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Input 2: Declarative input models; “Interactor” 
(Behavior) Objects in Garnet and Amulet
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Overview of the “Interactor” Input Model
 Try to provide more support so input handling isn't so difficult 
 Make easy things simple and complex things possible 
 Based on the "Model-View-Controller" architecture from Smalltalk

 (Lecture 9) 
 True separation of graphics (view) and input handling (controller) 
 Also uses idea from [Foley&Wallace 1974] of identifying types of 

input handlers: 
 move 
 grow 
 rotate 
 text edit 
 gesture 
 select (pick)

[James D. Foley and Victor L. Wallace. “The Art of Natural Graphic Man-
Machine Conversation,” Proceedings of the IEEE. Apr, 1974. vol. 62, no. 4. 
pp. 462-471.]
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Innovations

 Identifying primitive "Interactor" objects and correct 
parameterizations so most direct manipulation UIs can be 
constructed by re-using built-in objects. 
 Better name might be “Behavior” objects

 Only a few kinds of behaviors, and standard parameters 
 Real separation between input and output handling 
 Handles all input 
 insides of widgets 
 and for application programs 

 + First successful separation of View from Controller in Smalltalk 
MVC 

 + Integration of gestures with conventional interaction. 
 + Easier to code because substantial re-use 
 + Built-in support for multi-window dragging
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General idea
 Attach Interactor objects to a set of graphical objects to handle their 

input. 
 Graphical objects don't handle input 
 No "event methods" in objects 

 Instead, define invisible "Interactor" objects and attach them to graphics 
 Interactors can operate on multiple objects 
 Strategy: pick the right type of Interactor, attach to the objects to be 

affected, fill in necessary slots of interactor 
 Widgets use interactors internally 
 Can have multiple interactors on an object (e.g., different mouse 

buttons) 
 Interactors directly set slots of objects using a standard protocol 
 constraints can be used to map those slots into behaviors: 

 Details of input events and event processing is hidden 
 Used first in Garnet, refined in Amulet.
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Flash Catalyst

 Previous product from Adobe
 Only in CS 5.5

 Also had behaviors
that can be attached
to graphics and
parameterized
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Aside: Garnet and Amulet
 Garnet: (link)
 1987 to 1994
 Common Lisp and X11 or Macintosh
 Generating an Amalgam of Real-time, Novel Editors and Toolkits

 Amulet:
 1994 to 1997
 C++ and X11, Windows or Macintosh
 Automatic Manufacture of Usable and Learnable Editors and 

Toolkits
 Full Amulet Manual:

 http://www.cs.cmu.edu/afs/cs/project/amulet/amulet3/manual/Amulet_ManualTOC.doc.html
 Tutorial
 Interactors and Command Objects

 Novel object, graphics, constraint, input, output, undo, 
command, and animation models

 Were widely used for a while
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http://www.cs.cmu.edu/afs/cs.cmu.edu/project/garnet/www/garnet-home.html
http://www.cs.cmu.edu/afs/cs/project/amulet/amulet3/manual/Amulet_ManualTOC.doc.html
http://www-2.cs.cmu.edu/afs/cs/project/amulet/amulet3/manual/tutorial_chapter.html
http://www-2.cs.cmu.edu/afs/cs/project/amulet/amulet3/manual/interactors.html


Garnet, Amulet Design Overview

 Invented our own object system
 Prototype-instance instead of class-instance
 Syntax: prototype.Create(“name”) 

 Uses obj.set ( instance-variable, value )

 Uses what is now called method cascading or fluent interface
 .set and other methods return the original object, so can be 

chained together
 Obj.set(Am_X, 4).set(Am_Y, 6).add_part…

 C++ didn’t have name spaces, so started all Amulet words 
with Am_ …
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Types of Interactors 

 Am_Choice_Interactor : select one or more of a set of objects 
 Am_Move_Grow_Interactor : move or grow objects with the 

mouse 
 Am_New_Points_Interactor: to create new objects by 

entering points while getting feedback "rubber band" objects 
 Am_Text_Edit_Interactor : mouse and keyboard edit of text 
 Am_Gesture_Interactor: interpret freehand gestures
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Affected Graphical Objects

 Set of objects to operate on: 
 To be active, Interactor must be attached to an object which is 

(recursively) attached to the screen 
 Equivalent to visibility of graphical objects 
 Unlike graphical objects which can only be added as parts of 

windows or groups, interactors can be added as parts of any object:
rect.Add_Part(my_inter); 

