
Lecture 8a:
Input 2: Declarative input models; “Interactor”
(Behavior) Objects in Garnet and Amulet

05-431/631 Software Structures for User Interfaces (SSUI)
Fall, 2022

© 2022 - Brad Myers 1

Overview of the “Interactor” Input Model
 Try to provide more support so input handling isn't so difficult
 Make easy things simple and complex things possible
 Based on the "Model-View-Controller" architecture from Smalltalk

 (Lecture 9)
 True separation of graphics (view) and input handling (controller)
 Also uses idea from [Foley&Wallace 1974] of identifying types of

input handlers:
 move
 grow
 rotate
 text edit
 gesture
 select (pick)

[James D. Foley and Victor L. Wallace. “The Art of Natural Graphic Man-
Machine Conversation,” Proceedings of the IEEE. Apr, 1974. vol. 62, no. 4.
pp. 462-471.]

© 2022 - Brad Myers 2

Innovations

 Identifying primitive "Interactor" objects and correct
parameterizations so most direct manipulation UIs can be
constructed by re-using built-in objects.
 Better name might be “Behavior” objects

 Only a few kinds of behaviors, and standard parameters
 Real separation between input and output handling
 Handles all input
 insides of widgets
 and for application programs

 + First successful separation of View from Controller in Smalltalk
MVC

 + Integration of gestures with conventional interaction.
 + Easier to code because substantial re-use
 + Built-in support for multi-window dragging

© 2022 - Brad Myers 3

General idea
 Attach Interactor objects to a set of graphical objects to handle their

input.
 Graphical objects don't handle input
 No "event methods" in objects

 Instead, define invisible "Interactor" objects and attach them to graphics
 Interactors can operate on multiple objects
 Strategy: pick the right type of Interactor, attach to the objects to be

affected, fill in necessary slots of interactor
 Widgets use interactors internally
 Can have multiple interactors on an object (e.g., different mouse

buttons)
 Interactors directly set slots of objects using a standard protocol
 constraints can be used to map those slots into behaviors:

 Details of input events and event processing is hidden
 Used first in Garnet, refined in Amulet.

© 2022 - Brad Myers 4

5

Flash Catalyst

 Previous product from Adobe
 Only in CS 5.5

 Also had behaviors
that can be attached
to graphics and
parameterized

© 2022 - Brad Myers

Aside: Garnet and Amulet
 Garnet: (link)
 1987 to 1994
 Common Lisp and X11 or Macintosh
 Generating an Amalgam of Real-time, Novel Editors and Toolkits

 Amulet:
 1994 to 1997
 C++ and X11, Windows or Macintosh
 Automatic Manufacture of Usable and Learnable Editors and

Toolkits
 Full Amulet Manual:

 http://www.cs.cmu.edu/afs/cs/project/amulet/amulet3/manual/Amulet_ManualTOC.doc.html
 Tutorial
 Interactors and Command Objects

 Novel object, graphics, constraint, input, output, undo,
command, and animation models

 Were widely used for a while

© 2022 - Brad Myers 6

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/garnet/www/garnet-home.html
http://www.cs.cmu.edu/afs/cs/project/amulet/amulet3/manual/Amulet_ManualTOC.doc.html
http://www-2.cs.cmu.edu/afs/cs/project/amulet/amulet3/manual/tutorial_chapter.html
http://www-2.cs.cmu.edu/afs/cs/project/amulet/amulet3/manual/interactors.html

Garnet, Amulet Design Overview

 Invented our own object system
 Prototype-instance instead of class-instance
 Syntax: prototype.Create(“name”)

 Uses obj.set (instance-variable, value)

