
Lectures 6 and 7:
Output 1:
Basic 2D Computer Graphics

05-431/631 Software Structures for User Interfaces (SSUI)
Fall, 2022
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Logistics (9/15/2022)
 Readings for this lecture are on Canvas:

“Files / Special Course Readings” folder
 Foley-VanDam-graphics.pdf
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https://canvas.cmu.edu/courses/30751/files/folder/Special%20Course%20Readings
https://canvas.cmu.edu/courses/30751/files/folder/Special%20Course%20Readings?preview=8331393


Logistics (9/20/2022)
 Alex changed office hours – now Mondays 1-2pm virtually
 See Zoom section of Canvas for link

 Homework 2 due 1 week from today
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https://canvas.cmu.edu/courses/30751/external_tools/8366


What are “Graphics”

 All visual output shown to users
 Includes textual output
 Only 2D for now

 So far, mostly html or html generated from JS
 Mostly styled text and images
 Also, areas of colors – mostly rectangles or rounded 

rectangles
 Borders on regions

 Now, adding in “real” graphical objects:
 Other shapes – lines, circles, polygons, etc.
 More properties on other graphics
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Why talk about Graphics?

 To draw application-specific graphical objects
 Lines, rectangles, text
 Mac, Windows, Linux, Android, iOS, web, … all have 

approximately the same way of describing graphics
 There are some complexities that are worth looking at
 There are 2 models, we (and homework 3) will cover both!
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Rendering Graphics

 Graphics are rendered
onto the screen

 Decide exactly which pixels to draw
in which color
 We won’t cover the low-level rendering algorithms
 Do need to know what is going on, and how to control it

 JavaScript provides 2 built-in ways to do graphics:
 SVG – Scalable Vector Graphics = “Drawing”
 Canvas = “Painting”
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Drawing vs. Painting programs

 Drawing = SVG  Painting = Canvas
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 Hybrid (both)



Drawing vs. Painting programs

 Drawing
 PowerPoint
 MacDraw
 Adobe Illustrator
 Adobe InDesign

 Painting
 Microsoft Paint
 MacPaint
 Snagit Editor
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 Hybrid (both)
 Photoshop



Drawing vs. Painting programs

 Drawing
 Graphical objects maintain their 

integrity after being drawn

 Painting
 Objects just become pixels after

being drawn
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Drawing vs. Painting programs

 Drawing
 Graphical objects maintain 

their integrity after being 
drawn

 Shapes are reinterpreted as 
mathematical entities

 Can move, change 
properties of all objects at 
any time

 Rotation, change 
overlapping

 Can zoom in continuously

 Painting
 Objects just become pixels after

being drawn
 Can draw arbitrary shapes
 Can touch up and individually 

edit the pixels anywhere
 Supports “flood fill” (paint can)
 Lose “resolution” and see pixels 

when zoom in
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Drawing vs. Painting programs

 Drawing
 Graphical objects maintain their 

integrity after being drawn

 Painting
 Objects just become pixels after

being drawn

© 2022 - Brad Myers 11



Drawing vs. Painting programs

 Homework 3 – you will make a hybrid system
 (Full specification still in progress)

 Draw on one “layer”
 Paint on another “layer”
 “Layer” = collection of graphical objects that are treated separately 

from graphics on other layers
 Super-simplified version of Photoshop or other hybrid editing 

programs
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Drawing each Object
 Drawing an object can be done in either model
 “objectness” disappears after drawing is complete for painting 

programs
 Completely different models!
 Note: different border size, both are “3”

 <svg height="100" width="100">
<circle cx="50" cy="50" r="40"

stroke="black" strokewidth="3"
fill="red" />

</svg>
 https://www.w3schools.com/graphics/svg_circle.asp

 let c = document.getElementById("myCanvas");
let ctx = c.getContext("2d");
ctx.beginPath();
ctx.lineWidth = 3;
ctx.arc(50, 50, 40, 0, 2 * Math.PI);
ctx.stroke();
ctx.fillStyle = "red";
ctx.fill();

 https://www.w3schools.com/tags/canvas_arc.asp
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https://www.w3schools.com/graphics/svg_circle.asp
https://www.w3schools.com/tags/canvas_arc.asp


