of media (sound,

music, art, modeling)
 Highly interdisciplinary teams
 The demand for novelty
 Extremely complex tools and environments

© 2022 - Brad Myers 15

Game Development
 Three general methods:
 Roll your own engine
 Use a Framework
 Use an off-the-shelf engine

© 2022 - Brad Myers 16

Rolling Your Own Engine
 Surprisingly common
 Special game mechanics require custom

software architectures
 Existing tools are too restrictive

for rapid design changes
 Using other people’s tools is a

cop-out

© 2022 - Brad Myers 17

Using a Framework
 Usually provide basic utilities and primitives
 Commonly built around a state machine in a

loop

© 2022 - Brad Myers 18

Using a Framework
 Other Common Components:
 Rendering Library
 Physics Engine
 Input Abstraction
 Fast Math Libraries
 Object Pooling/Resource Management
 Audio Management

© 2022 - Brad Myers 19

Using a Full Game Engine
 Use some kind of interactive editor
 Provide custom API or scripting language for defining game

mechanics
 More approachable by design and art members of a

development team
 Combines many tools into a single package
 Examples: Unreal Engine, Unity
 Others: (ref: https://www.incredibuild.com/blog/top-7-gaming-engines-you-should-consider for 2022)

 Amazon Lumberyard
 CryENGINE
 GameMaker: Studio (2d only, simple)
 Godot
 etc.

© 2022 - Brad Myers 20

https://www.incredibuild.com/blog/top-7-gaming-engines-you-should-consider
https://aws.amazon.com/lumberyard/
https://www.cryengine.com/
https://www.yoyogames.com/gamemaker
https://godotengine.org/

Game Tools

Slides by Mary Beth Kery from 05-830 in 2017

© 2022 - Brad Myers 21

Game Tools
MARY BETH KERY - ADVANCED USER INTERFACES SPRING 2017

© 2022 - Brad Myers 22

© 2022 - Brad Myers 23

2 person team
3 years

© 2022 - Brad Myers 24

300 person team
10 years

Final Fantasy 15

ART

GAME DESIGN

ENGINEERING

PRODUCTION/BUSINESS

© 2022 - Brad Myers 25

TECHNICAL CHALLENGES OF VIDEO GAMES

1. Video games are real time complex
simulations, and must be efficient.

© 2022 - Brad Myers 26

TECHNICAL CHALLENGES OF
VIDEO GAMES

1. Video games are real time complex
simulations, and must be efficient.

1999 Roller Coaster
Tycoon written by one
guy in x86 assembly
language

© 2022 - Brad Myers 27

TECHNICAL CHALLENGES OF
VIDEO GAMES

1. Video games are real time complex
simulations, and must be efficient.

Today, more flexibility in
language

Typically Object-Oriented

Use development tools like
Visual Studio or IntelliJ

© 2022 - Brad Myers 28

2. People have high expectations for
interactive worlds with lots of content

TECHNICAL CHALLENGES OF VIDEO GAMES

© 2022 - Brad Myers 29

TECHNICAL CHALLENGES OF
VIDEO GAMES

2. People have high expectations for
interactive worlds with lots of content

Lots of content on
tight deadlines.

Glitches and crashes
are BAD.

© 2022 - Brad Myers 30

TECHNICAL CHALLENGES OF
VIDEO GAMES

3. Real time 3D graphics simulations

Doom 1993
Levels, dungeons, and
rooms were not only for
game pacing, but to
limit the number of
objects to compute and
render at a time.

© 2022 - Brad Myers 31

TECHNICAL CHALLENGES OF
VIDEO GAMES

3. Real time 3D graphics simulations

2016 graphics

Pixar - Piper Final Fantasy 15

© 2022 - Brad Myers 32

Game Engine
modules
 source:

Gregory, Jason.
Game engine
architecture.
CRC Press,
2009.

© 2022 - Brad Myers 33

Game Engines:
Tools that fit the pieces together

© 2022 - Brad Myers 34

GAME ENGINES: HISTORY
1990s First-person shooters:
Doom by id Software

© 2022 - Brad Myers 35

GAME ENGINES: HISTORY
 Architecture separates core software from

game-specific assets
 ASSETS “ENGINE” SOFTWARE

Art assets

Game map/
environments

Rules of play

3D graphicsrendering

Collisiondetection

Audio system

© 2022 - Brad Myers 36

Unreal Engine: A full industry-grade
development environment (advanced tool)

© 2022 - Brad Myers 37

Unity: A full development
environment (advanced tool)

© 2022 - Brad Myers 38

A game engine has a data driven architecture that can be
used to make many games

That dragon cancer

Clockwork

Gardenarium

© 2022 - Brad Myers 39

Art assets & animation

Graphics

Physics engines

Game loop

© 2022 - Brad Myers 40

Art assets & animation

Graphics

Physics engines

Game loop

© 2022 - Brad Myers 41

Art to game:
Workflow of artists with tools and

the game engine

© 2022 - Brad Myers 42

© 2022 - Brad Myers 43

Photo or drawing

The Final Fantasy 15 team cooked food
and then photographed it as reference
material for 3D modelers and shaders.