 Uses what is now called method cascading or fluent interface
 .set and other methods return the original object, so can be

chained together
 Obj.set(Am_X, 4).set(Am_Y, 6).add_part…

 C++ didn’t have name spaces, so started all Amulet words
with Am_ …

© 2022 - Brad Myers 7

Types of Interactors

 Am_Choice_Interactor : select one or more of a set of objects
 Am_Move_Grow_Interactor : move or grow objects with the

mouse
 Am_New_Points_Interactor: to create new objects by

entering points while getting feedback "rubber band" objects
 Am_Text_Edit_Interactor : mouse and keyboard edit of text
 Am_Gesture_Interactor: interpret freehand gestures

© 2022 - Brad Myers 8

Affected Graphical Objects

 Set of objects to operate on:
 To be active, Interactor must be attached to an object which is

(recursively) attached to the screen
 Equivalent to visibility of graphical objects
 Unlike graphical objects which can only be added as parts of

windows or groups, interactors can be added as parts of any object:
rect.Add_Part(my_inter);

 Default: operates on the object attached to
 But also common to operate on any member of a group.
 Controlled by the Am_Start_Where_Test slot, which should

contain a method

© 2022 - Brad Myers 9

Standard Behavior
 (“state diagrams” covered in lecture 9)

© 2022 - Brad Myers 10

Other standard parameters

 Multiple groups
 interactor can span multiple windows

 start, stop and abort events
 single key, mousebutton, "any" mousebutton, modifiers, (shift,

meta...), double click, click vs. drag, etc.
 active?
 priority levels

© 2022 - Brad Myers 11

Parameters for specific types of
Interactors

 For buttons (Choice Interactors)
 how many objects to select: set, toggle, list-toggle

 For move-grow:
 interim feedback object (while the mouse moves)
 if missing then object itself is modified

 gridding
 move or grow

 flip if change sides
 minimum size

© 2022 - Brad Myers 12

Gridding

 Surprisingly complicated
 E.g., grid of 4 – where is first point?
 (X+2 mod 4)*4 = 4

 Should width be a multiple of 4 or right side?
 Width = right side at 7
 Right side = 8

 Origin of grid – with window or container?

© 2022 - Brad Myers 13

TE
XT
BO
X
IN
PP
T

Flip if change sides

 What happens when move towards upper left?
 Pegs at minimum size?
 Most window managers do this
 Might be zero – shape disappears?

 Object flips over?
 PowerPoint does this
 Text becomes upside down and/or backwards

© 2022 - Brad Myers 14

TEXT
BOX
IN
PPT

Test
Me

Parameters for New_Point

 interim feedback object (while the mouse moves)
 gridding
 minimum size
 abort if too small
 Avoid creating tiny or invisible objects

© 2022 - Brad Myers 15

16

Simple Example

 To make an object movable with the mouse:
Am_Object rect = Am_Rectangle.Create() .Set(Am_LEFT, 40)
.Set(Am_TOP, 50) .Set(Am_FILL_STYLE, Am_Red)
.Add_Part(Am_Move_Grow_Interactor.Create());

© 2022 - Brad Myers

17

Advanced Feature: Priorities

 If two interactors want to run, priorities used to determine
which

 Am_PRIORITY slot contains a number. Default = 1
 When running, 100 added to it
 Inspector interactors use 300.0
 If multiple with same priority, runs the one attached closer to

the leaf

© 2022 - Brad Myers

Lecture 8b:
Output 2:
Basic 2D Computer Graphics

05-431/631 Software Structures for User Interfaces (SSUI)
Fall, 2022

© 2022 - Brad Myers 18

DOM is an Example of: Structured
Graphics
 Saves a list of all the graphical objects
 Edit the screen by editing the saved list

 Also called "display list" or "retained object model"
 Provided by many toolkits and graphics packages early

vector displays
 CORE (~1977), GKS (1985), PHIGS (1988)
 Optional in InterViews, CLIM, etc.
 Required in Amulet, Garnet, Rendezvous, etc.

 Also SVG that is part of DOM

© 2022 - Brad Myers 19

20

Structured Graphics, cont.

