
Lecture 9:
UI Software Patterns:
State Diagrams, MVC,
Lexical-Syntax-Semantics

05-431/631 Software Structures for User Interfaces (SSUI)
Fall, 2022
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Logistics

 Homework 1 grading done – released
 Homework 2 due today
 Start on Homework 3
 Instructions now available from the website
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What are Design Patterns?
 Wikipedia: A design pattern is the re-usable form 

of a solution to a design problem. The idea was 
introduced by the architect Christopher 
Alexander[1] and has been adapted for various 
other disciplines, notably software engineering.[2]

 Design Patterns book  (1994)
 By “Gang of 4”:  Erich Gamma, Richard

Helm, Ralph Johnson, and John Vlissides
 Patterns for object-oriented systems (originally, Java)

 Now, there are LOTS more
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https://en.wikipedia.org/wiki/Design_pattern
https://en.wikipedia.org/wiki/Christopher_Alexander
https://en.wikipedia.org/wiki/Design_pattern#cite_note-Alexander,_A_Pattern_Language-1
https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Design_pattern#cite_note-Gang_of_Four-2


Design Patterns
 Generally, a way to organize code to achieve certain outcomes
 Small pieces of the overall design
 Both “functional” = what it does
 And “non-functional” = how it does it, e.g., efficiency, reusability
 Language independent

 We have been using the “Listener Pattern” all along!
 Also called the “Observer Pattern”
 Attach an observer (call-back function) to events or other data changing

 We will use the “Command” pattern for undo in Homework 5
 Sometimes called “Models” but that has too many meanings!
 Software Architectures – whole system design; pattern is just 

one piece

© 2022 - Brad Myers 4



“Factory” Pattern
 Instead of “normal” creation: Widget w = new Widget();
 Objects must be created by another class:

AbstractFactory f =  AbstractFactory.getDefault();
Widget w = f.createWidget();

 Used frequently in Java (>61) and .Net (>13) and SAP
 Advantages?
 Don’t need to allocate any memory (new not called)
 Can return a different subtype from what user is aware of

 Our research showed that the “factory pattern” made 
APIs harder to learn and use (lower “API Usability”):
 When asked to design on “blank paper”, no one designed a 

factory
 Time to develop using factories took 2.1 to 5.3 times longer

compared to regular constructors (20:05 v 9:31, 7:10 v 1:20)
 All subjects had difficulties getting using factories in APIs
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Design Patterns for UI Design

 E.g.,:
van Duyne, D.K., James A. Landay, and Jason I. Hong, The 
Design of Sites: Patterns, Principles, and Processes for 
Crafting a Customer-Centered Web Experience. Reading, 
MA: Addison-Wesley, 2002.

 Mainly for UI design patterns,
for UI designers, not for UI 
software
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Conceptual-Semantic-Syntactic-Lexical-
Pragmatic

 Another way to look at the design of software
 Derived from compiler theory and language work. 
 Mostly relevant to older, non-interactive interfaces 
 Pragmatic 
 How the physical input devices work 
 required "gestures" to make the input. 
 Ergonomics 
 skilled performance: "muscle memory" 
 press down and hold, vs. click-click
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Conceptual-Semantic-Syntactic-Lexical-
Pragmatic, cont.

 Lexical
 spelling and composition of tokens 
 “add” vs. “append” vs. “^a” vs.   

 Where items are placed on the display 
 “Key-stroke” level analysis 
 For input, is the design of the interaction techniques:
 how mouse and keyboard combined into menu, button, string, pick, etc.
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Conceptual-Semantic-Syntactic-Lexical-
Pragmatic, cont.

 Syntactic 
 sequence of inputs and outputs. 
 For input, the sequence may be represented as a grammar: 
 rules for combining tokens into a legal sentence 

 For output, includes spatial and temporal factors 
 Example: prefix vs. postfix
 Postfix:

 Prefix: 

 Infix:
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<select obj> delete

del * 
<select rectangle tool> <select where new rectangle goes>

drag-and-drop



Conceptual-Semantic-Syntactic-Lexical-
Pragmatic, cont.

 Semantic
 functionality of the system; what can be expressed
 What information is needed for each operation on object
 What errors can occur
 Semantic vs. UI is key issue in UI tools
 but "semantic" is different than meaning in compilers

 "Semantic Feedback“
 Depends on meaning of items
 Example: only appropriate places where item can be dropped highlight 

during drag
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Conceptual-Semantic-Syntactic-Lexical-
Pragmatic, cont.

