Lecture 9:

Ul Software Patterns:
State Diagrams, MVC,
Lexical-Syntax-Semantics

05-431/631 Software Structures for User Interfaces (SSUI)
Fall, 2022

© 2022 - Brad Myers

)
Human-Computer Interaction Institute N

Logistics

e Homework 1 grading done — released
e Homework 2 due today

e Start on Homework 3
e Instructions now available from the website

© 2022 - Brad Myers 2

.
)
Human-Computer Interaction Institute

What are Design Patterns?

e \Wikipedia: A design pattern is the re-usable form

of a solution to a design problem. The idea was
introduced by the architect Christopher
Alexanderl’ and has been adapted for various

other disciplines, notably software engineering.

e Design Patterns book (1994)

e By “Gang of 4”. Erich Gamma, Richard
Helm, Ralph Johnson, and John Vlissides

e Patterns for object-oriented systems (originally, Java)
e Now, there are LOTS more

© 2022 - Brad Myers

Design Patterns

Elements of Reusable
Object-Oriented Software

i]

https://en.wikipedia.org/wiki/Design_pattern
https://en.wikipedia.org/wiki/Christopher_Alexander
https://en.wikipedia.org/wiki/Design_pattern#cite_note-Alexander,_A_Pattern_Language-1
https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Design_pattern#cite_note-Gang_of_Four-2

\)
Human-Computer Interaction Institute N

Design Patterns

e Generally, a way to organize code to achieve certain outcomes
e Small pieces of the overall design
e Both “functional” = what it does
e And “non-functional” = how it does it, e.g., efficiency, reusability
e Language independent
e \We have been using the “Listener Pattern” all along!
e Also called the “Observer Pattern”
e Attach an observer (call-back function) to events or other data changing
e We will use the “Command” pattern for undo in Homework 5
e Sometimes called “Models” but that has too many meanings!

e Software Architectures — whole system design; pattern is just
one piece

© 2022 - Brad Myers 4

|\
Human-Computer Interaction Institute N

e Instead of “normal” creation: widget w = new Widget() ;

e Objects must be created by another class:
AbstractFactory £ = AbstractFactory.getDefault() ;
Widget w = f.createWidget() ;

e Used frequently in Java (>61) and .Net (>13) and SAP

e Advantages?
e Don’t need to allocate any memory (new not called)
e Can return a different subtype from what user is aware of

e Our research showed that the “factory pattern” made
APIs harder to learn and use (lower “API Usability”):

e When asked to design on “blank paper”, no one designed a
factory

e Time to develop using factories took 2.1 to 5.3 times longer
compared to regular constructors (20:05 v 9:31, 7:10 v 1:20)

e All subjects had difficulties getting using factories in APIs

“Factory” Pattern

© 2022 - Brad Myers 5

.
)
Human-Computer Interaction Institute

Design Patterns for Ul Design

e E.q..
van Duyne, D.K., James A. Landay, and Jason |. Hong, The
Design of Sites: Patterns, Principles, and Processes for
Crafting a Customer-Centered Web Experience. Reading,
MA: Addison-Wesley, 2002.

B i

e Mainly for Ul design patterns, THE
for Ul designers, not for Ul e DESIGN
software OF

SITES

© 2022 - Brad Myers

\)
Human-Computer Interaction Institute N

Conceptual-Semantic-Syntactic-Lexical-
Pragmatic

e Another way to look at the design of software
e Derived from compiler theory and language work.
e Mostly relevant to older, non-interactive interfaces
e Pragmatic

e How the physical input devices work

e required "gestures" to make the input.

e Ergonomics

e skilled performance: "muscle memory"
e press down and hold, vs. click-click

© 2022 - Brad Myers 7

)
Human-Computer Interaction Institute w

Conceptual-Semantic-Syntactic-Lexical-
Pragmatic, cont.

e Lexical
e spelling and composition of tokens
“add” vs. “append” vs. “*a” vs.
e \Where items are placed on the display
o “Key-stroke” level analysis

e Forinput, is the design of the interaction techniques:
how mouse and keyboard combined into menu, button, string, pick, etc.