© 2022 - Brad Myers 44

3D Scanning or image tracing

The Final Fantasy 15 team scanned
their food and photographed it

Modelers use reference
drawings from different angles

© 2022 - Brad Myers 45

Modeling Software

Final in-game model.model in progress

© 2022 - Brad Myers 46

Textures and Shading

Final in-game model.

© 2022 - Brad Myers 47

Back to the game

Unreal Engine place objects in scene with map editor

© 2022 - Brad Myers 48

Visual programming languages allow animations,
materials, and shaders to be written by artists

In the game engine

© 2022 - Brad Myers 49

Visual programming languages allow animations,
materials, and shaders to be written by artists

In the game engine

© 2022 - Brad Myers 50

Visual programming languages allow animations,
materials, and shaders to be written by artists

In the game engine

© 2022 - Brad Myers 51

Art assets & animation

Graphics

Physics engines

Game loop

© 2022 - Brad Myers 52

Shaders = VERY TECHNICAL

© 2022 - Brad Myers 53

Technical Graphics Tools

Open GL has bindings in lots of
different languages

Powerful, but not easy to learn.

Some language bindings are
more learner-friendly than others

© 2022 - Brad Myers 54

Technical Graphics – eyes

Full refraction at cornea

No refraction at cornea

© 2022 - Brad Myers 55

Technical Graphics – hair

Process of modeling and rendering character Lunafreya’s hair from Final
Fantasy 15x

© 2022 - Brad Myers 56

Graphics – Updating the Screen

Must be efficient!

The screen must be updated every
frame, at 30fps to 60fps. Rendering and
shaders are computationally
expensive!

© 2022 - Brad Myers 57

Graphics – Updating the Screen

Occlusion culling problem: don’t
render hidden objects

Frustum culling: test if anobject
intersects with the frustum.

Portals: designers manually place
simple primitives around chunks
of the game world. The portals
are invisible but cheap to test
intersection on.

© 2022 - Brad Myers 58

Graphics – Updating the Screen

Occlusion culling problem: don’t
render hidden objects

Frustum culling: test if anobject
intersects with the frustum.

Portals: designers manually place
simple primitives around chunks
of the game world. The portals
are invisible but cheap to test
intersection on.

© 2022 - Brad Myers 59

Graphics – Updating the Screen

PVS: Potential Visibility Set,
precomputed. Very efficient for
small environments. PVS is
submitted to the renderer and
items in the set are tested to
make sure they are indeed visible
Bad: storage costs

© 2022 - Brad Myers 60

Art assets & animation

Graphics

Physics engines

Game loop

© 2022 - Brad Myers 61

Physics
Unity or Unreal game engines have basic built-in libraries.

© 2022 - Brad Myers 62

Physics engines

Calculate on-the-fly physics simulations,
optimized for a game environment.

Hard-body physics, Havok Physics Engine

Soft-body physics, CryEngine
Physics Engine

© 2022 - Brad Myers 63

Physics engines

SDKs with visual debuggers
that allow you to run physics
simulations on your object to
test your code

© 2022 - Brad Myers 64

Dynamic animation

Euphoria by Natural Motion encodes
lots of information about human
muscles, bones, and nerves to
dynamically create realistic character
movement like falls.

© 2022 - Brad Myers 65

Dynamic animation

Natural Motion editor with
visual programming.

© 2022 - Brad Myers 66

Art assets & animation

Graphics engines

Physics engines

Game loop

© 2022 - Brad Myers 67

Game loop

update player health

update monster health

physics engine

render scene

sound effects

Heads-up-display

© 2022 - Brad Myers 68

https://unity.com/
A leading game engine

© 2022 - Brad Myers 69

https://unity.com/

G
en

er
at

ive
 A

rt
—

M
ad

e
w

ith
U

ni
ty

A decade of evolving developer and designer workflows in a
game engine

Adam Mechtley

Lead Developer

DOTS Physics & Rigging

Damian Campeanu

Developer

Editor &UI

Guest lecture in 05-830, Spring 2020
 Lead developers at Unity
 Video of the presentation

© 2022 - Brad Myers 70

https://www.cs.cmu.edu/%7Ebam/uicourse/830spring20/05-830-2020-04-06-Lecture-21-Unity.mp4

G
en

er
at

ive
 A

rt
—

M
ad

e
w

ith
U

ni
ty

* Oversimplifiedversion

© 2022 - Brad Myers 71

More than just a game engine!
 Run-Time
 Built-in libraries (input, animation, physics, UI,

rendering, etc.)
 Compatible with much of .NET ecosystem

 Editor
 Services
 Analytics, live ops, etc.

