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Logistics

 Homework 1 due today!
 Late policy:

https://www.cs.cmu.edu/~bam/uicourse/05631fall2022/homeworks.html#latepolicy

 Homework 2 is posted, due in 2 weeks: 9/27/2022
 https://www.cs.cmu.edu/~bam/uicourse/05631fall2022/HW2/index.html
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What does UI Software encompass?

 “User Interface Software”
 All the software that implements the user interface
 “User Interface” = The part of an application that a person (user) can 

see or interact with (look + feel)
 Often distinguished from the “functionality” (back-end) implementation
 Some ambiguity if a tool is specifically for “UI” part

 User Interface Software Tools
 Ways to help programmers create user interface software

 Tools used by UI Designers and UI Builders
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Names

 Tools = UI Frameworks, Toolkits, Development Kits 
= SDK, Libraries
 UI APIs = Application Programming Interfaces (APIs)
 Old names = User Interface Management Systems 

(UIMS), User Interface Development Environments 
(UIDE)

 Micro-Service Architecture for web UIs
 Also interactive tools: Resource Editors, Interface 

Builders, Prototypers, UI Builders
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Examples of UI Software Tools
 We created a list in 2017 = 

https://docs.google.com/document/d/1qeBkQaoIBmwK9Z7LmWP4L_4GKgddzNn7YmvSQu
PukGo
 Over 100!
 Lots of new ones that should be added

 APIs for UI development:
 JavaScript/Web: ReactJS, Vue, AngularJS
 Apple Cocoa, Carbon
 Microsoft Foundation Classes, .Net, wx-Python
 Java AWT, Swing, Android UI classes

 Interactive tools 
 Visual Basic .Net
 Adobe Flash, Adobe Catalyst
 Prototypers like Axure, Balsamiq, Adobe XD

 Research systems:
 Garnet
 Amulet
 ConstraintJS
 InterState
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Why is This Important?
 Virtually all UIs are created using such Tools
 Previous research has influenced today’s tools
 Enormous impact!

 New tools are created all the time
 E.g., Flutter for Dart language and mobile
 Some are easier to use than others!

 Principles and architectures for good designs
 Avoid “reinventing the wheel”
 What are the “best practices” for these tools

 Modern UIs and Tools for web, phones, wearables, 
Smart TVs, etc. all use similar designs
 Speech and conversational interfaces are different

 Research topic in ACM UIST, CHI
 Also ICSE, SPLASH, PLATEAU, CHASE, many others
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Analogy with OS or Compilers

 In CS curriculums, often teach Operating Systems, 
Compilers, Networking
 Even though most people will just use these
 Useful to know the key principles
 Lasts longer than the specifics of one current tool

 Some people will need to know how to build the next 
generation of tools

 The algorithms, architectures, design patterns, and principles 
are useful in other situations as well
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Stakeholders

 Many groups of people
 Need unambiguous names
 Too many “users”

 Tool Designers
 Tool Users (are programmers)
 Users of products created with the 

tools = consumers or end-users

 Source: Jeffrey Stylos and Brad Myers, "Mapping the Space of API Design 
Decisions," 2007 IEEE Symposium on Visual Languages and Human-Centric 
Computing, VL/HCC'07. Sept 23-27, 2007, Coeur d'Alene, Idaho. pp. 50-57. pdf
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Who Are Developers?
 Programming tools are not just used by highly-trained 

professional programmers
 End-User Programmers = People whose primary job is not

programming
 In 2012 in USA at work: — [Scaffidi, Shaw and Myers 2005]
 3 million professional programmers
 6 million scientists & engineers
 13 million will describe themselves as programmers
 55 million will use spreadsheets or databases at work
 90 million computer users at work in US

 All these may be the tool users!
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UI Runtime Pipeline
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UI Runtime Pipeline
w/ Browser
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UI Tools stack

© 2022 - Brad Myers 12

Interactive Tools
(Builders, Prototypers)

Automatic
Tools

UI Framework
(Architecture, Objects)

UI Toolkit
(library, programming interface)

OS / Windows Interface / Browser
(Input and Output)

Device Drivers & Hardware
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From the bottom: Windows & OS

 Window System + Operating System
 Microsoft Windows, MacOS, Android, iOS, etc.