2D and covering
 Objects are drawn in order, back to front
 Same as a drawing program like PowerPoint

 Containers – recursive
 E.g., for DOM

 Groups in many systems
 Divs and other elements can contain others

 All items in a container are above/below other 
containers

 Group itself is usually see-through
 Commands to change the order for java, SVG
 Java: setComponentZOrder() on any container
 SVG: remove from DOM and re-add at the desired z-

order
 Not canvas!
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Coordinates for Drawing

 Origin
 Typically 0,0 in top left
 Comes from text handling and raster scan
 Java 2D allows customization

 Different from conventional axes
 Coordinates of pixels:
 Center of pixel?
 Corner of pixel?

 Matters for lines
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Issue: Window Coordinates

 Where is 0,0 with respect to the window’s inside or outside
border?

 CreateWindow (10, 10, 100, 100)
 Inside or outside?
 Different for point vs. W/H?
 What is the size of window

border?
 JS – just inside
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Drawing Primitives
 Drawing Objects:
 Graphics, graphics2D java APIs: http://docs.oracle.com/javase/8/docs/api/

 Canvas / svg for JavaScript – all draw different pixels!
 P1 and P2 or P1 and W/H?

 void  graphics.drawRect (int x, int y, int width, int height)
Draws the outline of the specified rectangle. (also fillRect)

 Inclusive or exclusive?
 Which pixels are turned on for DrawRectangle (2,2, 8,8)?
 Suppose you draw another rectangle next to it? 
 Suppose draw filled and outline rectangle with the same coordinates?

 JavaScript SVG can control the order: https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/paint-order

 What about for ellipse?

graphics.setColor(Color.red);
graphics.drawRect(4, 4, 40, 40);
graphics.setColor(Color.blue);
graphics.fillRect(0,0,4,4);

http://docs.oracle.com/javase/8/docs/api/
http://docs.oracle.com/javase/8/docs/api/java/awt/Graphics.html
http://docs.oracle.com/javase/8/docs/api/java/awt/Graphics.html
https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/paint-order
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Primitives, 2

DrawLine has similar concerns 
 Thick lines often go to both sides of the coordinates
 Option in JavaScript for fully inside

 drawPolyline takes a sequence of points 
 Endpoints of each segment drawn? 
 Last end-point drawn? 
 Closed vs. open; may draw first point twice

© 2022 - Brad Myers

http://docs.oracle.com/javase/8/docs/api/java/awt/Graphics.html


Where to draw lines?
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Inside or outside?

 How many pixels across are painted for line width 
= 4, rectangle width = 8?

let c = document.getElementById("myCanvas");
let ctx = c.getContext("2d");
ctx.lineWidth = 4;
ctx.strokeRect(2, 2, 8, 8);

© 2022 - Brad Myers 20

12



21

Line Properties

 LineStyles
 Width
 Solid, dashed 111000111000111000, "double-dashed", patterned

 Cap-style: butt, round, projecting (by 1/2 linewidth):

© 2022 - Brad Myers
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Polylines

 End-caps: miter, round, bevel:
 Miter = point, up to 11 degrees
 JS miterLimit

 Round = circle of the line width
 Bevel = fill in notch with straight line

 Filled, what parts?
 “Winding rule”
 JS: fill-rule:nonzero

 “Odd parity rule”
 JS: fill-rule:evenodd
 Used by Java 

 JavaScript has both!
 fill-rule:winding
 fill-rule:evenodd
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https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D/miterLimit
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Anti-Aliasing
 Making edges appear smooth by using blended colors
 Useful for text and all lines
 Supported by Java RenderingHints parameter to 

Graphics2D
 JavaScript – always on, controlled by the browser



Anti-aliasing discussion

 https://developer.mozilla.org/en-
US/docs/Web/API/Canvas_API/Tutorial/Applying_s
tyles_and_colors
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https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Applying_styles_and_colors


Java2D & JavaScript Canvas Path Model

 Others (AWT, SVG) draw by drawing shapes (drawRect, 
<rect>, etc.)