 Asset Store
 Millions of users, hundreds of thousands active

monthly

© 2022 - Brad Myers 72

How do users make stuff with
Unity?
 Create GameObjects and add Components

to produce behavior
 Create new Components via C#
 Or imported from other programs like AutoDesk’s

Maya
 Create reusable Prefabs from GameObjects
 Prefabs can be nested in each other with

overrides

© 2022 - Brad Myers 73

© 2022 - Brad Myers 74

Components in Unity
 All public members of a script are

exposed in the GUI allowing non-
programmer team members to
control game settings

 Built in Component types can also
be accessed and edited this way

 Properties can be changed in the
GUI while the game is running to
test changes

© 2022 - Brad Myers 75

How do userscreate UI with it?

2005

Unity1.0

GUITexture, GUIText, GUILayer,
TextMesh

Unity2.0

IMGUI run-time

2007

2009

Unity2.5

Customize editor with IMGUI

2014

Unity4.6

First release of uGUI

2019

Unity2019.1

First public release ofUI Toolkit
(formerly UIElements)

© 2022 - Brad Myers 76

G
en

er
at

ive
 A

rt
—

M
ad

e
w

ith
U

ni
ty

2005

Unity1.0

GUITexture, GUIText, GUILayer,
TextMesh

Unity2.0

IMGUI run-time

2007 2014

Unity4.6

First release of uGUI

2019

Unity2019.1

First public release ofUI Toolkit
(formerly UIElements)

2009

Unity2.5

Customize editor with IMGUI

A simple UI framework foran ever-changing world

© 2022 - Brad Myers 77

Design considerations
 Unity needed a UI framework! (both run-time

and editor)
 Most Unity projects…
 ...were small web player experiences
 ...were created by small teams with few/broad role

specializations
 Most game UI…
 ...communicate frequently

updating values
 ...overlays

© 2022 - Brad Myers 78

IMGUI API
 OnGUI() callback
 Event loop with Event.current
 Call order determines event handling priority

 Library of static methods in GUI class for
common functionality
 GUILayout variants to assist with Rect calculations
 Both run-time and editor-only variants for most types

 GUIStyle class
 GUISkin asset

© 2022 - Brad Myers 79

IMGUI advantages and
disadvantages

+ Gathering and responding to
input is trivial

+ Fast for programmers to
prototype with

+ Works well for property grids
+ Simple API organization
+ Predictable performance

— But not very great
performance

— Limited designer workflows
— No control over rendering

pipeline
— Only supports non-diegetic

UI
— Lots of manual work making

new controls

© 2022 - Brad Myers 80

G
en

er
at

ive
 A

rt
—

M
ad

e
w

ith
U

ni
ty

2005

Unity1.0

GUITexture, GUIText, GUILayer,
TextMesh

Unity2.0

IMGUI run-time

2007 2014

Unity4.6

First release of uGUI

2019

Unity2019.1

First public release ofUI Toolkit
(formerly UIElements)

2009

Unity2.5

Customize editor with IMGUI

A framework for to make UI feel more like the rest of Unity

© 2022 - Brad Myers 81

Design considerations
 Unity needed to empower designers to be

productive more independently
 Most Unity projects…
 ...were created by teams with clearer role specializations
 ...were run on mobile platforms where draw calls are

expensive and display specifications vary wildly
 Most game UI…
 ...contained in-story/spatial and non-in-story elements
 ...were richly animated with effects

© 2022 - Brad Myers 82

uGUI API
 UIBehaviour base class inherits MonoBehaviour
 Selectable, Graphic, etc., sub-classes
 Canvas and CanvasScalar control rendering of

hierarchies of elements
 RectTransform (inherits Transform) use for layout
 Most components draw Sprite assets
 Set geometry, materials, etc. on child CanvasRenderer

 StandaloneInputModule and EventSystem gather
and delegate input events
 BaseRaycaster of some kind finds event handlers
 IPointerDownHandler, IPointerUpHandler, IDragHandler,

etc.