 Conceptual (definition from Foley & Van Dam text, 1st edition)
 Key application concepts that must be understood by user
 User model

 Objects and classes of objects
 Relationships among them
 Operations on them
 Example: text editor
 objects = characters, files, paragraphs
 relationships = files contain paragraphs contain chars
 operations = insert, delete, etc.

 Overall evaluation of CSSLP model:
 + “Separation of concerns” for input handling
 + Helps to think about syntax & lexical issues
 - Not useful for output
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Model-View-Controller 

 Invented in Smalltalk, about 1980 
 Idea: separate out presentation (View), user input 

handling (Controller) and "semantics" (Model)
which does the work

 Fairly straightforward in principle, hard to carry through 
 Never adequately explained (one article, hard to find) 
 Goals 
 Program a new model, and then re-use existing views and 

controllers 
 better modularization and separation of UI from application

 Multiple, different kinds of views on same model
 Lots of modern variants
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Classic MVC
reference

 Glenn E. Krasner and Stephen T. Pope. “A 
Cookbook for Using the Model-View-Controller User 
Interface Paradigm in Smalltalk-80,” Journal of 
Object Oriented Programming. Aug, 1988. vol. 1, 
no. 3. pp. 26-49. 

 Hard to find original journal
 Luckily, lots of sources for 

pdf:
 https://www.ics.uci.edu/~redmiles/ics227-

SQ04/papers/KrasnerPope88.pdf

 Wikipedia says invented in 
1979
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https://www.ics.uci.edu/%7Eredmiles/ics227-SQ04/papers/KrasnerPope88.pdf
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller


MVC

 Model
 “the parts that represent the model of the 

underlying application domain”
 Simple as an integer for a counter; string for an 

editor 
 Complex as a molecular simulator 

 View
 “the way the model is presented to the user”
 Everything graphical 
 Layout, subviews, composites 

 Controller
 “the way the user interacts with it”
 Schedule interactions with other VCs 
 A menu is a controller
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15

MVC
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MVC

 Views closely associated with controllers. 
 Each VC has one M; one M can have many VCs. 
 VCs know about their model explicitly, but M doesn't know about 

views 
 Changes in models broadcast to all "dependents" of a model using a 

standard protocol.
 “Observer” pattern again
 “register” the views with the model, so each is called when model changes
 Like the event handlers when mouse down
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MVC

 Standard interaction cycle: 
 User operates input device, controller notifies model to change, 

model broadcasts change notification to its dependent views, views 
update the screen. 

 Views can query the model 
 Problems: 
 Views and controllers tightly coupled 
 What is in each part? 
 Complexities with views with parts, controllers with sub-controllers, 

models with sub-models...
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Model-View (variant of MVC)

 Since hard to separate view and controller 
 Primary goal: support multiple views of same data. 
 Simply switch views and see data differently 

 Put into Model "part that needs to be saved to a file" 
 but really need to save parts of the view
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MVC and React / Angular / Vue

 AngularJS from Google (~2009) relied on the MVC paradigm
 React from Facebook (~2011) explicitly rejected MVC due to 

requirement of copying values around
 using constraints or the observer pattern
 React instead uses shared data, which it calls “states”

 New design of Angular (~2016) less use of MVC
 But Vue tool does use MVC
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Note about the word “Model”
 “Model” used in many ways in HCI!

 User model - the way a user thinks about a system - [Don Norman]
 Color model, undo model - the way that feature is presented to the user
 Software models - the way that a programmer should think about the 

implementation
 Examples: imaging model, object model (class model or prototype-instance model ), 

retained object model, document model, interactors model, event model, and model-
view-controller (MVC) model (lectures 6 & 7)

 Model of MVC - the data structure that the user interface is connected to
 Model-based design – (end of lecture 8) high-level specification from which the 

user interface is automatically generated
 Human Performance Model and Fitt’s Law Model – mathematical 

representations from which predictions of human performance can be calculated
 Language models - representations of how words are used in a natural language

(lecture 23)
 3D models - computer representations of three-dimensional objects (lecture 25)
 AI/ML models – the code that implements the pattern matching (or all of the AI)
 Fashion models - people who show off clothing
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Transition Diagrams
 Also called: state diagrams, finite-state machines (FSM), 

finite automata
 Is also a kind of “model”

 Set of states and set of arcs
 States: mode that the system can be in
 Transition: how system can change states
 Can be abstracted away from UI or code
 Wikipedia example:
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https://en.wikipedia.org/wiki/Finite-state_machine


Transition Diagrams

 Probably the earliest tool to help build UIs: 
 William Newman's "Reaction Handler" in 1968 

http://doi.acm.org/10.1145/1468075.1468083
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Transition Diagrams, cont.
 Simplest form, arcs are user input events. 
 arcs can be extended by listing feedback (output) and semantic 

actions on the arcs 
 actions usually written in a conventional language (e.g., C) 
 picture, Olsen, p. 37 (Fig 3:1) 
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Transition Diagrams, cont.

