
Lectures 6 and 7:
Output 1:
Basic 2D Computer Graphics

05-431/631 Software Structures for User Interfaces (SSUI)
Fall, 2022

© 2022 - Brad Myers 1

Logistics (9/15/2022)
 Readings for this lecture are on Canvas:

“Files / Special Course Readings” folder
 Foley-VanDam-graphics.pdf

© 2022 - Brad Myers 2

https://canvas.cmu.edu/courses/30751/files/folder/Special%20Course%20Readings
https://canvas.cmu.edu/courses/30751/files/folder/Special%20Course%20Readings?preview=8331393

Logistics (9/20/2022)
 Alex changed office hours – now Mondays 1-2pm virtually
 See Zoom section of Canvas for link

 Homework 2 due 1 week from today

© 2022 - Brad Myers 3

https://canvas.cmu.edu/courses/30751/external_tools/8366

What are “Graphics”

 All visual output shown to users
 Includes textual output
 Only 2D for now

 So far, mostly html or html generated from JS
 Mostly styled text and images
 Also, areas of colors – mostly rectangles or rounded

rectangles
 Borders on regions

 Now, adding in “real” graphical objects:
 Other shapes – lines, circles, polygons, etc.
 More properties on other graphics

© 2022 - Brad Myers 4

Why talk about Graphics?

 To draw application-specific graphical objects
 Lines, rectangles, text
 Mac, Windows, Linux, Android, iOS, web, … all have

approximately the same way of describing graphics
 There are some complexities that are worth looking at
 There are 2 models, we (and homework 3) will cover both!

© 2022 - Brad Myers 5

Rendering Graphics

 Graphics are rendered
onto the screen

 Decide exactly which pixels to draw
in which color
 We won’t cover the low-level rendering algorithms
 Do need to know what is going on, and how to control it

 JavaScript provides 2 built-in ways to do graphics:
 SVG – Scalable Vector Graphics = “Drawing”
 Canvas = “Painting”

© 2022 - Brad Myers 6

Drawing vs. Painting programs

 Drawing = SVG  Painting = Canvas

© 2022 - Brad Myers 7

 Hybrid (both)

Drawing vs. Painting programs

 Drawing
 PowerPoint
 MacDraw
 Adobe Illustrator
 Adobe InDesign

 Painting
 Microsoft Paint
 MacPaint
 Snagit Editor

© 2022 - Brad Myers 8

 Hybrid (both)
 Photoshop

Drawing vs. Painting programs

 Drawing
 Graphical objects maintain their

integrity after being drawn

 Painting
 Objects just become pixels after

being drawn

© 2022 - Brad Myers 9

Drawing vs. Painting programs

 Drawing
 Graphical objects maintain

their integrity after being
drawn

 Shapes are reinterpreted as
mathematical entities

 Can move, change
properties of all objects at
any time

 Rotation, change
overlapping

 Can zoom in continuously

 Painting
 Objects just become pixels after

being drawn
 Can draw arbitrary shapes
 Can touch up and individually

edit the pixels anywhere
 Supports “flood fill” (paint can)
 Lose “resolution” and see pixels

when zoom in

© 2022 - Brad Myers 10

Drawing vs. Painting programs

 Drawing
 Graphical objects maintain their

integrity after being drawn

 Painting
 Objects just become pixels after

being drawn

© 2022 - Brad Myers 11

Drawing vs. Painting programs

 Homework 3 – you will make a hybrid system
 (Full specification still in progress)

 Draw on one “layer”
 Paint on another “layer”
 “Layer” = collection of graphical objects that are treated separately

from graphics on other layers
 Super-simplified version of Photoshop or other hybrid editing

programs

© 2022 - Brad Myers 12

Drawing each Object
 Drawing an object can be done in either model
 “objectness” disappears after drawing is complete for painting

programs
 Completely different models!
 Note: different border size, both are “3”

