
Lecture 9:
UI Software Patterns:
State Diagrams, MVC,
Lexical-Syntax-Semantics

05-431/631 Software Structures for User Interfaces (SSUI)
Fall, 2022

© 2022 - Brad Myers 1

Logistics

 Homework 1 grading done – released
 Homework 2 due today
 Start on Homework 3
 Instructions now available from the website

© 2022 - Brad Myers 2

What are Design Patterns?
 Wikipedia: A design pattern is the re-usable form

of a solution to a design problem. The idea was
introduced by the architect Christopher
Alexander[1] and has been adapted for various
other disciplines, notably software engineering.[2]

 Design Patterns book (1994)
 By “Gang of 4”: Erich Gamma, Richard

Helm, Ralph Johnson, and John Vlissides
 Patterns for object-oriented systems (originally, Java)

 Now, there are LOTS more

© 2022 - Brad Myers 3

https://en.wikipedia.org/wiki/Design_pattern
https://en.wikipedia.org/wiki/Christopher_Alexander
https://en.wikipedia.org/wiki/Design_pattern#cite_note-Alexander,_A_Pattern_Language-1
https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Design_pattern#cite_note-Gang_of_Four-2

Design Patterns
 Generally, a way to organize code to achieve certain outcomes
 Small pieces of the overall design
 Both “functional” = what it does
 And “non-functional” = how it does it, e.g., efficiency, reusability
 Language independent

 We have been using the “Listener Pattern” all along!
 Also called the “Observer Pattern”
 Attach an observer (call-back function) to events or other data changing

 We will use the “Command” pattern for undo in Homework 5
 Sometimes called “Models” but that has too many meanings!
 Software Architectures – whole system design; pattern is just

one piece

© 2022 - Brad Myers 4

“Factory” Pattern
 Instead of “normal” creation: Widget w = new Widget();
 Objects must be created by another class:

AbstractFactory f = AbstractFactory.getDefault();
Widget w = f.createWidget();

 Used frequently in Java (>61) and .Net (>13) and SAP
 Advantages?
 Don’t need to allocate any memory (new not called)
 Can return a different subtype from what user is aware of

 Our research showed that the “factory pattern” made
APIs harder to learn and use (lower “API Usability”):
 When asked to design on “blank paper”, no one designed a

factory
 Time to develop using factories took 2.1 to 5.3 times longer

compared to regular constructors (20:05 v 9:31, 7:10 v 1:20)
 All subjects had difficulties getting using factories in APIs

© 2022 - Brad Myers 5

Design Patterns for UI Design

 E.g.,:
van Duyne, D.K., James A. Landay, and Jason I. Hong, The
Design of Sites: Patterns, Principles, and Processes for
Crafting a Customer-Centered Web Experience. Reading,
MA: Addison-Wesley, 2002.

 Mainly for UI design patterns,
for UI designers, not for UI
software

© 2022 - Brad Myers 6

Conceptual-Semantic-Syntactic-Lexical-
Pragmatic

 Another way to look at the design of software
 Derived from compiler theory and language work.
 Mostly relevant to older, non-interactive interfaces
 Pragmatic
 How the physical input devices work
 required "gestures" to make the input.
 Ergonomics
 skilled performance: "muscle memory"
 press down and hold, vs. click-click

© 2022 - Brad Myers 7

Conceptual-Semantic-Syntactic-Lexical-
Pragmatic, cont.

 Lexical
 spelling and composition of tokens
 “add” vs. “append” vs. “^a” vs.

 Where items are placed on the display
 “Key-stroke” level analysis
 For input, is the design of the interaction techniques:
 how mouse and keyboard combined into menu, button, string, pick, etc.

© 2022 - Brad Myers 8

Conceptual-Semantic-Syntactic-Lexical-
Pragmatic, cont.