 Path model: Define a path first, then stroke or fill it
 Used in Java, Macintosh, Postscript, JS Canvas

 Can create a beginPath() and add moveTo, lineTo’s, curveTo
(etc.) to it, and then call stroke() or fill(), etc.
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JavaScript Canvas
 Build up a path and then “stroke” or “fill” it
 Implicit “default” path, or explicit path
 Global (hidden) data structure holds the path and all parameters

function draw() {
const canvas = document.getElementById('canvas');
if (canvas.getContext) {

const ctx = canvas.getContext('2d');

ctx.beginPath();
ctx.moveTo(75, 50);
ctx.lineTo(100, 75);
ctx.lineTo(100, 25);
ctx.closePath(); //optional for fill
ctx.fill();

}
}
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https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Drawing_shapes#drawing_paths
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Drawing_shapes#drawing_paths


More JavaScript Canvas examples
<body>

<canvas id="myCanvas" width="100%" height="100%"></canvas>

…

<script>

let c = document.getElementById("myCanvas");

let ctx = c.getContext("2d");

ctx.strokeStyle = "red";

ctx.moveTo(10, 10);

ctx.lineTo(20, 200);

ctx.stroke();

ctx.fillStyle = "green";

ctx.fillRect(20, 20, 150, 100);

</script>

</body>
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JavaScript Canvas
<body>
<canvas id="myCanvas" width="100%" height="100%"></canvas>

…
<script>

ctx.strokeStyle = "red";
ctx.moveTo(10, 10);
ctx.lineTo(20, 200);
ctx.stroke();

ctx.fillStyle = "green";
ctx.fillRect(20, 20, 150, 100);
ctx.moveTo(0,0);
ctx.lineWidth = 5;
ctx.strokeStyle = "blue";
ctx.lineTo(0,100);
ctx.stroke();

</script>
</body>
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JavaScript Canvas
<body>
<canvas id="myCanvas" width="100%" height="100%"></canvas>

…
<script>

ctx.strokeStyle = "red";
ctx.moveTo(10, 10);
ctx.lineTo(20, 200);
ctx.stroke();

ctx.fillStyle = "green";
ctx.fillRect(20, 20, 150, 100);
ctx.moveTo(0,0);
ctx.lineWidth = 5;
ctx.strokeStyle = "blue";
ctx.lineTo(0,100);
ctx.stroke();

</script>
</body>

© 2022 - Brad Myers 29
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JavaScript Canvas
<body>
<canvas id="myCanvas" width="100%" height="100%"></canvas>

…
<script>

ctx.strokeStyle = "red";
ctx.moveTo(10, 10);
ctx.lineTo(20, 200);
ctx.stroke();

ctx.beginPath();
ctx.moveTo(10, 250);
ctx.fillStyle = "green";
ctx.fillRect(20, 20, 150, 100);
ctx.moveTo(0,0);
ctx.lineWidth = 5;
ctx.strokeStyle = "blue";
ctx.lineTo(0,100);
ctx.stroke();

</script>
</body>

Need beginPath() between strokes!
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JavaScript Canvas
…

ctx.fillStyle = "red";

ctx.fillRect(0, 0, 20, 20);

ctx.fillStyle = "green";

ctx.fillRect(20, 10, 20, 20);

…

 Anti-aliasing makes
it hard to control
which pixels are on
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Splines

 Curves defined by “cubic” equation
 x(t) = axt3 + bxt2 + cxt + dx

y(t) = ayt3 + byt2 + cyt + dy

 Well-defined techniques from graphics (not covered here – see 
Foley&vanDam)

 Defined based on “control” points
 Different kinds do or don’t go through the control points
 Available in both SVG and Canvas in JavaScript
 “Bézier” curves
 endpoints are on the curve, and

control points are not 

 Different from PowerPoint
© 2022 - Brad Myers

https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths#curve_commands
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Drawing_shapes#drawing_paths
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Bezier Curve Example
var c = document.getElementById("myCanvas");
var ctx = c.getContext("2d");
ctx.beginPath();
ctx.moveTo(20, 20);
ctx.bezierCurveTo(20, 100, 200, 100, 200, 20);
ctx.moveTo(20, 20);
ctx.arc(20,20,4,0,2*Math.PI);
ctx.moveTo(18, 98);
ctx.arc(20,100,4,0,2*Math.PI);
ctx.moveTo(198, 98);
ctx.arc(200,100,4,0,2*Math.PI);
ctx.moveTo(198, 18);
ctx.arc(200,20,4,0,2*Math.PI);

ctx.stroke();
 Note that Bezier curves do not go through the 

intermediate control points
© 2022 - Brad Myers
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https://www.w3schools.com/tags/tryit.asp?filename=tryhtml5_canvas_beziercurveto
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Color Models
 See online color picker / converter: https://colorizer.org/ or w3schools
 RGB -- Additive color primaries 
 CMY -- Cyan, Magenta, Yellow 
 complements of red, green, blue; subtractive primaries 
 colors are specified that are removed from white light, instead of added to black 