 <svg height="100" width="100">
<circle cx="50" cy="50" r="40"

stroke="black" strokewidth="3"
fill="red" />

</svg>
 https://www.w3schools.com/graphics/svg_circle.asp

 let c = document.getElementById("myCanvas");
let ctx = c.getContext("2d");
ctx.beginPath();
ctx.lineWidth = 3;
ctx.arc(50, 50, 40, 0, 2 * Math.PI);
ctx.stroke();
ctx.fillStyle = "red";
ctx.fill();

 https://www.w3schools.com/tags/canvas_arc.asp

© 2022 - Brad Myers 13

https://www.w3schools.com/graphics/svg_circle.asp
https://www.w3schools.com/tags/canvas_arc.asp

2D and covering
 Objects are drawn in order, back to front
 Same as a drawing program like PowerPoint

 Containers – recursive
 E.g., for DOM

 Groups in many systems
 Divs and other elements can contain others

 All items in a container are above/below other
containers

 Group itself is usually see-through
 Commands to change the order for java, SVG
 Java: setComponentZOrder() on any container
 SVG: remove from DOM and re-add at the desired z-

order
 Not canvas!

© 2022 - Brad Myers 14

Coordinates for Drawing

 Origin
 Typically 0,0 in top left
 Comes from text handling and raster scan
 Java 2D allows customization

 Different from conventional axes
 Coordinates of pixels:
 Center of pixel?
 Corner of pixel?

 Matters for lines

© 2022 - Brad Myers 15

16

Issue: Window Coordinates

 Where is 0,0 with respect to the window’s inside or outside
border?

 CreateWindow (10, 10, 100, 100)
 Inside or outside?
 Different for point vs. W/H?
 What is the size of window

border?
 JS – just inside

© 2022 - Brad Myers

© 2022 - Brad Myers
17

Drawing Primitives
 Drawing Objects:
 Graphics, graphics2D java APIs: http://docs.oracle.com/javase/8/docs/api/

 Canvas / svg for JavaScript – all draw different pixels!
 P1 and P2 or P1 and W/H?

 void graphics.drawRect (int x, int y, int width, int height)
Draws the outline of the specified rectangle. (also fillRect)

 Inclusive or exclusive?
 Which pixels are turned on for DrawRectangle (2,2, 8,8)?
 Suppose you draw another rectangle next to it?
 Suppose draw filled and outline rectangle with the same coordinates?

 JavaScript SVG can control the order: https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/paint-order

 What about for ellipse?

graphics.setColor(Color.red);
graphics.drawRect(4, 4, 40, 40);
graphics.setColor(Color.blue);
graphics.fillRect(0,0,4,4);

http://docs.oracle.com/javase/8/docs/api/
http://docs.oracle.com/javase/8/docs/api/java/awt/Graphics.html
http://docs.oracle.com/javase/8/docs/api/java/awt/Graphics.html
https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/paint-order

18

Primitives, 2

DrawLine has similar concerns
 Thick lines often go to both sides of the coordinates
 Option in JavaScript for fully inside

 drawPolyline takes a sequence of points
 Endpoints of each segment drawn?
 Last end-point drawn?
 Closed vs. open; may draw first point twice

© 2022 - Brad Myers

http://docs.oracle.com/javase/8/docs/api/java/awt/Graphics.html

Where to draw lines?

© 2022 - Brad Myers 19

© 2020 - Brad Myers

Inside or outside?

 How many pixels across are painted for line width
= 4, rectangle width = 8?

let c = document.getElementById("myCanvas");
let ctx = c.getContext("2d");
ctx.lineWidth = 4;
ctx.strokeRect(2, 2, 8, 8);

© 2022 - Brad Myers 20

12

21

Line Properties

 LineStyles
 Width
 Solid, dashed 111000111000111000, "double-dashed", patterned

 Cap-style: butt, round, projecting (by 1/2 linewidth):

© 2022 - Brad Myers

22

Polylines

 End-caps: miter, round, bevel:
 Miter = point, up to 11 degrees
 JS miterLimit

 Round = circle of the line width
 Bevel = fill in notch with straight line

 Filled, what parts?
 “Winding rule”
 JS: fill-rule:nonzero

 “Odd parity rule”
 JS: fill-rule:evenodd
 Used by Java

 JavaScript has both!
 fill-rule:winding
 fill-rule:evenodd

© 2022 - Brad Myers

https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D/miterLimit

© 2022 - Brad Myers

23

Anti-Aliasing
 Making edges appear smooth by using blended colors
 Useful for text and all lines
 Supported by Java RenderingHints parameter to

Graphics2D
 JavaScript – always on, controlled by the browser

Anti-aliasing discussion

 https://developer.mozilla.org/en-
US/docs/Web/API/Canvas_API/Tutorial/Applying_s
tyles_and_colors

© 2022 - Brad Myers 24

https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Applying_styles_and_colors

Java2D & JavaScript Canvas Path Model

 Others (AWT, SVG) draw by drawing shapes (drawRect,
<rect>, etc.)