 Syntactic
 sequence of inputs and outputs.
 For input, the sequence may be represented as a grammar:
 rules for combining tokens into a legal sentence

 For output, includes spatial and temporal factors
 Example: prefix vs. postfix
 Postfix:

 Prefix:

 Infix:

© 2022 - Brad Myers 9

<select obj> delete

del *
<select rectangle tool> <select where new rectangle goes>

drag-and-drop

Conceptual-Semantic-Syntactic-Lexical-
Pragmatic, cont.

 Semantic
 functionality of the system; what can be expressed
 What information is needed for each operation on object
 What errors can occur
 Semantic vs. UI is key issue in UI tools
 but "semantic" is different than meaning in compilers

 "Semantic Feedback“
 Depends on meaning of items
 Example: only appropriate places where item can be dropped highlight

during drag

© 2022 - Brad Myers 10

Conceptual-Semantic-Syntactic-Lexical-
Pragmatic, cont.

 Conceptual (definition from Foley & Van Dam text, 1st edition)
 Key application concepts that must be understood by user
 User model

 Objects and classes of objects
 Relationships among them
 Operations on them
 Example: text editor
 objects = characters, files, paragraphs
 relationships = files contain paragraphs contain chars
 operations = insert, delete, etc.

 Overall evaluation of CSSLP model:
 + “Separation of concerns” for input handling
 + Helps to think about syntax & lexical issues
 - Not useful for output

© 2022 - Brad Myers 11

Model-View-Controller

 Invented in Smalltalk, about 1980
 Idea: separate out presentation (View), user input

handling (Controller) and "semantics" (Model)
which does the work

 Fairly straightforward in principle, hard to carry through
 Never adequately explained (one article, hard to find)
 Goals
 Program a new model, and then re-use existing views and

controllers
 better modularization and separation of UI from application

 Multiple, different kinds of views on same model
 Lots of modern variants

© 2022 - Brad Myers 12

Classic MVC
reference

 Glenn E. Krasner and Stephen T. Pope. “A
Cookbook for Using the Model-View-Controller User
Interface Paradigm in Smalltalk-80,” Journal of
Object Oriented Programming. Aug, 1988. vol. 1,
no. 3. pp. 26-49.

 Hard to find original journal
 Luckily, lots of sources for

pdf:
 https://www.ics.uci.edu/~redmiles/ics227-

SQ04/papers/KrasnerPope88.pdf

 Wikipedia says invented in
1979

© 2022 - Brad Myers 13

https://www.ics.uci.edu/%7Eredmiles/ics227-SQ04/papers/KrasnerPope88.pdf
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

MVC

 Model
 “the parts that represent the model of the

underlying application domain”
 Simple as an integer for a counter; string for an

editor
 Complex as a molecular simulator

 View
 “the way the model is presented to the user”
 Everything graphical
 Layout, subviews, composites

 Controller
 “the way the user interacts with it”
 Schedule interactions with other VCs
 A menu is a controller

© 2022 - Brad Myers 14

15

MVC

© 2022 - Brad Myers

MVC

 Views closely associated with controllers.
 Each VC has one M; one M can have many VCs.
 VCs know about their model explicitly, but M doesn't know about

views
 Changes in models broadcast to all "dependents" of a model using a

standard protocol.
 “Observer” pattern again
 “register” the views with the model, so each is called when model changes
 Like the event handlers when mouse down

© 2022 - Brad Myers 16

MVC

 Standard interaction cycle:
 User operates input device, controller notifies model to change,

model broadcasts change notification to its dependent views, views
update the screen.

 Views can query the model
 Problems:
 Views and controllers tightly coupled
 What is in each part?
 Complexities with views with parts, controllers with sub-controllers,

models with sub-models...

