
Lecture 13:
Evaluation of APIs and UI Tools, API Usability,
Cognitive Dimensions.

05-431/631 Software Structures for User Interfaces (SSUI)
Fall, 2022

© 2022 - Brad Myers 1

Logistics

 Midterm starts tomorrow, Wednesday 3:05 – Friday 3:05
 You have 48 hours!
 No late turn-ins for the midterm
 Will be in Canvas in the “quizzes” section
 Note: not this lecture (covers lectures 1-12)
 You should still come to class on Thursday!

© 2022 - Brad Myers

2

How Can UI Tools be Evaluated?

 Same as any other software
 Software Engineering Quality Metrics
 Power (expressiveness, extensibility and evolvability)
 Performance (speed, memory)
 Robustness
 Complexity
 Defects (bugginess), …

 Same as other GUIs
 Tool users (programmers) are people too
 Effectiveness
 Errors
 Satisfaction
 Learnability
 Memorability
 …

© 2022 - Brad Myers 3

API Design Decisions

 Jeffrey Stylos and Brad Myers, "Mapping the Space of API Design
Decisions," 2007 IEEE Symposium on Visual Languages and Human-
Centric Computing, VL/HCC'07. Sept 23-27, 2007, Coeur d'Alene, Idaho. pp.
50-57. pdf

© 2022 - Brad Myers 4

http://www.cs.cmu.edu/%7ENatProg/papers/Stylos2007APIDesignDecisions.pdf

API Design Decisions, cont.

© 2022 - Brad Myers 5

UI Evaluation of UI Software Tools:
Some Usability Methods

 Contextual Inquiry
 Contextual Analysis
 Paper prototypes
 Think-aloud protocols
 Heuristic Evaluation
 Affinity diagrams
 Personas
 Wizard of Oz
 Task analysis
 A/B testing
 Cognitive Walkthrough
 Cognitive Dimensions
 KLM and GOMS (CogTool)
 Video prototyping
 Body storming

 Expert interviews
 Questionnaires
 Surveys
 Interaction Relabeling
 Log analysis
 Storyboards
 Focus groups
 Card sorting
 Diary studies
 Improvisation
 Use cases
 Scenarios
 “Speed Dating”
 Journey Maps
 …

© 2022 - Brad Myers 6

Dangers of Not Applying Human Centered
Approaches
 Tools may prove to be not useful
 Useful = solves an important problem
 Happens frequently
 Difficult to solve otherwise
 Developers believe academic tools solve unimportant

problems
[How do practitioners perceive Software Engineering Research?
http://catenary.wordpress.com/2011/05/19/how-dopractitioners-perceive-software-engineering-
research/]

 Tools may not actually solve the problem
 Example: a study suggested that Tarantula tool identifying

potentially faulty statements for debugging was not helpful
 Changed the task, but telling if the identified statement

was actually faulty not easier than finding the bug
 Parnin, C. and Orso, A. 2011. Are Automated Debugging Techniques Actually Helping

Developers International Symposium on Software Testing and Analyisis (2011), 199–209.

} HCI questions

© 2022 - Brad Myers 7

http://catenary.wordpress.com/2011/05/19/how-dopractitioners-perceive-software-engineering-research/

Dangers of Not Applying
Human Centered Approaches

 Tools may show no measurable impact
 Desired advantage overwhelmed by problems with other parts
 Example: Emerson Murphy-Hill found that refactoring tools are

under-utilized and programmers do not configure them due to
usability issues
 Emerson Murphy-Hill, Chris Parnin, Andrew P. Black. How we refactor, and how

we know it. In ICSE '09: Proceedings of the 2009 IEEE 31st International
Conference on Software Engineering (2009), pp. 287-297.