(no light) as in RGB
 YIQ -- used in color TVs in US (NTSC) 
 Y is luminance, what is shown on black and white TVs 
 I and Q encode chromaticity  

ref

https://colorizer.org/
https://www.w3schools.com/colors/colors_picker.asp?colorhex=F0FFFF
https://blogs.mathworks.com/cleve/2016/12/12/my-first-matrix-rgb-yiq-and-color-cubes/
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Color, cont.

 HSV -- Hue, Saturation and Value (brightness) or HSL 
(Luminance)
 user oriented, intuitive appear of artist's hint, shade, tone 
 simple algorithm in text to convert, but not a linear mapping 

 Interpolating between colors can be done using different 
models, with different resulting intermediate colors
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Transparency of Color

 Original model used only opaque paint
 Modeled hardcopy devices this was developed for (at Xerox PARC)

 Current systems now support “paint” that combines with 
“paint” already under it
 e.g., translucent paint (“alpha” values)

 Intermediate
 Icons and images can select one “transparent” color
 E.g, “transparent gifs”
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Paint with transparency

 Postscript model originated the “alpha blending” approach
 Dominant model for hardcopy

 Java2D and JS drawing models also takes this approach
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Alpha Blending

 Alpha is percent of this color to be used
 rgba(red, green, blue, alpha)
 Creates an rgba color with the specified red, green, blue, and alpha 

values 
 rgb in 0..255
 a in the range 0.0 - 1.0

 Reverse of PowerPoint! 
 PowerPoint is % transparent so 100% = see through; 0 = opaque
 Percent transparent = 1-percent alpha

© 2022 - Brad Myers 38
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Other painting parameters

 Shadows
 Many kinds of gradients
 Filters and blurring
 3D (WebGL) …..
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Fonts and drawing strings

 Font provides description of the shape of a collection of chars
 Shapes are called “glyphs”

 Plus information e.g., about how to advance after drawing a 
glyph

 And aggregate info for the whole collection
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Fonts

Typically specified by:
 A family or typeface
 e.g., courier, helvetica, times roman

 A size (normally in “points”)
 A style
 e.g., plain, italic, bold, bold & italic
 other possibles (from mac): underline, outline, 

shadow

© 2022 - Brad Myers 41
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Font examples
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Points

 An odd and archaic unit of measurement
 72.27 points per inch
 Origin: 72 per French inch (!)

 Postscript rounded to 72/inch
 Most have followed

 Early Macintosh: point==pixel (1/75th)
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FontMetrics

 Objects that allow you to measure characters, strings, and 
properties of whole fonts
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Reference point and baseline

 Each glyph has a reference point
 Draw a character at x,y, reference point will end up at x,y (not top-

left)

 Reference point defines a “baseline”

p
© 2022 - Brad Myers
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Advance width

 Each glyph has an “advance width”
 Where reference point of next glyph goes along baseline

pa
© 2022 - Brad Myers
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Ascent and decent

 Glyphs are drawn both above and below baseline
 Distance below: “decent” of glyph
 Distance above: “ascent” of glyph

p Ascent
Decent
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Standard ascent and decent

 Font as a whole has a standard ascent and standard decent

pM Std Ascent
Std Decent
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Leading

 Leading = space between lines of text 
 Pronounce “led”-ing after the lead strips that used to provide it
 space between bottom of standard decent and top of standard 

ascent
 i.e., interline spacing
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Height

 Height of character or font
 ascent + decent + leading

 not standard across systems: on some systems doesn’t include 
leading (but does in Java)
 New question: is the leading above or below the text in Java?
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Other Parameters

 Kerning: overlapping of characters: VA, ff, V.
 Stroke: Element of a character that would have originally 

been created with a single pen stroke
 Em: Equal to the font's point size. So an "Em-dash" in a 18 

point font is 18points wide: (option-shift-underline on Mac)
 En: Half font's point size. "En-dash" is 9 points wide in 18 

point font: (Mac: option-underline)
 - DASHES – DASHES—DASHES
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 Bitmap fonts: look bad when scaled up. Best appearance 
at native resolution.