 Path model: Define a path first, then stroke or fill it
 Used in Java, Macintosh, Postscript, JS Canvas

 Can create a beginPath() and add moveTo, lineTo’s, curveTo
(etc.) to it, and then call stroke() or fill(), etc.

© 2022 - Brad Myers 25

JavaScript Canvas
 Build up a path and then “stroke” or “fill” it
 Implicit “default” path, or explicit path
 Global (hidden) data structure holds the path and all parameters

function draw() {
const canvas = document.getElementById('canvas');
if (canvas.getContext) {

const ctx = canvas.getContext('2d');

ctx.beginPath();
ctx.moveTo(75, 50);
ctx.lineTo(100, 75);
ctx.lineTo(100, 25);
ctx.closePath(); //optional for fill
ctx.fill();

}
}

© 2022 - Brad Myers 26

ref

https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Drawing_shapes#drawing_paths
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Drawing_shapes#drawing_paths

More JavaScript Canvas examples
<body>

<canvas id="myCanvas" width="100%" height="100%"></canvas>

…

<script>

let c = document.getElementById("myCanvas");

let ctx = c.getContext("2d");

ctx.strokeStyle = "red";

ctx.moveTo(10, 10);

ctx.lineTo(20, 200);

ctx.stroke();

ctx.fillStyle = "green";

ctx.fillRect(20, 20, 150, 100);

</script>

</body>

© 2022 - Brad Myers 27

JavaScript Canvas
<body>
<canvas id="myCanvas" width="100%" height="100%"></canvas>

…
<script>

ctx.strokeStyle = "red";
ctx.moveTo(10, 10);
ctx.lineTo(20, 200);
ctx.stroke();

ctx.fillStyle = "green";
ctx.fillRect(20, 20, 150, 100);
ctx.moveTo(0,0);
ctx.lineWidth = 5;
ctx.strokeStyle = "blue";
ctx.lineTo(0,100);
ctx.stroke();

</script>
</body>

© 2022 - Brad Myers 28

JavaScript Canvas
<body>
<canvas id="myCanvas" width="100%" height="100%"></canvas>

…
<script>

ctx.strokeStyle = "red";
ctx.moveTo(10, 10);
ctx.lineTo(20, 200);
ctx.stroke();

ctx.fillStyle = "green";
ctx.fillRect(20, 20, 150, 100);
ctx.moveTo(0,0);
ctx.lineWidth = 5;
ctx.strokeStyle = "blue";
ctx.lineTo(0,100);
ctx.stroke();

</script>
</body>

© 2022 - Brad Myers 29

• Redraws previous stroke!

JavaScript Canvas
<body>
<canvas id="myCanvas" width="100%" height="100%"></canvas>

…
<script>

ctx.strokeStyle = "red";
ctx.moveTo(10, 10);
ctx.lineTo(20, 200);
ctx.stroke();

ctx.beginPath();
ctx.moveTo(10, 250);
ctx.fillStyle = "green";
ctx.fillRect(20, 20, 150, 100);
ctx.moveTo(0,0);
ctx.lineWidth = 5;
ctx.strokeStyle = "blue";
ctx.lineTo(0,100);
ctx.stroke();

</script>
</body>

Need beginPath() between strokes!
© 2022 - Brad Myers 30

JavaScript Canvas
…

ctx.fillStyle = "red";

ctx.fillRect(0, 0, 20, 20);

ctx.fillStyle = "green";

ctx.fillRect(20, 10, 20, 20);

…

 Anti-aliasing makes
it hard to control
which pixels are on

© 2022 - Brad Myers 31

32

Splines

 Curves defined by “cubic” equation
 x(t) = axt3 + bxt2 + cxt + dx

y(t) = ayt3 + byt2 + cyt + dy

 Well-defined techniques from graphics (not covered here – see
Foley&vanDam)