© 2022 - Brad Myers 8

Study of API Usability
 Duala-Ekoko, E., Robillard, M.P., 2012. Asking and answering questions about unfamiliar APIs: An

exploratory study. In: Proceedings of the 34th International Conference on Software Engineering. ICSE
’12, pp. 266–276. http://dl.acm.org/citation.cfm?id=2337223.2337255

 Think-aloud protocols, screen captures and interviews
 20 participants working on two programming tasks on different

APIs
 5 hardest problems:
 Which keywords best describe a functionality provided by the API?
 How is the type X related to the type Y?
 Does the API provide a helper-type for manipulating objects of a given

type?
 How do I create an object of a given type without a public constructor?
 How do I determine the outcome of a method call?

© 2022 - Brad Myers 9

http://dl.acm.org/citation.cfm?id=2337223.2337255

Coordination / Dependencies
 “Discovering Relevant Dependencies” among the classes
 A. J. Ko, Brad A. Myers, and Htet Htet Aung. "Six Learning Barriers in End-User Programming

Systems." VL/HCC'04: IEEE Symposium on Visual Languages and Human-Centric Computing,
Rome, Italy, September 26-29, 2004. pp. 199-206. pdf. (Winner, Most Influential Paper Award
for important influences on VL/HCC research or commerce over the last 10+/-1 years in
2013.)

 Design - I don’t know what I want the computer to do...
 Selection - I think I know what I want the computer to do, but I

don’t know what to use
 Coordination - I think I know what things to use, but I don't know

how to make them work together
 Use - I think I know what to use, but I don't know how to use it
 Understanding - I thought I knew how to use this, but it didn’t do

what I expected
 Information - I think I know why it didn’t do what I expected, but I

don’t know how to check

© 2022 - Brad Myers 10

http://vlhcc04.dsi.uniroma1.it/index.php
http://www.cs.cmu.edu/%7Eajko/papers/Ko2004LearningBarriers.pdf

Don Norman’s “Gulfs”
 Donald A. Norman and Stephen W. Draper. 1986. User Centered System

Design; New Perspectives on Human-Computer Interaction. L. Erlbaum
Assoc. Inc., Hillsdale, NJ, USA.

 “Gulf of Evaluation”
 “Gulf of Execution”
 7 stages:
 Form goal
 Form intention
 Specify action
 Execute action
 Perceive state
 Interpret state
 Evaluate outcome

© 2022 - Brad Myers 11

Product Lifecycle
Exploratory Studies

 Contextual Inquiries
 Interviews
 Surveys
 Lab Studies
 Corpus data mining

Evaluative Studies
 Expert analyses
 Usability

Evaluation
 Formal Lab

studies

Design Practices
 “Natural

programming”
 Graphic & Interaction

Design
 Prototyping
 Wizard of Oz

Field Studies
 Logs & error

reports

© 2022 - Brad Myers 12

Design and Development
 Use CIs, other field studies and surveys to find problems to solve
 Ko, A.J., Myers, B.A., and Aung, H.H. “Six Learning Barriers in End-

User Programming Systems,” in IEEE VL/HCC’2004. pp. 199-206.
 Ko, A.J. and DeLine, R. “A Field Study of Information Needs in

Collocated Software Development Teams,” in ICSE'2007.
 Thomas D. LaToza and Brad Myers. "Developers Ask Reachability

Questions", ICSE'2010: 32nd International Conference on Software
Engineering, Cape Town, South Africa, 2-8 May 2010. pp. 185-
194. pdf

 Also interviews and surveys, etc.: Myers, B., Park, S.Y., Nakano, Y.,
Mueller, G., and Ko, A. “How Designers Design and Program
Interactive Behaviors,” in IEEE VL/HCC‘2008. pp. 185-188.

 Iterative design and usability testing of versions
 Summative testing at end

© 2022 - Brad Myers 13

http://www.cs.cmu.edu/%7Etlatoza/icse10-tdl.pdf

“Natural Programming” Elicitation Method
 Technique developed by my group to discover developer’s

“natural” expressions
 Mental models of tasks, vocabulary, etc.