Times vs.
 Sometimes used for dingbats, wingdings

 Postscript fonts: by Adobe, described by curves and lines 
so look good at any resolution, often hard to read when 
small 

 TrueType fonts: similar to Postscript: font is a program  
abcd
 Supported by Java: java.awt.font.TRUETYPE_FONT

 OpenType, etc. – web fonts are scalable 

Types of Fonts

© 2022 - Brad Myers
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Encoding of Characters

 Conventional ASCII
 One byte per character
 Various special characters in lower and upper part of fonts
 Depends on OS, font, etc.

 Unicode: http://www.unicode.org
 16 bits per character
 All the world’s languages
 Java and web use Unicode

© 2022 - Brad Myers
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Images

 Pictures created externally
 “Bitmaps”, “Pixmaps”

 Various encodings
 bmp, pict, gif, tiff, jpeg, png, …

 Issues:
 Origin for when used as a cursor
 Encodings for transparency
 Windows cursors and gif files
 Java uses alpha compositing
 gif & png do support it, jpg does not
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Clipping and “Stencils”

 X windows, Mac, etc. can clip drawing to a set of rectangles
 Must be non-overlapping
 Important for refresh
 Can make drawing more efficient

 SVG – <clipPath> attribute
 Define clipping path for children objects

 JS Canvas: ctx.clip();
 Clip to arbitrary shape
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https://developer.mozilla.org/en-US/docs/Web/SVG/Element/clipPath
https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D/clip
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“Stencils”

 Model is like the stencils used in crafts
 Only see paint through the “holes”

 Used for transparency, icons, other effects
 Uses alpha compositing and shape clip mechanisms already 

discussed
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Coordinate Transformations

 Supports
 Translate - move
 Rotate
 Scale – change size (including flip = -scale)
 Shear

Can modify any shape, including text
 To fully understand, need matrix algebra:
 Affine transformations are based on two-

dimensional matrices of the following form:

a c tx x
b d ty        y         where x′ = ax + cy + tx and y′ = bx + dy + ty

1
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How Parameters are Passed

 How pass parameters for drawing operations?
 Issue: Lots of parameters control the drawing of objects. 
 X drawline has at least 19
 How many for Canvas or SVG?
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DrawLine Parameters

1. Window in which to draw 
2. X1 
3. Y1 
4. X2 
5. Y2 
6. relative-p 
7. line-width 
8. draw function
9. background-color 
10. foreground-color 

11. cap style 
12. line style (solid, dashed, 

double-dashed) 
13. dash pattern 
14. dash offset 
15. stipple bitmap 
16. stipple origin X 
17. stipple origin Y 
18. clip mask 
19. plane mask (for drawing 

on specific planes)
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How Pass Parameters?

 Three basic possibilities
 Pass all parameters with each operation
 DrawLine(70,30,70,200, Red, ......)
 - too many parameters
 Not really used by any modern system
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Passing Parameters, 2

 All parameters stored in the system
 Used by Macintosh, Display Postscript, etc.
 Sometimes called the “pen”
 Example (pseudo code): 
 SetColor(Red)

MoveTo(70, 30)
DrawTo(70, 200)

 + Fewer parameters to calls
 + Don't have to set properties don't care about 
 - Interrupts, multi-processing, may result in unexpected settings
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Passing Parameters, 3
 Store parameters in an object
 JavaScript canvas “context”
 canvas.getContext("2d");

 X = “graphics context”
 Windows = “device context”
 corresponds to surface, but can push and pop

 Java
 “Graphics”, Graphics2D, Graphics3D objects
 Lots of settings

 Android
 Has BOTH graphics object and Paint object
 Parameters are in the Paint object
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Historical reference

 Early machines were all monochrome
 Each pixel was black or white

 Slow graphics
 Tricks for highlighting

and “grey”
 “halftone” – every other pixel on
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Draw Function

 Replace (COPY)
 XOR
 And, OR, NOT, etc.
 Makes it important to do the points only once
 Anything XOR BLACK = inverted anything, XOR again and 

get original: 
 AND useful for making holes
 Doesn’t work well in color
 Java: Paint or XOR (setXORMode or setPaintMode)

© 2022 - Brad Myers
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RasterOp (BitBlt, CopyArea)

 Copy an area of the screen
graphics.copyArea (int x, int y, int width, int height, int dx, int dy)
Copies an area of the component by a distance specified by dx and dy.