 Unix & older OS’s separated OS, Windows
 SunOS: X Windows or NeWS or SunTools

 Or the equivalent provided by the browser’s “OS”
 Low level input events – keycodes, mouse position, values 

from accelerometers
 Low level graphics primitives
 Draw Circle, Draw Line, set pixel color
 Called “Imaging Model”

 Clipped to window boundaries
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UI Toolkits

 (Specific meaning, one part of the tool set)
 A library of UI widgets that application programs can use
 Only a programming interface

 Provides higher-level “widgets”
 Also called “controls”
 Scroll bars, buttons, text input fields

 Examples:
 Html “input”
 Java Swing, SWT, AWT
 Win32, Macintosh “toolbox”
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UI Frameworks
 Higher-level programming architecture
 Generally all-encompassing – controls all of the ways apps are built

 Supports common design patterns
 Listener pattern, data bindings, etc.

 Significantly affects design of applications
 Often object-oriented
 “Foundation Classes”

 Often cross-platform (iOS + Android)
 React native, Flutter, Microsoft’s Xamarin, Titanium, …
 Electron (https://electronjs.org/): cross-platform toolkit for desktop apps

 Sometimes hard to distinguish from “toolkits”
 (So we usually won’t!)
 Note: React says it is a “library” and not a “framework”, but provides 

React.Component and other classes from which developers should inherit 
 Other Examples:
 Historical: Apple MacApp (invented in 1986), my Amulet
 Current: Unity, AngularJS
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Historical Notes
 OO
 Early toolkits and Frameworks invented their own object systems
 Before C++ was widely used

 Look and Feel 
 Early UI Toolkits and Frameworks tried not to enforce a look-and-

feel
 Microsoft DOS
 Unix and “X window system” (1986) originally
 “…the system must provide hooks (mechanism) rather than religion (policy).” 

[Scheifler, 1986]
 “intrinsics” layer of the toolkit
 How widgets would be built

 Gave up on this approach as early as 1989
 Windows, Mac, iOS, Android – quite constrained look and feel
 Web – still pretty open, but built-in widgets (html “input”) 

standardized
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APIs

 Application Programming Interface (API)
 “the collection of software utilized without change to create other 

software”
 Covers both UI Toolkits and UI Frameworks
 Plus all the other libraries programmers need to use
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Interactive Tools

 Not a programming interface
 Supports designers who might not be programmers
 Select widgets and place them
 Layout, possibly with constraints
 Specify properties of widgets

 Two categories:
 GUI Tools – create representations used by the real code

 Often built into IDEs
 Prototypers – just to work out look and feel, and must be re-implemented

 Examples:
 Adobe Dreamweaver for web pages
 Resource editors & builders: Eclipse, Xcode IB, Android studio, Microsoft 

Visual Basic IDE
 Prototypers: Figma, Balsamiq, Axure, etc.
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Android Studio Builder

 https://stacktips.com/tutorials/android/android-studio-
features/attachment/android-studio-viewing-layout_builder
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Balsamiq

 https://balsamiq.com/
wireframes/
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Automatic Tools

 Take a high-level specification of the UI
 Use algorithms to decide on such features as which specific 

widgets to use, the layout of where the widgets should go, 
and properties of the widgets

 Often AI-based
 Sometimes called “model-based design”
 Many research examples; few commercial successes
 Html “decides” on layout but not AI based, so doesn’t really 

“count”

© 2022 - Brad Myers 21



Research Example
 Jeff Nichols’ PhD system PUC took high-level spec in XML of a 

consumer electronics device and created personalized UI on a portable 
device
 Jeffrey Nichols and Brad A. Myers. "Creating a Lightweight User Interface Description Language: An Overview 

and Analysis of the Personal Universal Controller Project". ACM Transactions on Computer-Human 
Interaction,. Vol. 16, no. 4, (November 2009). pp. 1-37. ACM DL
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