© 2022 - Brad Myers 8

)
Human-Computer Interaction Institute N

Conceptual-Semantic-Syntactic-Lexical-
Pragmatic, cont.

e Syntactic
e sequence of inputs and outputs.

e For input, the sequence may be represented as a grammar:
rules for combining tokens into a legal sentence

e For output, includes spatial and temporal factors

e Example: prefix vs. postfix
Postfix: <select obj> delete

Prefix: del *
<select rectangle tool> <select where new rectangle goes>

Infix: drag-and-drop

© 2022 - Brad Myers 9

)
Human-Computer Interaction Institute N

Conceptual-Semantic-Syntactic-Lexical-
Pragmatic, cont.

e Semantic
e functionality of the system; what can be expressed
e What information is needed for each operation on object
e What errors can occur

e Semantic vs. Ul is key issue in Ul tools

but "semantic" is different than meaning in compilers
e "Semantic Feedback”

Depends on meaning of items

Example: only appropriate places where item can be dropped highlight
during drag

© 2022 - Brad Myers 10

\)
Human-Computer Interaction Institute N

Conceptual-Semantic-Syntactic-Lexical-
Pragmatic, cont.

e Conceptual (definition from Foley & Van Dam text, 1st edition)
e Key application concepts that must be understood by user

e User model
Objects and classes of objects
Relationships among them

Operations on them

= Example: text editor
objects = characters, files, paragraphs
relationships = files contain paragraphs contain chars
operations = insert, delete, etc.

e Overall evaluation of CSSLP model:
e + “Separation of concerns” for input handling
e + Helps to think about syntax & lexical issues
e - Not useful for output

© 2022 - Brad Myers 11

|\
Human-Computer Interaction Institute N

Model-View-Controller

e |Invented in Smalltalk, about 1980 —
e Idea: separate out presentation (View), user input *® —
handling (Controller) and "semantics" (Model) J |

which does the work
e Fairly straightforward in principle, hard to carry through
e Never adequately explained (one article, hard to find)

e Goals

e Program a new model, and then re-use existing views and
controllers
better modularization and separation of Ul from application

e Multiple, different kinds of views on same model
e Lots of modern variants

© 2022 - Brad Myers 12

¢

Human-Computer Interaction Institute

Classic MVC
reference

A Cookbook for Using the Model-
View-Controller User Interface
Paradigm in Smalltalk-80

Glenn E. Krasner
Stephen T. Pope

Glenn E. Krasner and Stephen T. Pope. “A

Cookbook for Using the Model-View-Controller User
Interface Paradigm in Smalltalk-80,” Journal of
Object Oriented Programming. Aug, 1988. vol. 1,
no. 3. pp. 26-49.

Hard to find original journal

Luckily, lots of sources for
pdf:

https://www.ics.uci.edu/~redmiles/ics227-
SQ04/papers/KrasnerPope88.pdf

Wikipedia says invented in
1979

Introduction

The user interface of the Smallialk-80™ programming environ-
ment {see references. [Goldberg 83]) was developed using a
particular sirategy of representing information. display. and
control, This strategy was chosen 1o sansfy two goals: (1) 10
create the special set of system components needed 10 suppon a
highly imeractive sofrware development process: and (2) 10
provide a general set of svsiem compenents that make it pos-
sible for programmers 10 create poriable interactive graphical
applications easily,

In this amicle we assume that the reader has a basic
knowledge of the Smallialk-80 language and programming en-
vironment. Inicresied readers noi familiar with these are
referred 10 [Goldberg and Robson B3] and [Goldberg 82] for in-
wroductory and rutorial material.

MVC and the Issues of Reusability and Pluggability

When building inicraciive as with ether
modularity of componemis has enormows benefits. lsolating
funetional units from each other as much as possible makes it
easier for the application designer 10 undersiand and modify
each particular unit. without having 1o know everything about
the other units. Our experiences with the Smalltalk-76
programming sysiem showed that one particular form of
iiy—a th ay i of applicmion com-
ponents—has payoff beyond merely making the designer’s life
easier. This three-way division of an application entails separat-
ing (1) the parts that represent the model of the underlving ap-
plication domain from. (2} the way the model 15 presented to
the user and from, and (3) the way the user interacts with it

Amthryr s Address: ParcPlace Sysiems. 2400 Geng Road Palo ano, CA 92303,
plenn ParcPlce cam