© 2022 - Brad Myers 83

uGUI advantages and
disadvantages

+ Designer workflows that fit
with other Unity features
(prefabs, animation, etc.)

+ Serializable event handlers
+ Automatic atlasing and

scaling based on physical
size, DPI, etc.

+ Diegetic UI
+ Common rendering pathway

with everything else

— Performance overhead from
GameObjects and
Components

— Authoring data format hard
to read and debug at a
glance

— No centralized styling
— Canvases require

specialized knowledge to
optimize

© 2022 - Brad Myers 84

G
en

er
at

ive
 A

rt
—

M
ad

e
w

ith
U

ni
ty

2005

Unity1.0

GUITexture, GUIText, GUILayer,
TextMesh

Unity2.0

IMGUI run-time

2007 2014

Unity4.6

First release of uGUI

2019

Unity2019.1

First public release of UI Toolkit
(formerly UIElements)

2009

Unity2.5

Customize editor with IMGUI

A framework to make Unity feel more like the rest of the world

© 2022 - Brad Myers 85

Design considerations

© 2022 - Brad Myers 86

UI Toolkit advantages and
disadvantages

+ Great performance for most
use cases

+ Powerful automatic
layouting via Flexbox

+ Centralized styling using
standard paradigms (CSS)

+ Visual authoring without
writing code

+ One API for both Editor and
Runtime

— Name-based handles can
easily break

— Inefficient when lots of
things are changing at once

— More complicated Event-
based value bindings

— More complicated bindings
to Unity objects and
gameplay

© 2022 - Brad Myers 87

Final thoughts from Unity
 Immediate-mode and retained-mode GUI each have

strengths and disadvantages in different situations
 As the rest of the world evolves, so, too, must your

API
 Everything comes with a maintenance cost

 Reasonableness of API design decisions is very
contextual
 Aesthetic tastes of the historical

moment
 Technical requirements of target

hardware
 Tools ecosystem

 Design influences users’
expressive capabilities

37

© 2022 - Brad Myers 88

	Lecture 24:�Toolkits for 3D Programming and the UIs of Games
	Logistics
	Overview
	Why is 3D Harder?
	Why Hard, cont.
	Where 3D displayed?
	3D Control
	Types of 3D sensors
	Virtual reality on five�dollars a day
	Minority Report, 2002
	History of 3D sensors, cont.
	3D “arm” Controllers
	Mouse-Based 3D manipulation
	3D Handles
	Why are games harder?
	Game Development
	Rolling Your Own Engine
	Using a Framework
	Using a Framework
	Using a Full Game Engine
	Game Tools
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	TECHNICAL CHALLENGES OF VIDEO GAMES
	TECHNICAL CHALLENGES OF VIDEO GAMES
	Slide Number 29
	TECHNICAL CHALLENGES OF VIDEO GAMES
	TECHNICAL CHALLENGES OF VIDEO GAMES
	TECHNICAL CHALLENGES OF VIDEO GAMES
	Game Engine�modules
	Game Engines:
Tools that fit the pieces together
	Slide Number 35
	GAME ENGINES: HISTORY
	Unreal Engine: A full industry-grade development environment (advanced tool)
	Unity: A full development environment (advanced tool)
	A game engine has a data driven architecture that can be used to make many games
	Slide Number 40
	Slide Number 41
	Art to game:
Workflow of artists with tools and the game engine
	Slide Number 43
	Photo or drawing
	3D Scanning or image tracing
	Modeling Software
	Textures and Shading
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Shaders = VERY TECHNICAL
	Technical Graphics Tools
	Technical Graphics – eyes
	Technical Graphics – hair
	Graphics – Updating the Screen
	Graphics – Updating the Screen
	Graphics – Updating the Screen
	Graphics – Updating the Screen
	Slide Number 61
	Physics
	Slide Number 63
	Physics engines
	Dynamic animation
	Slide Number 66
	Slide Number 67
	Game loop
	Slide Number 69
	Guest lecture in 05-830, Spring 2020
	Slide Number 71
	More than just a game engine!
	How do users make stuff with Unity?
	Slide Number 74
	Components in Unity
	How do users create UI with it?
	A simple UI framework for an ever-changing world
	Design considerations
	IMGUI API
	IMGUI advantages and disadvantages
	A framework for to make UI feel more like the rest of Unity
	Design considerations
	uGUI API
	uGUI advantages and disadvantages
	A framework to make Unity feel more like the rest of the world
	Design considerations
	UI Toolkit advantages and disadvantages
	Final thoughts from Unity