 Used to have ability to combine with destination 
using Boolean combinations 

 Useful for moving, scrolling, erasing & filling 
rectangles, etc. 

 SmallTalk investigated using it for rotate, scaling, 
etc. 

 Not nearly as useful in color

© 2022 - Brad Myers
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Double Buffering

 (Needed for Homework 3) 
 Save an extra picture offscreen 
 Smoother animations 
 Save hidden parts of windows 

 = “Backing store” 
 Use two buffers for special effects, faster refresh 
 “Save-under” for pop-ups
 Use this for the temporary canvas for homework3
 Need a way to draw interim feedback
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Double Buffering (for a Canvas)
 1. Make an off-screen

copy of screen
 2. Draw interim object

on-screen
 3. Erase by copying

off-screen one to
on-screen

 Repeat steps 2-3 as
interim object moves

 (or make permanent by
copying to off-screen)

© 2022 - Brad Myers 67

Offscreen
(invisible)

Onscreen
(visible)

1.

2.

3.



Double Buffering for JavaScript Canvas
 In workarea, have 3 full-size elements on top of each other

 Create a temporary canvas on top of the “regular” canvas
<div id="workarea">
<canvas id="workarea-canvas" width="800" height="800"></canvas>
<canvas id="tempCanvas" width="800" height="800"></canvas>
<svg id="workarea-svg" width="800" height="800"></svg>

</div>
 Remember, later one is on top – SVG is on top of Canvas, by specification

 Make sure to control which one is visible
workareaCanvas.style.display = "block";
tempCanvas.style.display = "none";

 Get temp’s context for drawing:
let tempContext = tempCanvas.getContext("2d");

 Copy contents from real (ctx) to temp canvas use: drawImage:  
https://www.w3schools.com/tags/canvas_drawimage.asp

tempContext.drawImage(workareaCanvas, 0, 0);
 Now can draw on-screen, and easily restore old view
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Offscreen
(tempContext)

Onscreen
(ctx)

https://www.w3schools.com/tags/canvas_drawimage.asp


Flood Fill
 You will do this for homework 3
 We give you an implementation

 Only available in painting programs
 Issue: floodfill is SLOW, so don’t worry

if it is taking a while
 Added a wait cursor
 Try not to click in the background! = 32 seconds!

 Issue:
anti-aliasing
 Don’t worry

about
anti-aliasing
for hw3
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https://www.cs.cmu.edu/%7Ebam/uicourse/05631fall2021/HW3/index.html
https://www.cs.cmu.edu/%7Ebam/uicourse/05631fall2020/HW3/HW3-example-canvas-flood-fill.png


HW 3 hints: Modes

 Similar to HW2 – need to enable and disable many handlers, and 
whole Canvas or SVG
 Lots of global variables to keep track of the modes
 Or use an enum, and think of it as a state machine

 No enums in JS, but can use strings or const numbers
 State machines will be covered in lecture 9

 Grey out controls using styles and remove their event handlers, 
e.g.,
 Both handler: borderColorSelection.classList.add("disabled");
 Other handlers: borderColorSelection.classList.remove("disabled");
 Or can put a div in front of them that is ½ transparent and also takes the 

events
 Make svg or canvas layer appear and disappear using display

svg.style.display = "block";  // regular display
canvas.style.display = "none"; // invisible
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https://en.wikipedia.org/wiki/Finite-state_machine
https://www.w3schools.com/JSREF/prop_style_display.asp


Radio buttons

 Make the 3 radio buttons be mutually exclusive: use same 
“name” property
 Handlers for each button controls modes for other controls and 

layers
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https://www.w3schools.com/jsref/prop_radio_name.asp
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