Smallialk-B0 15 a trademark of ParcPlace Sysems

26 JOOF August'Seplember 1988

Model-View-Controller iMVC) programming (s the applica-
tion of this three-way facioring, whereby objecis of differem
chasses take over the operations relaed 1o the application
domain (the model). the display of the application’s state ithe
view). and the user interaction with the model and the view (the
controller). In earlier Smalltalk svstem user interfaces. the 1ools
that were pul into the interface tended to consisi of arrange-
menis of four basic viewing idioms: paragraphs of text. lists of
text (menus). choice “bunens.” and graphical forms (bit- or
pixel-maps). These wols also tended to use three basic user in-
teraction paradigms: browsing. inspecting. and editing. A goal
of the current Smalltalk-80 system was 10 be able 1o define user
imerface componenis for handling these idioms and paradigms
once. and share them among all the programming environment
tools and user-writien applications wsing the methodology of
MYC programming.

‘We also envisioned thar the MVC methodology would allow
programmers 10 wrile an application mode! by first defining new
classes that would embody the special application domain-
specific information. They would then design a user interface 1o
it by laying out a composite view (window) for it by “plugging
in” instances taken from the pre-defined user imerface classes
This “pluggability” was desirable not only for viewing idioms.
baut also for i the © g (editing) Al
though certainly related in an interactive application. there is an
advaniage 1o being able 10 separate the functionality berween
how the model is displayed. and the methods for interacting with
it. The use of pop-up versus fixed menus. the meaning attached to
kevboard and function key. and scheduling of muliple
views should be choices that can be made independently of the
model or its view(s). They are choices that may be lefi up 1o the
end wser where appropniate.

The Model-View-Controlier Metaphor

To address the issues outlined above, the Maodel- View-Contral-
ler metaphor and i11s application structuring paradigm for think-
ing about {and i ing) imleracti icati com-

© 2022 - Brad Myers

13

https://www.ics.uci.edu/%7Eredmiles/ics227-SQ04/papers/KrasnerPope88.pdf
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

\)
Human-Computer Interaction Institute N

MVC

e Model
e “the parts that represent the model of the
underlying application domain” (MODEL W
e Simple as an integer for a counter; string for an
editor LUPDATES MAMNIPLILATES
e Complex as a molecular simulator l |
o View VIEW CONTROLLER
e “the way the model is presented to the user” N, r
e Everything graphical &, &
e Layout, subviews, composites K‘* <
e Controller USER

e “the way the user interacts with it”
e Schedule interactions with other VCs
e A menu is a controller

© 2022 - Brad Myers 14

()
Human-Computer Interaction Institute

MVC

Controller

© 2022 - Brad Myers 15

|\
Human-Computer Interaction Institute N

MVC

e Views closely associated with controllers.

e Each VC has one M; one M can have many VCs.

e VCs know about their model explicitly, but M doesn't know about
views

e Changes in models broadcast to all "dependents” of a model using a
standard protocol.

e “Observer’ pattern again

“register” the views with the model, so each is called when model changes
= Like the event handlers when mouse down

© 2022 - Brad Myers 16

\)
Human-Computer Interaction Institute N

MVC

e Standard interaction cycle:

e User operates input device, controller notifies model to change,
model broadcasts change notification to its dependent views, views
update the screen.

e Views can query the model

e Problems:
e Views and controllers tightly coupled
e Whatis in each part?

e Complexities with views with parts, controllers with sub-controllers,
models with sub-models...

© 2022 - Brad Myers 17

\)
Human-Computer Interaction Institute N

Model-View (variant of MVC)

e Since hard to separate view and controller

e Primary goal: support multiple views of same data.
e Simply switch views and see data differently

e Put into Model "part that needs to be saved to a file"
e but really need to save parts of the view

© 2022 - Brad Myers 18

|\
Human-Computer Interaction Institute N

MVC and React / Angular / Vue

e AngulardS from Google (~2009) relied on the MVC paradigm

e React from Facebook (~2011) explicitly rejected MVC due to
requirement of copying values around
e using constraints or the observer pattern
e React instead uses shared data, which it calls “states”

e New design of Angular (~2016) less use of MVC
e But Vue tool does use MVC

© 2022 - Brad Myers 19

|\
Human-Computer Interaction Institute N

Note about the word “Model”

e “Model” used in many ways in HCI!
e User model - the way a user thinks about a system - [Don Norman]
e Color model, undo model - the way that feature is presented to the user

e Software models - the way that a programmer should think about the
implementation