© 2022 - Brad Myers 17

Model-View (variant of MVC)

 Since hard to separate view and controller
 Primary goal: support multiple views of same data.
 Simply switch views and see data differently

 Put into Model "part that needs to be saved to a file"
 but really need to save parts of the view

© 2022 - Brad Myers 18

MVC and React / Angular / Vue

 AngularJS from Google (~2009) relied on the MVC paradigm
 React from Facebook (~2011) explicitly rejected MVC due to

requirement of copying values around
 using constraints or the observer pattern
 React instead uses shared data, which it calls “states”

 New design of Angular (~2016) less use of MVC
 But Vue tool does use MVC

© 2022 - Brad Myers 19

Note about the word “Model”
 “Model” used in many ways in HCI!

 User model - the way a user thinks about a system - [Don Norman]
 Color model, undo model - the way that feature is presented to the user
 Software models - the way that a programmer should think about the

implementation
 Examples: imaging model, object model (class model or prototype-instance model),

retained object model, document model, interactors model, event model, and model-
view-controller (MVC) model (lectures 6 & 7)

 Model of MVC - the data structure that the user interface is connected to
 Model-based design – (end of lecture 8) high-level specification from which the

user interface is automatically generated
 Human Performance Model and Fitt’s Law Model – mathematical

representations from which predictions of human performance can be calculated
 Language models - representations of how words are used in a natural language

(lecture 23)
 3D models - computer representations of three-dimensional objects (lecture 25)
 AI/ML models – the code that implements the pattern matching (or all of the AI)
 Fashion models - people who show off clothing

© 2022 - Brad Myers 20

Transition Diagrams
 Also called: state diagrams, finite-state machines (FSM),

finite automata
 Is also a kind of “model”

 Set of states and set of arcs
 States: mode that the system can be in
 Transition: how system can change states
 Can be abstracted away from UI or code
 Wikipedia example:

© 2022 - Brad Myers 21

https://en.wikipedia.org/wiki/Finite-state_machine

Transition Diagrams

 Probably the earliest tool to help build UIs:
 William Newman's "Reaction Handler" in 1968

http://doi.acm.org/10.1145/1468075.1468083

© 2022 - Brad Myers 22

http://doi.acm.org/10.1145/1468075.1468083

Transition Diagrams, cont.
 Simplest form, arcs are user input events.
 arcs can be extended by listing feedback (output) and semantic

actions on the arcs
 actions usually written in a conventional language (e.g., C)
 picture, Olsen, p. 37 (Fig 3:1)

© 2022 - Brad Myers 23

Transition Diagrams, cont.

 Often, represented textually:
 picture, Olsen p. 38

© 2022 - Brad Myers 24

Transition Diagrams, cont.
 "Pervasive states" to handle help, abort, undo, etc.
 "Escape" transitions to abort (permanently leave) a dialog
 picture, Olsen p. 53 (Fig 3:11)

 "Re-enter" sub-dialogs for temporary excursions that return to same
place. E.g., help, use calculator, etc.
 picture, Olsen p. 55 (Fig 3:12)

 Transitions are taken if no specific arcs from node

© 2022 - Brad Myers 25

Transition Diagrams, cont.
 "Augmented transition networks"
 local variables
 function on arcs can determine transitions
 "guards" determine whether transition is legal
 "conditional transitions" calculate where to go
 picture, Olsen p. 57 (Fig 3:14)

 upgrades the power to context-free-grammar

© 2022 - Brad Myers 26

Transition Diagrams, cont.

 Transition Networks, in general, used in various tools:
 Research: Newman's "reaction handler", Jacob's RTN, Olsen's

"Interactive Pushdown Automata", Stephen Oney’s Euclase, etc.
 Commercial: IDE's RAPID/USE,

Virtual Prototypes's VAPS
 VAPS used spreadsheet interface to the ATN

© 2022 - Brad Myers 27

VAPS pictures

 Pictures

© 2022 - Brad Myers 28

http://www.cs.cmu.edu/%7Ebam/uicourse/830spring09/lecture%2011%20-%20VAPS%20figs.pdf

Transition Diagrams for Widget Behavior

 Used internally for Garnet / Amulet “Interactors”
(lecture 5)
 Note: no “hover” state