 Default: operates on the object attached to 
 But also common to operate on any member of a group. 
 Controlled by the Am_Start_Where_Test slot, which should 

contain a method
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Standard Behavior
 (“state diagrams” covered in lecture 9)
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Other standard parameters

 Multiple groups 
 interactor can span multiple windows 

 start, stop and abort events 
 single key, mousebutton, "any" mousebutton, modifiers, (shift, 

meta...), double click, click vs. drag, etc. 
 active? 
 priority levels 
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Parameters for specific types of 
Interactors

 For buttons (Choice Interactors) 
 how many objects to select: set, toggle, list-toggle 

 For move-grow: 
 interim feedback object (while the mouse moves) 
 if missing then object itself is modified

 gridding 
 move or grow 

 flip if change sides 
 minimum size
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Gridding

 Surprisingly complicated
 E.g., grid of 4 – where is first point?
 (X+2 mod 4)*4 = 4

 Should width be a multiple of 4 or right side?
 Width = right side at 7
 Right side = 8

 Origin of grid – with window or container?
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Flip if change sides

 What happens when move towards upper left?
 Pegs at minimum size?
 Most window managers do this
 Might be zero – shape disappears?

 Object flips over?
 PowerPoint does this
 Text becomes upside down and/or backwards
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Parameters for New_Point

 interim feedback object (while the mouse moves) 
 gridding 
 minimum size 
 abort if too small
 Avoid creating tiny or invisible objects
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Simple Example

 To make an object movable with the mouse: 
Am_Object rect = Am_Rectangle.Create() .Set(Am_LEFT, 40) 
.Set(Am_TOP, 50) .Set(Am_FILL_STYLE, Am_Red) 
.Add_Part(Am_Move_Grow_Interactor.Create());
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Advanced Feature: Priorities

 If two interactors want to run, priorities used to determine 
which 

 Am_PRIORITY slot contains a number. Default = 1 
 When running, 100 added to it 
 Inspector interactors use 300.0 
 If multiple with same priority, runs the one attached closer to 

the leaf

© 2022 - Brad Myers



Lecture 8b:
Output 2:
Basic 2D Computer Graphics

05-431/631 Software Structures for User Interfaces (SSUI)
Fall, 2022
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DOM is an Example of: Structured 
Graphics
 Saves a list of all the graphical objects 
 Edit the screen by editing the saved list 

 Also called "display list" or "retained object model" 
 Provided by many toolkits and graphics packages early 

vector displays 
 CORE (~1977), GKS (1985), PHIGS (1988) 
 Optional in InterViews, CLIM, etc. 
 Required in Amulet, Garnet, Rendezvous, etc.

 Also SVG that is part of DOM
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Structured Graphics, cont.
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 Advantages: 
 Simpler to program with: don't call "draw" and "erase" 
 Just add and remove objects

 Automatic refresh of windows when uncovered, etc. 
 Automatic redisplay of objects when change and also of 

other overlapping objects

Before After



Structured Graphics Can Support

 Ability to support: 
 high-level behaviors like move, grow, cut/copy/paste, etc. 
 high-level widgets like selection handles 
 constraints among objects 
 automatic layout 
 grouping: "Groups" in Garnet 
 automatic printing 
 external scripting, ... 
 accessibility
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Structured Graphics Disadvantages

 Disadvantages: 
 Significant space penalties 
 objects take up to 1000 bytes each 
 imagine a scene with 40,000 dots (200x200 fat bits) 

 Time penalties 
 Redisplay doesn't take advantage of special properties of data: 
 regularity 
 non-overlapping

 Reason for special parameters in lists in React (see future lecture!)
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Basic Idea: Graphical objects retained in 
a hierarchy

 Primitives: text, rectangles, circles, …
 Groups
 Also called “aggregates”, “collections”, …
 In HTML: <div>, <ux>, …
 SVG: “Group”
 The size of a group includes all of its “children” objects.
 Also called “components”
 Bounding box of group

 Group is “parent”, elements are “children”
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Design Issues: Hierarchies & Inheritance

 How many hierarchies for OO graphics systems?
 Inheritance (class-instance or prototype-instance)
 Components / Groups
 Style hierarchies, like from CSS classes or Windows themes

 Where do properties come from?
 Color, size, shape
 From aggregate or inheritance hierarchy?