© 2022 - Brad Myers

 Advantages:
 Simpler to program with: don't call "draw" and "erase"
 Just add and remove objects

 Automatic refresh of windows when uncovered, etc.
 Automatic redisplay of objects when change and also of

other overlapping objects

Before After

Structured Graphics Can Support

 Ability to support:
 high-level behaviors like move, grow, cut/copy/paste, etc.
 high-level widgets like selection handles
 constraints among objects
 automatic layout
 grouping: "Groups" in Garnet
 automatic printing
 external scripting, ...
 accessibility

© 2022 - Brad Myers 21

Structured Graphics Disadvantages

 Disadvantages:
 Significant space penalties
 objects take up to 1000 bytes each
 imagine a scene with 40,000 dots (200x200 fat bits)

 Time penalties
 Redisplay doesn't take advantage of special properties of data:
 regularity
 non-overlapping

 Reason for special parameters in lists in React (see future lecture!)

© 2022 - Brad Myers 22

Basic Idea: Graphical objects retained in
a hierarchy

 Primitives: text, rectangles, circles, …
 Groups
 Also called “aggregates”, “collections”, …
 In HTML: <div>, <ux>, …
 SVG: “Group”
 The size of a group includes all of its “children” objects.
 Also called “components”
 Bounding box of group

 Group is “parent”, elements are “children”

© 2022 - Brad Myers 23

Foo

Design Issues: Hierarchies & Inheritance

 How many hierarchies for OO graphics systems?
 Inheritance (class-instance or prototype-instance)
 Components / Groups
 Style hierarchies, like from CSS classes or Windows themes

 Where do properties come from?
 Color, size, shape
 From aggregate or inheritance hierarchy?

 Issue: changing type of object – rectangle  polygon
 Windows widget

properties
 Size, color scheme,

transparency, …

© 2022 - Brad Myers 24

Redisplay Algorithms

 Redisplay everything each time
 Most appropriate for small numbers of objects, and if drawing is

really quick compared to computation
 Used on the Macintosh and many others
 Used by Amulet
 I don’t know what browsers do

© 2022 - Brad Myers 25

Redisplay only the affected areas of the
screen

 Requires computing what areas are affected
 Garnet:
 keep track of objects that change any "interesting" slot
 compute the bounding box of all these changed objects in their old

and new locations
 assert this as the clipping region (must not self-intersect; Garnet

uses 2 regions)
 erase the area
 go through objects from top-to-bottom, back to front draw those

which overlap the bounding box
 goes through all top level aggregates, and any children of the

aggregates that intersect (recursively)
 Other techniques: quad trees

© 2022 - Brad Myers 26

Overview of Redisplay Algorithm

 Simplest algorithm: draw all objects from back to front
 More sophisticated: Can clip to boundary of changed objects
 1st pass – collect all the objects which have changed
 Combine into one or more clipping rectangles

 2nd pass – go through all objects from back to
front and redraw them
 Will be clipped to affected regions
 Optimization – only do components if group intersects changed area

 Issue: complexities determining bounding boxes due to anti-aliasing,
miter for polygons, etc.

© 2022 - Brad Myers 27

Foo

Object-Oriented Techniques

 Motivation
 Became popular along with GUIs, Direct Manipulation
 Icons, graphics seem like objects:
 have internal state, persistance

 OO was originally developed (SmallTalk) and became popular (C++)
mostly due to GUIs.

 C++ became popular with Windows programming

© 2022 - Brad Myers 28

Object Oriented

 As a UI technique:
 Same as GUI, Direct Manipulation = icons, graphical objects,

widgets
 Here, as a programming paradigm (often in a language)
 A form of "data abstraction"
 "Classes" describe the basic structure of the data
 Also, the methods that can be called
 Usually no direct access to the data, only the methods

© 2022 - Brad Myers 29

OO

 Create "instances" of the classes
 local copy of data
 may also be class data -- all instances share the same value
 shares all methods

 "Inheritance": create a new class "like" the superclass
 by default has all the same methods and data
 can add new data and methods and re-program inherited methods

 Example: graphical_object.draw ... circle.draw

© 2022 - Brad Myers 30

OO

 New style of programming; thinking about the problem
 Many books about how to do it right.
 OO design; getting the classes and protocols right
 So subclasses don't have extra, wasted data space
 Methods make sense to all sub-classes
 So external classes don't need to know inside description.