 A form of participatory design
 Blank paper tests
 Must prompt for the tasks in a way that doesn’t bias the

answers
 Examples:
 PacMan before and after

 Mostly rule-based (if-then)
 API designs

 Architecture, names used, which methods are on
which classes

© 2022 - Brad Myers 14

Example of use of Natural Programming

Obsidian is a domain specific language
(DSL) for blockchains [Coblenz, et al, 2019]

 Object-oriented Blockchain State Interaction and
Development Implementation And Notation

Combining state transition language
(“TypeStates”) with resources (“linear types”) all
checked statically

 11 different NatProg studies on how to present
these complex concepts

Evaluation Methods

 Does my tool work?
 Does it solve the developer’s problems?
 “If the user can’t use it, it doesn’t work!”

 ̶̶ Susan Dray

© 2022 - Brad Myers 16

Expert Analyses

 Usability experts evaluating designs to look for problems
 Heuristic Analysis – [Nielsen] set of guidelines
 Cognitive Dimensions – [Green] another set
 Cognitive Walkthroughs – evaluate a task

 Can be inexpensive and quick
 However, experienced evaluators are better
 22% vs. 41% vs. 60% of errors found [Nielsen]

 Disadvantage: “just” opinions, open to arguments
 [Nielsen] Jakob Nielsen. Usability Engineering. Boston, Academic Press. 1993.
 [Green] T.R.G. Green and M. Petre. “Usability Analysis of Visual Programming

Environments: A 'Cognitive Dimensions' Framework,” Journal of Visual
Languages and Computing. 1996. vol. 7, no. 2. pp. 131-174.

© 2022 - Brad Myers 17

Heuristic Evaluation Method

Named by Jakob Nielsen
 Expert evaluates the user interface using

guidelines
 “Discount” usability engineering method
 One case study found factor of 48 in cost/benefit:
 Cost of inspection: $10,500. Benefit: $500,000 [Nielsen]

© 2022 - Brad Myers 18

10 Basic Principles
From Nielsen’s web page:

http://www.useit.com/papers/heuristic/heuristic_list.html

1. Visibility of system status
2. Match between system and the real world
3. User control and freedom
4. Consistency and standards
5. Error prevention
6. Recognition rather than recall
7. Flexibility and efficiency of use
8. Aesthetic and minimalist design
9. Help users recognize, diagnose, and recover from errors
10. Help and Documentation

 Slightly different from list in Nielsen’s text

© 2022 - Brad Myers 19

http://www.useit.com/papers/heuristic/heuristic_list.html

Cognitive Dimensions
 12 different dimensions (or factors) that individually and collectively have an impact on

the way that developers work with an API and on the way that developers expect the
API to work. (from Clarke’04)
 Abstraction level. The minimum and maximum levels of abstraction exposed by the API
 Learning style. The learning requirements posed by the API, and the learning styles

available to a targeted developer.
 Working framework. The size of the conceptual chunk (developer working set) needed to

work effectively.
 Work-step unit. How much of a programming task must/can be completed in a single

step.
 Progressive evaluation. To what extent partially completed code can be executed to

obtain feedback on code behavior.
 Premature commitment. The amount of decisions that developers have to make when

writing code for a given scenario and the consequences of those decisions.
 Penetrability. How the API facilitates exploration, analysis, and understanding of its

components, and how targeted developers go about retrieving what is needed.
 Elaboration. The extent to which the API must be adapted to meet the needs of targeted

developers.
 Viscosity. The barriers to change inherent in the API, and how much effort a targeted

developer needs to expend to make a change.
 Consistency. How much of the rest of an API can be inferred once part of it is learned.
 Role expressiveness. How apparent the relationship is between each component

exposed by an API and the program as a whole.
 Domain correspondence. How clearly the API components map to the domain and any

special tricks that the developer needs to be aware of to accomplish some functionality.
© 2022 - Brad Myers 20

Example: Consistency
Issues in html/CSS/JavaScript?