Examples: imaging model, object model (class model or prototype-instance model),
retained object model, document model, interactors model, event model, and model-
view-controller (MVC) model (lectures 6 & 7)

e Model of MVC - the data structure that the user interface is connected to

e Model-based design — (end of lecture 8) high-level specification from which the
user interface is automatically generated

e Human Performance Model and Fitt’s Law Model — mathematical
representations from which predictions of human performance can be calculated

e Language models - representations of how words are used in a natural language
(lecture 23)

e 3D models - computer representations of three-dimensional objects (lecture 25)
e AI/ML models — the code that implements the pattern matching (or all of the Al)
e Fashion models - people who show off clothing

© 2022 - Brad Myers 20

.
)
Human-Computer Interaction Institute

Transition Diagrams

e Also called: state diagrams, finite-state machines (FSM),
finite automata

e Is also a kind of “model”
e Set of states and set of arcs
e States: mode that the system can be in
e Transition: how system can change states
e Can be abstracted away from Ul or code
o Wikipedia example:

© 2022 - Brad Myers 21

https://en.wikipedia.org/wiki/Finite-state_machine

¢

Human-Computer Interaction Institute

Transition Diagrams

e Probably the earliest tool to help build Uls:

e William Newman's "Reaction Handler" in 1968
http://doi.acm.org/10.1145/1468075.1468083

STAT 1 Comment: State definjtion, state 1
RESP PRESS BUTTON TO TRACK State 1 response, “*Press button to track™
llflss ACT 0 Branch definition, action of category 0 (command)
MES RESTART Message “restart™
Iilllltﬂl'l to SE 4 State entry, i.e. branch leads to state 4
ACT 0 Branch definition; command “delete™ leads to state 5
MES DELETE
SE 5
ACT 10 Branch definition, category 10 {button)
SE 2 Pressing button leads to state 2
STAT 2 State 2 definition
RESP PRESS BUTTON TO DRAW State 2 response
ACT 7 Branch definition, category 7 (pen movement)
ACT 10 Branch definition; pressing button leads to state 3
IEX STORPT STORPT stores pen position as starting point when button is pressed
program SE 3
bhock STAT 3 State 3 definition
RESP PRESS BUTTON WHEN COMPLETE
ACT 10 Branch definition; pressing button leads to state 1
SE 1
IEX ACT 7 Branch definition, pen movement
IEX DLINE DLINE computes and displays fresh line at every pen movement
STAT 4 State 4 definition
test INIT Initial state, program starts here
r[}l.ltllﬂl PB PBGO Program block PBGO, executed on entering state 4
ACT 5§ Branch definition, category 5 (system)
SE 1 Completion of PBGO leads to state |
STAT 5 State 5 definition
TESpONSE RESP POINT AT LINE TO DELETE
ACT 0 Branch definition; command *“draw"" leads to state |
MES DRAW
SE 1
ACT 6 Branch definition: category 6 (pen hit)
TEST DLAST Test routine DLAST deletes indicated line
i SE 1 If tast line, branch to state 1
Figure 21— An culemded disgram including respanses, amd wilh END

proveision for deewing and delering bnes and for imitializacion
TABLE I: The example of Figure 2 coded into Network Definition Language

© 2022 - Brad Myers 22

http://doi.acm.org/10.1145/1468075.1468083

)
Human-Computer Interaction Institute w

Transition Diagrams, cont.

e Simplest form, arcs are user input events.

e arcs can be extended by listing feedback (output) and semantic
actions on the arcs

e actions usually written in a conventional language (e.g., C)
e picture, Olsen, p. 37 (Fig 3:1)

MouseDown
P1 :=Mouseloc
MouseDown

DrawLine(P1,Mouseloc)

Rectangie

MouseDown
DrawRect(P1,Mouseloc)
MouseDown Flg 3:1
P1:=Mouseloc Simple State
Machine

© 2022 - Brad Myers 23

.
)
Human-Computer Interaction Institute

Transition Diagrams, cont.

e Often, represented textually: State Start:
. On Line Then L1;
e picture, Olsen p. 38 On Rectangle Then RI;
State L1:

MouseDown
P1:=Mouseloc

MouseDown
DrawLine(P1,Mouseloc)