 Also OO databases, etc.
 Implementation:
 object in memory, starts with pointer to table of methods, etc.
 lots of tricks and extra declarations in C++, Java etc. to avoid

overhead of lookups at run-time ("virtual", "pure virtual")

© 2022 - Brad Myers 31

Multiple inheritance

 Class has multiple parent classes
 Combine all the methods and data of all
 Special rules for when conflict (same method, same name of data

with different types, etc.)
 Example: circle inherits from graphical-object and moveable-

object
 Complex so often not used even when available
 “Diamond problem”

 Amulet uses constraints to provide flexible copying of
values instead

 Java, etc. use “interfaces”
 No inheritance of implementations, but ability to have arbitrary “mix-ins”
 No confusion about which superclass to inherit from

© 2022 - Brad Myers 32

Prototype-Instance model

 Instead of the class-instance model
 All objects are instances
 Can use any object as a prototype for other objects
 Inherits all slots it doesn't override (= instance variables, member

variables, fields, attributes).
 Methods are just a value in a slot
 Dynamic changing of methods

 Easy to implement using structures.
 Usually, changing prototype data also changes all instances

that do not override it.
 Now used by JavaScript
 Older uses: ActionScript (Flash), SELF, NewtonScript,

© 2022 - Brad Myers 33

Prototype-Instance model

 Adding and removing of slots dynamically to any instance
 Simpler model, easy to implement
 More dynamic
 But much less efficient
 Can't usually compile slot accesses into structure access; may need

a search
 No type checking on slots
 Methods looked up at run-time
 Space for names of slots, extra pointers, etc.

© 2022 - Brad Myers 34

Prototype-Instance model

 Available, but not frequently used in
JavaScript

© 2022 - Brad Myers 35

JavaScript class and superclass, and
dynamic setting

 class x extends y {
constructor (a,b) { //class constructor
super(a); // call constructor of y (required)
this.b = b;
//other set up stuff

}
doSomething(a) { //overrides this method

super(a); // call y’s version of doSomething
// local stuff

}
 Dynamic creating of new field:
let myx = new x(4, 5);
myx.newthing = 6; //creates and sets a new field in myx
…
let p = myx.newthing + 12; //somewhere else can use it

© 2022 - Brad Myers 36

	Lecture 8a:�Input 2: Declarative input models; “Interactor” (Behavior) Objects in Garnet and Amulet
	Overview of the “Interactor” Input Model
	Innovations
	General idea
	Flash Catalyst
	Aside: Garnet and Amulet
	Garnet, Amulet Design Overview
	Types of Interactors
	Affected Graphical Objects
	Standard Behavior
	Other standard parameters
	Parameters for specific types of Interactors
	Gridding
	Flip if change sides
	Parameters for New_Point
	Simple Example
	Advanced Feature: Priorities
	Lecture 8b:�Output 2:�Basic 2D Computer Graphics
	DOM is an Example of: Structured Graphics
	Structured Graphics, cont.
	Structured Graphics Can Support
	Structured Graphics Disadvantages
	Basic Idea: Graphical objects retained in a hierarchy
	Design Issues: Hierarchies & Inheritance
	Redisplay Algorithms
	Redisplay only the affected areas of the screen
	Overview of Redisplay Algorithm
	Object-Oriented Techniques
	Object Oriented
	OO
	OO
	Multiple inheritance
	Prototype-Instance model
	Prototype-Instance model
	Prototype-Instance model
	JavaScript class and superclass, and dynamic setting