© 2022 - Brad Myers 21

Our Use of Expert Analyses
 Study APIs for Enterprise Service-Oriented Architectures

- eSOA (“Web Services”)
 Cite: Jack Beaton, Sae Young Jeong, Yingyu Xie, Jeffrey Stylos, Brad A. Myers. "Usability Challenges for Enterprise Service-Oriented

Architecture APIs,“ VL/HCC'08. Sept 15-18, 2008, Herrsching am Ammersee, Germany. pp. 193-196.

 HEs and Usability Evaluations
 Naming problems:
 Too long

 Not understandable
 Differences in middle are frequently missed
CustomerAddressBasicDataByNameAndAddressRequestMessageCustomerSelectionCommonName
CustomerAddressBasicDataByNameAndAddressResponseMessageCustomerSelectionCommonName

© 2022 - Brad Myers 22

Usability Evaluations with users
Different from formal A vs. B “user studies”
 Understand usability issues
 Should be done early and often
 Doesn’t have to be “finished” to let people try it

 “Think aloud” protocols
 “Single most valuable usability engineering

method”
-- [Nielsen]

 Users verbalize what they
are thinking
 Motivations, why doing things,

what confused about
 Don’t need many users

© 2022 - Brad Myers 23

Why Usability Analysis

 Improve the user interface prior to:
 Deployment
 A vs. B testing (as a “pilot” test)

 Demonstrate that users can use the system
 Show that novel features of the UI are understandable

© 2022 - Brad Myers 24

Formal A vs. B “User Studies”
 Formal A vs. B lab user studies are “gold standard” for academic papers – to

show something is better
 But many issues in the study design
 Issues:
 Vast differences in programmer productivity

 10X often cited (cites: Sackman, 1968, Curtis 1981, Mills 1983, DeMarco and Lister 1985, Curtis et al. 1986, Card 1987,
Boehm and Papaccio 1988, Valett and McGarry 1989, Boehm et al 2000)

 Difficulty of controlling for prior knowledge
 Usually really care about expert performance, which is difficult to measure in a user

test
 “Confounding” factors which were not controlled and are not relevant to study,

but affect results
 Tasks or instructions are mis-understood

 Use prototypes & pilot studies to find these
 Statistical significance doesn’t mean real savings
 Be sure to collect qualitative data too

 Strategies people are using
 Why users did it that way
 Especially when unexpected results

© 2022 - Brad Myers 25

Examples of UI Tests

© 2022 - Brad Myers

 Many tool papers have user tests
 Especially at CHI conference
 E.g.: Ellis, J. B., Wahid, S., Danis, C., and Kellogg, W. A. 2007. Task

and social visualization in software development: evaluation of a
prototype. CHI '07. http://doi.acm.org/10.1145/1240624.1240716
 8 participants, 3 tasks, within subjects: Bugzilla vs. SHO, observational

 Backlash? at UIST conference
 Olsen, 2007: “Evaluating user interface systems research”
 But: Hartmann, Björn,Loren Yu, Abel Allison, Yeonsoo Yang, and Scott

Klemmer. "Design As Exploration: Creating Interface Alternatives
through
Parallel Authoring and Runtime Tuning“, UIST 2008 –
Best Student Paper Award
 18 participants, within subjects,

full interface vs. features removed,
“(one-tailed, paired Student’s
t-test; p < 0.01)”

26

http://doi.acm.org/10.1145/1240624.1240716
http://hci.stanford.edu/publications/2008/juxtapose-uist2008.pdf

Our use of A vs. B Study: Whyline
 PhD work of A.J. Ko
 Allow users to directly ask “Why” and “Why not”

© 2022 - Brad Myers 27

Whyline User Studies
 Initial study:
 Whyline with novices outperformed experts with Eclipse
 Factor of 2.5 times faster

 Formal study:
 Compared to Whyline with key features removed (rather than Eclipse)
 Tasks: 2 real bug reports from real open source system (ArgoUML)
 Whyline was over 3 times as successful, in ½ of the time

© 2022 - Brad Myers 28

Steven Clarke’s “Personas”
 Classified types of programmers he felt were relevant to UI tests of Microsoft

products (Clarke, 2004) (Stylos & Clarke 2007)
 Capture different work styles, not experience or proficiency
 Systematic - work from the top down, attempting to understand the system as

a whole before focusing on an individual component. Program defensively,
making few assumptions about code or APIs and mistrusting even the
guarantees an API makes, preferring to do additional testing in their own
environment. Prefer full control, as in C, C++

 Opportunistic - work from the bottom up on their current task and do not
want to worry about the low-level details. Want to get their code working and
quickly as possible without having to understand any more of the underlying
APIs than they have to. They are the most common persona and prefer simple
and easy to use languages that offer high levels of productivity at the expense
of control, such as Visual Basic.