 Defined based on “control” points
 Different kinds do or don’t go through the control points
 Available in both SVG and Canvas in JavaScript
 “Bézier” curves
 endpoints are on the curve, and

control points are not

 Different from PowerPoint
© 2022 - Brad Myers

https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths#curve_commands
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Drawing_shapes#drawing_paths

33

Bezier Curve Example
var c = document.getElementById("myCanvas");
var ctx = c.getContext("2d");
ctx.beginPath();
ctx.moveTo(20, 20);
ctx.bezierCurveTo(20, 100, 200, 100, 200, 20);
ctx.moveTo(20, 20);
ctx.arc(20,20,4,0,2*Math.PI);
ctx.moveTo(18, 98);
ctx.arc(20,100,4,0,2*Math.PI);
ctx.moveTo(198, 98);
ctx.arc(200,100,4,0,2*Math.PI);
ctx.moveTo(198, 18);
ctx.arc(200,20,4,0,2*Math.PI);

ctx.stroke();
 Note that Bezier curves do not go through the

intermediate control points
© 2022 - Brad Myers

ref

https://www.w3schools.com/tags/tryit.asp?filename=tryhtml5_canvas_beziercurveto

© 2022 - Brad Myers 34

Color Models
 See online color picker / converter: https://colorizer.org/ or w3schools
 RGB -- Additive color primaries
 CMY -- Cyan, Magenta, Yellow
 complements of red, green, blue; subtractive primaries
 colors are specified that are removed from white light, instead of added to black

(no light) as in RGB
 YIQ -- used in color TVs in US (NTSC)
 Y is luminance, what is shown on black and white TVs
 I and Q encode chromaticity

ref

https://colorizer.org/
https://www.w3schools.com/colors/colors_picker.asp?colorhex=F0FFFF
https://blogs.mathworks.com/cleve/2016/12/12/my-first-matrix-rgb-yiq-and-color-cubes/

35

Color, cont.

 HSV -- Hue, Saturation and Value (brightness) or HSL
(Luminance)
 user oriented, intuitive appear of artist's hint, shade, tone
 simple algorithm in text to convert, but not a linear mapping

 Interpolating between colors can be done using different
models, with different resulting intermediate colors

© 2022 - Brad Myers

Transparency of Color

 Original model used only opaque paint
 Modeled hardcopy devices this was developed for (at Xerox PARC)

 Current systems now support “paint” that combines with
“paint” already under it
 e.g., translucent paint (“alpha” values)

 Intermediate
 Icons and images can select one “transparent” color
 E.g, “transparent gifs”

© 2022 - Brad Myers 36

37

Paint with transparency

 Postscript model originated the “alpha blending” approach
 Dominant model for hardcopy

 Java2D and JS drawing models also takes this approach

© 2022 - Brad Myers

Alpha Blending

 Alpha is percent of this color to be used
 rgba(red, green, blue, alpha)
 Creates an rgba color with the specified red, green, blue, and alpha

values
 rgb in 0..255
 a in the range 0.0 - 1.0

 Reverse of PowerPoint!
 PowerPoint is % transparent so 100% = see through; 0 = opaque
 Percent transparent = 1-percent alpha

© 2022 - Brad Myers 38

60%

Other painting parameters

 Shadows
 Many kinds of gradients
 Filters and blurring
 3D (WebGL) …..

© 2022 - Brad Myers 39

Fonts and drawing strings

 Font provides description of the shape of a collection of chars
 Shapes are called “glyphs”

 Plus information e.g., about how to advance after drawing a
glyph

 And aggregate info for the whole collection

© 2022 - Brad Myers 40

Fonts

Typically specified by:
 A family or typeface
 e.g., courier, helvetica, times roman

 A size (normally in “points”)
 A style
 e.g., plain, italic, bold, bold & italic
 other possibles (from mac): underline, outline,

shadow

© 2022 - Brad Myers 41

42

Font examples

© 2022 - Brad Myers

Points

 An odd and archaic unit of measurement
 72.27 points per inch
 Origin: 72 per French inch (!)