 Issue: changing type of object – rectangle  polygon
 Windows widget

properties
 Size, color scheme, 

transparency, …
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Redisplay Algorithms

 Redisplay everything each time 
 Most appropriate for small numbers of objects, and if drawing is 

really quick compared to computation 
 Used on the Macintosh and many others 
 Used by Amulet
 I don’t know what browsers do
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Redisplay only the affected areas of the 
screen

 Requires computing what areas are affected 
 Garnet: 
 keep track of objects that change any "interesting" slot 
 compute the bounding box of all these changed objects in their old 

and new locations 
 assert this as the clipping region (must not self-intersect; Garnet 

uses 2 regions) 
 erase the area 
 go through objects from top-to-bottom, back to front draw those 

which overlap the bounding box 
 goes through all top level aggregates, and any children of the 

aggregates that intersect (recursively) 
 Other techniques: quad trees
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Overview of Redisplay Algorithm

 Simplest algorithm: draw all objects from back to front
 More sophisticated: Can clip to boundary of changed objects
 1st pass – collect all the objects which have changed
 Combine into one or more clipping rectangles

 2nd pass – go through all objects from back to
front and redraw them
 Will be clipped to affected regions
 Optimization – only do components if group intersects changed area

 Issue: complexities determining bounding boxes due to anti-aliasing, 
miter for polygons, etc.
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Object-Oriented Techniques

 Motivation
 Became popular along with GUIs, Direct Manipulation 
 Icons, graphics seem like objects: 
 have internal state, persistance

 OO was originally developed (SmallTalk) and became popular (C++) 
mostly due to GUIs. 

 C++ became popular with Windows programming
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Object Oriented 

 As a UI technique: 
 Same as GUI, Direct Manipulation = icons, graphical objects, 

widgets 
 Here, as a programming paradigm (often in a language) 
 A form of "data abstraction" 
 "Classes" describe the basic structure of the data 
 Also, the methods that can be called 
 Usually no direct access to the data, only the methods
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OO

 Create "instances" of the classes 
 local copy of data 
 may also be class data  -- all instances share the same value
 shares all methods 

 "Inheritance": create a new class "like" the superclass
 by default has all the same methods and data 
 can add new data and methods and re-program inherited methods 

 Example: graphical_object.draw ... circle.draw
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OO

 New style of programming; thinking about the problem 
 Many books about how to do it right. 
 OO design; getting the classes and protocols right 
 So subclasses don't have extra, wasted data space 
 Methods make sense to all sub-classes 
 So external classes don't need to know inside description. 

 Also OO databases, etc. 
 Implementation: 
 object in memory, starts with pointer to table of methods, etc. 
 lots of tricks and extra declarations in C++, Java etc. to avoid 

overhead of lookups at run-time ("virtual", "pure virtual")
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Multiple inheritance

 Class has multiple parent classes 
 Combine all the methods and data of all 
 Special rules for when conflict (same method, same name of data 

with different types, etc.) 
 Example: circle inherits from graphical-object and moveable-

object 
 Complex so often not used even when available 
 “Diamond problem”

 Amulet uses constraints to provide flexible copying of
values instead

 Java, etc. use “interfaces”
 No inheritance of implementations, but ability to have arbitrary “mix-ins”
 No confusion about which superclass to inherit from
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Prototype-Instance model

 Instead of the class-instance model 
 All objects are instances 
 Can use any object as a prototype for other objects 
 Inherits all slots it doesn't override (= instance variables, member 

variables, fields, attributes). 
 Methods are just a value in a slot 
 Dynamic changing of methods 

 Easy to implement using structures. 
 Usually, changing prototype data also changes all instances 

that do not override it. 
 Now used by JavaScript
 Older uses: ActionScript (Flash), SELF, NewtonScript, 
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Prototype-Instance model

 Adding and removing of slots dynamically to any instance 
 Simpler model, easy to implement
 More dynamic 
 But much less efficient 
 Can't usually compile slot accesses into structure access; may need 

a search 
 No type checking on slots 
 Methods looked up at run-time 
 Space for names of slots, extra pointers, etc.

© 2022 - Brad Myers 34



Prototype-Instance model

 Available, but not frequently used in
JavaScript
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JavaScript class and superclass, and 
dynamic setting

 class x extends y {
constructor (a,b) { //class constructor
super(a); // call constructor of y (required)
this.b = b;
//other set up stuff

}
doSomething(a) { //overrides this method

super(a); // call y’s version of doSomething
// local stuff

}
 Dynamic creating of new field:
let myx = new x(4, 5);
myx.newthing = 6; //creates and sets a new field in myx
…
let p = myx.newthing + 12; //somewhere else can use it
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