© 2022 - Brad Myers 29

Another example, with hover

© 2022 - Brad Myers 30

Start hover selected
Mouse over

Mouse away

Mouse button
pressed

Mouse button
released

Pressed but
outside

Mouse
away

Mouse
over

Do action

Mouse button
released

StateCharts
 Invented by David Harel

David Harel, “Statecharts: a visual formalism for complex systems”, Science of
Computer Programming, Volume 8, Issue 3, (Elsevier) June 1987, Pages 231-
274, online

 Generalization of state diagrams
 Reduce state explosion and other problems

 Cluster (nested) states for abstractions and identical
behaviors

 “AND” states – system is in both A and D
 E.g., watch light is always on or off, may be

independent of other modes
 Concurrent charts – can operate

independently
 Many other features
 Used by Stephen Oney’s InterState

© 2022 - Brad Myers 31

http://www.sciencedirect.com/science/article/pii/0167642387900359

Transition Diagrams, evaluation

 Good
 Make explicit the interpretation of all events in each state
 Emphasize the temporal sequence of user and system actions
 Natural and easily understood if small
 easy to teach, learn, and read

 Appropriate for some parts of GUIs: widget behaviors, dialog box
transitions, etc.

 May be appropriate to model transitions around web sites

© 2022 - Brad Myers 32

Transition Diagrams, evaluation
 Bad
 Does not scale:

150 commands with 3 or 4 states each
 explosion of lines and states for normal

interfaces: "maze of wires"
 unordered inputs
 picture, Olsen p. 91 (Fig 6:1)

 Textual form is like GOTO-based assembly language
 Communication through global variables
 Doesn't handle GUI mode-free style well
 What to do with un-specified input? crash, ignore input
 Doesn't address output

© 2022 - Brad Myers 33

Let’s Design one for HW2,
mouse behavior

© 2022 - Brad Myers 34

Idle

Mousedown
on div Click -

select that div

moving
Mouse move
Move div

Mouse move
Move div

Mouse Up
Stop moving

Esc
Return to original position & stop moving

Move lock state

double click
Mouse move
Move div Mouse Up

Stop moving

Esc
Return to original position & stop moving

Esc
Return to original position & stop moving

Done in class – see next slide

Let’s Design one for HW2

Idle

Mouse-
down

Mousedown
on div Click -

select that div

moving

Move event
Move div

First move event
Div moves

Mouse up anywhere
Move finished

Dbl
moving

ESC key
Aborting – restore to original place

Dblclick on div
click
on workarea
deselect

Move event
Move div

ESC key
Aborting – restore to original place

Click anywhere
Move finished

Prepared in advance

	Lecture 9:�UI Software Patterns:�State Diagrams, MVC,�Lexical-Syntax-Semantics
	Logistics
	What are Design Patterns?
	Design Patterns
	“Factory” Pattern
	Design Patterns for UI Design
	Conceptual-Semantic-Syntactic-Lexical-Pragmatic
	Conceptual-Semantic-Syntactic-Lexical-Pragmatic, cont.
	Conceptual-Semantic-Syntactic-Lexical-Pragmatic, cont.
	Conceptual-Semantic-Syntactic-Lexical-Pragmatic, cont.
	Conceptual-Semantic-Syntactic-Lexical-Pragmatic, cont.
	Model-View-Controller
	Classic MVC�reference
	MVC
	MVC
	MVC
	MVC
	Model-View (variant of MVC)
	MVC and React / Angular / Vue
	Note about the word “Model”
	Transition Diagrams
	Transition Diagrams
	Transition Diagrams, cont.
	Transition Diagrams, cont.
	Transition Diagrams, cont.
	Transition Diagrams, cont.
	Transition Diagrams, cont.
	VAPS pictures
	Transition Diagrams for Widget Behavior
	Another example, with hover
	StateCharts
	Transition Diagrams, evaluation
	Transition Diagrams, evaluation
	Let’s Design one for HW2,�mouse behavior
	Let’s Design one for HW2