 Postscript rounded to 72/inch
 Most have followed

 Early Macintosh: point==pixel (1/75th)

© 2022 - Brad Myers 43

FontMetrics

 Objects that allow you to measure characters, strings, and
properties of whole fonts

© 2022 - Brad Myers 44

45

Reference point and baseline

 Each glyph has a reference point
 Draw a character at x,y, reference point will end up at x,y (not top-

left)

 Reference point defines a “baseline”

p
© 2022 - Brad Myers

46

Advance width

 Each glyph has an “advance width”
 Where reference point of next glyph goes along baseline

pa
© 2022 - Brad Myers

47

Ascent and decent

 Glyphs are drawn both above and below baseline
 Distance below: “decent” of glyph
 Distance above: “ascent” of glyph

p Ascent
Decent

© 2022 - Brad Myers

48

Standard ascent and decent

 Font as a whole has a standard ascent and standard decent

pM Std Ascent
Std Decent

© 2022 - Brad Myers

Leading

 Leading = space between lines of text
 Pronounce “led”-ing after the lead strips that used to provide it
 space between bottom of standard decent and top of standard

ascent
 i.e., interline spacing

© 2022 - Brad Myers 49

50

Height

 Height of character or font
 ascent + decent + leading

 not standard across systems: on some systems doesn’t include
leading (but does in Java)
 New question: is the leading above or below the text in Java?

© 2022 - Brad Myers

Other Parameters

 Kerning: overlapping of characters: VA, ff, V.
 Stroke: Element of a character that would have originally

been created with a single pen stroke
 Em: Equal to the font's point size. So an "Em-dash" in a 18

point font is 18points wide: (option-shift-underline on Mac)
 En: Half font's point size. "En-dash" is 9 points wide in 18

point font: (Mac: option-underline)
 - DASHES – DASHES—DASHES

© 2022 - Brad Myers 51

52

 Bitmap fonts: look bad when scaled up. Best appearance
at native resolution.

Times vs.
 Sometimes used for dingbats, wingdings

 Postscript fonts: by Adobe, described by curves and lines
so look good at any resolution, often hard to read when
small

 TrueType fonts: similar to Postscript: font is a program
abcd
 Supported by Java: java.awt.font.TRUETYPE_FONT

 OpenType, etc. – web fonts are scalable

Types of Fonts

© 2022 - Brad Myers

53

Encoding of Characters

 Conventional ASCII
 One byte per character
 Various special characters in lower and upper part of fonts
 Depends on OS, font, etc.

 Unicode: http://www.unicode.org
 16 bits per character
 All the world’s languages
 Java and web use Unicode

© 2022 - Brad Myers

http://www.unicode.org/

Images

 Pictures created externally
 “Bitmaps”, “Pixmaps”

 Various encodings
 bmp, pict, gif, tiff, jpeg, png, …

 Issues:
 Origin for when used as a cursor
 Encodings for transparency
 Windows cursors and gif files
 Java uses alpha compositing
 gif & png do support it, jpg does not

© 2022 - Brad Myers 54

Clipping and “Stencils”

 X windows, Mac, etc. can clip drawing to a set of rectangles
 Must be non-overlapping
 Important for refresh
 Can make drawing more efficient

 SVG – <clipPath> attribute
 Define clipping path for children objects

 JS Canvas: ctx.clip();
 Clip to arbitrary shape

© 2022 - Brad Myers 55

https://developer.mozilla.org/en-US/docs/Web/SVG/Element/clipPath
https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D/clip

56

“Stencils”

 Model is like the stencils used in crafts
 Only see paint through the “holes”

 Used for transparency, icons, other effects
 Uses alpha compositing and shape clip mechanisms already

discussed

© 2022 - Brad Myers

57

Coordinate Transformations

 Supports
 Translate - move
 Rotate
 Scale – change size (including flip = -scale)
 Shear

Can modify any shape, including text
 To fully understand, need matrix algebra:
 Affine transformations are based on two-

dimensional matrices of the following form:

a c tx x
b d ty y where x′ = ax + cy + tx and y′ = bx + dy + ty

1

© 2022 - Brad Myers

How Parameters are Passed

 How pass parameters for drawing operations?
 Issue: Lots of parameters control the drawing of objects.
 X drawline has at least 19
 How many for Canvas or SVG?