 Often, represented textually: 
 picture, Olsen p. 38 

© 2022 - Brad Myers 24



Transition Diagrams, cont.
 "Pervasive states" to handle help, abort, undo, etc. 
 "Escape" transitions to abort (permanently leave) a dialog 
 picture, Olsen p. 53 (Fig 3:11) 

 "Re-enter" sub-dialogs for temporary excursions that return to same 
place. E.g., help, use calculator, etc. 
 picture, Olsen p. 55 (Fig 3:12) 

 Transitions are taken if no specific arcs from node 
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Transition Diagrams, cont.
 "Augmented transition networks" 
 local variables 
 function on arcs can determine transitions 
 "guards" determine whether transition is legal 
 "conditional transitions" calculate where to go 
 picture, Olsen p. 57 (Fig 3:14) 

 upgrades the power to context-free-grammar
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Transition Diagrams, cont.

 Transition Networks, in general, used in various tools: 
 Research: Newman's "reaction handler", Jacob's RTN, Olsen's 

"Interactive Pushdown Automata", Stephen Oney’s Euclase, etc. 
 Commercial: IDE's RAPID/USE,

Virtual Prototypes's VAPS 
 VAPS used spreadsheet interface to the ATN
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VAPS pictures

 Pictures
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http://www.cs.cmu.edu/%7Ebam/uicourse/830spring09/lecture%2011%20-%20VAPS%20figs.pdf


Transition Diagrams for Widget Behavior

 Used internally for Garnet / Amulet “Interactors” 
(lecture 5)
 Note: no “hover” state
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Another example, with hover
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Start hover selected
Mouse over

Mouse away

Mouse button
pressed

Mouse button
released

Pressed but
outside

Mouse
away

Mouse
over

Do action

Mouse button
released



StateCharts
 Invented by David Harel

David Harel, “Statecharts: a visual formalism for complex systems”, Science of 
Computer Programming, Volume 8, Issue 3, (Elsevier) June 1987, Pages 231-
274, online

 Generalization of state diagrams
 Reduce state explosion and other problems

 Cluster (nested) states for abstractions and identical 
behaviors

 “AND” states – system is in both A and D
 E.g., watch light is always on or off, may be

independent of other modes
 Concurrent charts – can operate

independently
 Many other features
 Used by Stephen Oney’s InterState
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http://www.sciencedirect.com/science/article/pii/0167642387900359


Transition Diagrams, evaluation

 Good
 Make explicit the interpretation of all events in each state 
 Emphasize the temporal sequence of user and system actions
 Natural and easily understood if small 
 easy to teach, learn, and read 

 Appropriate for some parts of GUIs: widget behaviors, dialog box 
transitions, etc. 

 May be appropriate to model transitions around web sites
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Transition Diagrams, evaluation
 Bad
 Does not scale:

150 commands with 3 or 4 states each 
 explosion of lines and states for normal

interfaces: "maze of wires" 
 unordered inputs 
 picture, Olsen p. 91 (Fig 6:1) 

 Textual form is like GOTO-based assembly language 
 Communication through global variables 
 Doesn't handle GUI mode-free style well 
 What to do with un-specified input? crash, ignore input 
 Doesn't address output
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Let’s Design one for HW2,
mouse behavior
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Idle

Mousedown
on div Click -

select that div

moving
Mouse move
Move div

Mouse move
Move div

Mouse Up
Stop moving

Esc
Return to original position & stop moving

Move lock state

double click
Mouse move
Move div Mouse Up

Stop moving

Esc
Return to original position & stop moving

Esc
Return to original position & stop moving

Done in class – see next slide



Let’s Design one for HW2

Idle

Mouse-
down

Mousedown
on div Click -

select that div

moving

Move event
Move div

First move event
Div moves

Mouse up anywhere
Move finished

Dbl
moving

ESC key
Aborting – restore to original place

Dblclick on div
click
on workarea
deselect

Move event
Move div

ESC key
Aborting – restore to original place

Click anywhere
Move finished

Prepared in advance
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