MouseDown

= DrawRect(P1,Mouseloc)
MouseDown R2
P1:=Mouseloc

Fig. 3:1
Simple State
Machine

© 2022 - Brad Myers

On MouseDown
Do P1:=MouseLoc;
Then L2;
State L2:
On MouseDown
Do DrawLine(P1,MouseLoc);
Then Start;
State R1:
On MouseDown
Do P1l:=MouseLoc;
Then R2;
State R2:
On MouseDown
Do DrawRect(P1,MouseLoc);
Then Start;

24

Transition Diagrams, cont.

e "Pervasive states" to handle help, abort, undo, etc.
e "Escape" transitions to abort (permanently leave) a dialog

picture, Olsen p. 53 (Fig 3:11)

e "Re-enter" sub-dialogs for temporary excursions that return to same

place. E.g., help, use calculator, etc.
picture, Olsen p. 55 (Fig 3:12)

)
Human-Computer Interaction Institute N

e Transitions are taken if no specific arcs from node

Fig. 3:11
HOME Feature

Calculate
<Calculator>

NOW
Retum

Fig. 3:12

Reenter

)
Human-Computer Interaction Institute w

Transition Diagrams, cont.

e "Augmented transition networks"
e local variables
e function on arcs can determine transitions
e "guards” determine whether transition is legal

e "conditional transitions” calculate where to go
picture, Olsen p. 57 (Fig 3:14)
e upgrades the power to context-free-grammar

Login <Text(P-wd)>

not ValidPassword({Pswd)

c&n‘::om: < ValidPassword(Pswd) Fig. 3:14
Login Dialog

© 2022 - Brad Myers 26

\)
Human-Computer Interaction Institute N

Transition Diagrams, cont.

e Transition Networks, in general, used in various tools:

e Research: Newman's "reaction handler”, Jacob's RTN, Olsen's
"Interactive Pushdown Automata", Stephen Oney’s Euclase, etc.
e Commercial: IDE's RAPID/USE,
Virtual Prototypes's VAPS
e VAPS used spreadsheet interface to the ATN

© 2022 - Brad Myers 27

¢!

Human-Computer Interaction Institute

VAPS pictures
e Pictures (

" '.IU.C/ .
IEVEHT 4) F {EVEN‘I’ 20

(EVENT_2) |

[(EVENT_12)

[Astian 1
It valpye > 32 \W'Hlﬂ'n r
Action 2; 3 L (EVENT_T)
it 2 o
:i- i m- - J .| I Aclion 3; §
Edit Liilitles I-_IEE1 Action 4} §
——— TR LT
Unit: menu :m.m‘wm:|mm
State Ewent Rasponss Tran=ition
1 [Tait i oot rrametee, cmain .. [Wain Weos a
|ﬂu!.n._.|:h:|:|u 'i m:a-cl:_jpplusua* Iinlnn_rrm-:"},--. |ippnt.1.:er:
3 l i Seloct _Main Dishes® Ii_!n_lrl-nst'"], S iﬁtn_nm-m
4 1jpn|tlmrs l Salect Proscultbo” Iﬂm-rztn Evonk("Pro... IEIEI:_EJ’I.TE ;‘
] k Al il 3 . i i ik ENFLRFE s
s | | *Balact Mine_List’ || Ramova_Feamani==); . .. l:m-lmt “M“mm e B
6 L‘lﬂl Lgt Jt'u"w |Im_rl_‘{hl:|:‘__ Im]mm : | “Nmmm” e PLEIH NIBP TREND
e s [[|5
- TSR | B [Remove_Pramen (=) ... [[marr B s o
tL - LRI rale o
[AaptyCelChangss . | [Cancel Changes |
1
4
—
s aRe s el] [Gonodt]

= jrad Myers 28

http://www.cs.cmu.edu/%7Ebam/uicourse/830spring09/lecture%2011%20-%20VAPS%20figs.pdf

\)
Human-Computer Interaction Institute N

Transition Diagrams for Widget Behavior

e Used internally for Garnet / Amulet “Interactors”
(lecture 5)

e Note: no “hover” state

Stop-action Running-action

Start_evehi
oVer ol
thot contihions k4 start_event
wer hat over
yect] FRBRING W here .
Start - Funning Outside
Start_action Outside_action
back aver ‘
_ stop_event _/,H _ Fahping where _/)
Stop_action Back_inside_action
'_ abart_event _/'
Abort_action
o abot-event _/,'
Abort_action
. stopevent ___)-"