© 2022 - Brad Myers 58

59

DrawLine Parameters

1. Window in which to draw
2. X1
3. Y1
4. X2
5. Y2
6. relative-p
7. line-width
8. draw function
9. background-color
10. foreground-color

11. cap style
12. line style (solid, dashed,

double-dashed)
13. dash pattern
14. dash offset
15. stipple bitmap
16. stipple origin X
17. stipple origin Y
18. clip mask
19. plane mask (for drawing

on specific planes)

© 2022 - Brad Myers

60

How Pass Parameters?

 Three basic possibilities
 Pass all parameters with each operation
 DrawLine(70,30,70,200, Red,)
 - too many parameters
 Not really used by any modern system

© 2022 - Brad Myers

61

Passing Parameters, 2

 All parameters stored in the system
 Used by Macintosh, Display Postscript, etc.
 Sometimes called the “pen”
 Example (pseudo code):
 SetColor(Red)

MoveTo(70, 30)
DrawTo(70, 200)

 + Fewer parameters to calls
 + Don't have to set properties don't care about
 - Interrupts, multi-processing, may result in unexpected settings

© 2022 - Brad Myers

62

Passing Parameters, 3
 Store parameters in an object
 JavaScript canvas “context”
 canvas.getContext("2d");

 X = “graphics context”
 Windows = “device context”
 corresponds to surface, but can push and pop

 Java
 “Graphics”, Graphics2D, Graphics3D objects
 Lots of settings

 Android
 Has BOTH graphics object and Paint object
 Parameters are in the Paint object

© 2022 - Brad Myers

Historical reference

 Early machines were all monochrome
 Each pixel was black or white

 Slow graphics
 Tricks for highlighting

and “grey”
 “halftone” – every other pixel on

© 2022 - Brad Myers 63

64

Draw Function

 Replace (COPY)
 XOR
 And, OR, NOT, etc.
 Makes it important to do the points only once
 Anything XOR BLACK = inverted anything, XOR again and

get original:
 AND useful for making holes
 Doesn’t work well in color
 Java: Paint or XOR (setXORMode or setPaintMode)

© 2022 - Brad Myers

http://docs.oracle.com/javase/8/docs/api/java/awt/Graphics.html
http://docs.oracle.com/javase/8/docs/api/java/awt/Graphics.html

65

RasterOp (BitBlt, CopyArea)

 Copy an area of the screen
graphics.copyArea (int x, int y, int width, int height, int dx, int dy)
Copies an area of the component by a distance specified by dx and dy.

 Used to have ability to combine with destination
using Boolean combinations

 Useful for moving, scrolling, erasing & filling
rectangles, etc.

 SmallTalk investigated using it for rotate, scaling,
etc.

 Not nearly as useful in color

© 2022 - Brad Myers

http://docs.oracle.com/javase/8/docs/api/java/awt/Graphics.html

66

Double Buffering

 (Needed for Homework 3)
 Save an extra picture offscreen
 Smoother animations
 Save hidden parts of windows

 = “Backing store”
 Use two buffers for special effects, faster refresh
 “Save-under” for pop-ups
 Use this for the temporary canvas for homework3
 Need a way to draw interim feedback

© 2022 - Brad Myers

Double Buffering (for a Canvas)
 1. Make an off-screen

copy of screen
 2. Draw interim object

on-screen
 3. Erase by copying

off-screen one to
on-screen

 Repeat steps 2-3 as
interim object moves

 (or make permanent by
copying to off-screen)

© 2022 - Brad Myers 67

Offscreen
(invisible)

Onscreen
(visible)

1.

2.

3.