 Pragmatic - less defensive and learn as they go, starting working from the
bottom up with a specific task. However, when this approach fails, they revert
to the top-down approach used by systematic programmers. Willing to trade
off control for simplicity but prefer to be aware of and in control of this trade
off. Prefer Java and C#.

© 2022 - Brad Myers 29

Usability Evaluations of APIs

 PhD work of Jeff Stylos (extending Steven Clarke’s work)
 Which programming patterns are most usable?
 Default constructors
 Factory pattern
 Object design
 E-SOA APIs

 Measures: learnability, errors, preferences
 Expert and novice programmers
 Fix by:
 Changing APIs
 Changing documentation
 Better tools in IDEs
 E.g., use of Code completion

(“IntelliSence”) for exploration

© 2022 - Brad Myers 30

Required Constructors

 Compared create-set-call (default constructor)
var foo = new FooClass();
foo.Bar = barValue;
foo.Use();

 vs. required constructors:
var foo = new FooClass(barValue);
foo.Use();

 All participants assumed there would be a default
constructor

 Required constructors interfered with learning
 Want to experiment with what kind of object to use first

 Did not ensure valid objects – passed in null
 Preferred to not use temporary variables

© 2022 - Brad Myers 31

“Factory” Pattern

 (Ellis, Stylos, Myers 2007)
 Covered in Lecture 9, slide 5
 Instead of “normal” creation: Widget w = new Widget();
 Objects must be created by another class:

AbstractFactory f = AbstractFactory.getDefault();
Widget w = f.createWidget();

 Used frequently in Java (>61) and .Net (>13) and SAP
 Lab study with expert Java programmers
 Five programming and debugging tasks
 Within subject and between subject measures

 Results:
 When asked to design on “blank paper”, no one designed a factory
 Time to develop using factories took 2.1 to 5.3 times longer compared to

regular constructors (20:05 v 9:31, 7:10 v 1:20)
 All subjects had difficulties getting using factories in APIs

 Implications: avoid the factory pattern!

© 2022 - Brad Myers 32

Summary

 CIs and Iterative Design to help design and develop better
tools

 User testing is still the “gold standard” for user interface tools
 HE and CD are useful for evaluations

© 2022 - Brad Myers 33

	Lecture 13:�Evaluation of APIs and UI Tools, API Usability, Cognitive Dimensions.
	Logistics
	How Can UI Tools be Evaluated?
	API Design Decisions
	API Design Decisions, cont.
	UI Evaluation of UI Software Tools:�Some Usability Methods
	Dangers of Not Applying Human Centered Approaches
	Dangers of Not Applying�Human Centered Approaches
	Study of API Usability
	Coordination / Dependencies
	Don Norman’s “Gulfs”
	Product Lifecycle
	Design and Development
	“Natural Programming” Elicitation Method
	Example of use of Natural Programming
	Evaluation Methods
	Expert Analyses
	Heuristic Evaluation Method
	10 Basic Principles
	Cognitive Dimensions
	Example: Consistency�Issues in html/CSS/JavaScript?
	Our Use of Expert Analyses
	Usability Evaluations with users
	Why Usability Analysis
	Formal A vs. B “User Studies”
	Examples of UI Tests
	Our use of A vs. B Study: Whyline
	Whyline User Studies
	Steven Clarke’s “Personas”
	Usability Evaluations of APIs
	Required Constructors
	“Factory” Pattern
	Summary