Abort_action
o 29

Another example, with hover

Start

Mouse over

Mouse butto

.
)
Human-Computer Interaction Institute

Mouse away

released
hover selected
Mouse button
pressed
Mouse
away

Mouse button

released

© 2022 - Brad Myers

(Pressed but
Loutside

}

(®) Pages per Sheet
() Booklet

Mouse
over

30

|\
Human-Computer Interaction Institute N

StateCharts - I

e Invented by David Harel 8 (5
David Harel, “Statecharts: a visual formalism for complex systems”, Science of
g%nputler Programming, Volume 8, Issue 3, (Elsevier) June 1987, Pages 231-

, online

e Generalization of state diagrams S
e Reduce state explosion and other problems Fig. 2.

e Cluster (nested) states for abstractions and identical
behaviors

e “AND” states — system is in both A and D

e E.g., watch light is always on or off, may be
independent of other modes

e Concurrent charts — can operate
independently

e Many other features
e Used by Stephen Oney’s InterState

Fig 19,

Mmaouse out
Pdeactl'.-etr_-:l IO USE. OVET™
_~activateds &= out hover
Add Field @+ ianctive active 51
prototypes

® lse | false |

http://www.sciencedirect.com/science/article/pii/0167642387900359

\)
Human-Computer Interaction Institute N

Transition Diagrams, evaluation

e Good
e Make explicit the interpretation of all events in each state
e Emphasize the temporal sequence of user and system actions

e Natural and easily understood if small
easy to teach, learn, and read

e Appropriate for some parts of GUIs: widget behaviors, dialog box
transitions, etc.

e May be appropriate to model transitions around web sites

© 2022 - Brad Myers 32

\)
Human-Computer Interaction Institute N

Transition Diagrams, evaluation

e Bad

e Does not scale:
150 commands with 3 or 4 states each

explosion of lines and states for normal
interfaces: "maze of wires"

e unordered inputs

picture, Olsen p. 91 (Fig 6:1)
e Textual form is like GOTO-based assembly language
e Communication through global variables
e Doesn't handle GUI mode-free style well
e What to do with un-specified input? crash, ignore input
Doesn't address output

Fig. 6:1
Handling
Unordered
Inputs

© 2022 - Brad Myers 33

Let!s Design One for HWZ, Human-ComputerInteractionInstituteN
mouse behavior

Done in class — see next slide l
Mouse move

jon & stop moving

'SC
Return to original position & stop moving

double

Morica mnovao
TVINV AWV TTTVV O

ove div
y Mouse|Up
Mdyve lock state Stop moving

4 Esc
‘ Returmter original position & stop moving

Let’s Design one for HW2 | @
Prepared in advance l -

First move event

Div moves
Mouse .
dow Move event
Mouseg Move div \ouse up anywhere
on div 4 ove finished
efect that div
|dle SC key
Aborting — restore to original place
click
oh workarea plclick on div
desglect m Click anywhere
- Move finished
ROVITIY
‘ ESC key
Move event Aborting — restore to original place

Move div

	Lecture 9:�UI Software Patterns:�State Diagrams, MVC,�Lexical-Syntax-Semantics
	Logistics
	What are Design Patterns?
	Design Patterns
	“Factory” Pattern
	Design Patterns for UI Design
	Conceptual-Semantic-Syntactic-Lexical-Pragmatic
	Conceptual-Semantic-Syntactic-Lexical-Pragmatic, cont.
	Conceptual-Semantic-Syntactic-Lexical-Pragmatic, cont.
	Conceptual-Semantic-Syntactic-Lexical-Pragmatic, cont.
	Conceptual-Semantic-Syntactic-Lexical-Pragmatic, cont.
	Model-View-Controller
	Classic MVC�reference
	MVC
	MVC
	MVC
	MVC
	Model-View (variant of MVC)
	MVC and React / Angular / Vue
	Note about the word “Model”
	Transition Diagrams
	Transition Diagrams
	Transition Diagrams, cont.
	Transition Diagrams, cont.
	Transition Diagrams, cont.
	Transition Diagrams, cont.
	Transition Diagrams, cont.
	VAPS pictures
	Transition Diagrams for Widget Behavior
	Another example, with hover
	StateCharts
	Transition Diagrams, evaluation
	Transition Diagrams, evaluation
	Let’s Design one for HW2,�mouse behavior
	Let’s Design one for HW2