Double Buffering for JavaScript Canvas
 In workarea, have 3 full-size elements on top of each other

 Create a temporary canvas on top of the “regular” canvas
<div id="workarea">
<canvas id="workarea-canvas" width="800" height="800"></canvas>
<canvas id="tempCanvas" width="800" height="800"></canvas>
<svg id="workarea-svg" width="800" height="800"></svg>

</div>
 Remember, later one is on top – SVG is on top of Canvas, by specification

 Make sure to control which one is visible
workareaCanvas.style.display = "block";
tempCanvas.style.display = "none";

 Get temp’s context for drawing:
let tempContext = tempCanvas.getContext("2d");

 Copy contents from real (ctx) to temp canvas use: drawImage:
https://www.w3schools.com/tags/canvas_drawimage.asp

tempContext.drawImage(workareaCanvas, 0, 0);
 Now can draw on-screen, and easily restore old view

© 2022 - Brad Myers 68

Offscreen
(tempContext)

Onscreen
(ctx)

https://www.w3schools.com/tags/canvas_drawimage.asp

Flood Fill
 You will do this for homework 3
 We give you an implementation

 Only available in painting programs
 Issue: floodfill is SLOW, so don’t worry

if it is taking a while
 Added a wait cursor
 Try not to click in the background! = 32 seconds!

 Issue:
anti-aliasing
 Don’t worry

about
anti-aliasing
for hw3

© 2022 - Brad Myers

69

https://www.cs.cmu.edu/%7Ebam/uicourse/05631fall2021/HW3/index.html
https://www.cs.cmu.edu/%7Ebam/uicourse/05631fall2020/HW3/HW3-example-canvas-flood-fill.png

HW 3 hints: Modes

 Similar to HW2 – need to enable and disable many handlers, and
whole Canvas or SVG
 Lots of global variables to keep track of the modes
 Or use an enum, and think of it as a state machine

 No enums in JS, but can use strings or const numbers
 State machines will be covered in lecture 9

 Grey out controls using styles and remove their event handlers,
e.g.,
 Both handler: borderColorSelection.classList.add("disabled");
 Other handlers: borderColorSelection.classList.remove("disabled");
 Or can put a div in front of them that is ½ transparent and also takes the

events
 Make svg or canvas layer appear and disappear using display

svg.style.display = "block"; // regular display
canvas.style.display = "none"; // invisible

© 2022 - Brad Myers 70

https://en.wikipedia.org/wiki/Finite-state_machine
https://www.w3schools.com/JSREF/prop_style_display.asp

Radio buttons

 Make the 3 radio buttons be mutually exclusive: use same
“name” property
 Handlers for each button controls modes for other controls and

layers

© 2022 - Brad Myers 71

https://www.w3schools.com/jsref/prop_radio_name.asp

	Lectures 6 and 7:�Output 1:�Basic 2D Computer Graphics
	Logistics (9/15/2022)
	Logistics (9/20/2022)
	What are “Graphics”
	Why talk about Graphics?
	Rendering Graphics
	Drawing vs. Painting programs
	Drawing vs. Painting programs
	Drawing vs. Painting programs
	Drawing vs. Painting programs
	Drawing vs. Painting programs
	Drawing vs. Painting programs
	Drawing each Object
	2D and covering
	Coordinates for Drawing
	Issue: Window Coordinates
	Drawing Primitives
	Primitives, 2
	Where to draw lines?
	Inside or outside?
	Line Properties
	Polylines
	Anti-Aliasing
	Anti-aliasing discussion
	Java2D & JavaScript Canvas Path Model
	JavaScript Canvas
	More JavaScript Canvas examples
	JavaScript Canvas
	JavaScript Canvas
	JavaScript Canvas
	JavaScript Canvas
	Splines
	Bezier Curve Example
	Color Models
	Color, cont.
	Transparency of Color
	Paint with transparency
	Alpha Blending
	Other painting parameters
	Fonts and drawing strings
	Fonts
	Font examples
	Points
	FontMetrics
	Reference point and baseline
	Advance width
	Ascent and decent
	Standard ascent and decent
	Leading
	Height
	Other Parameters
	Types of Fonts
	Encoding of Characters
	Images
	Clipping and “Stencils”
	“Stencils”
	Coordinate Transformations
	How Parameters are Passed
	DrawLine Parameters
	How Pass Parameters?
	Passing Parameters, 2
	Passing Parameters, 3
	Historical reference
	Draw Function
	RasterOp (BitBlt, CopyArea)
	Double Buffering
	Double Buffering (for a Canvas)
	Double Buffering for JavaScript Canvas
	Flood Fill
	HW 3 hints: Modes
	Radio buttons

