
Lecture 5:
What is "User Interface Software", Overview of UI 
Software and Tools

05-431/631 Software Structures for User Interfaces (SSUI)
Fall, 2022

© 2022 - Brad Myers 1



Logistics

 Homework 1 due today!
 Late policy:

https://www.cs.cmu.edu/~bam/uicourse/05631fall2022/homeworks.html#latepolicy

 Homework 2 is posted, due in 2 weeks: 9/27/2022
 https://www.cs.cmu.edu/~bam/uicourse/05631fall2022/HW2/index.html

© 2022 - Brad Myers 2

https://www.cs.cmu.edu/%7Ebam/uicourse/05631fall2022/homeworks.html#latepolicy
https://www.cs.cmu.edu/%7Ebam/uicourse/05631fall2022/HW2/index.html


What does UI Software encompass?

 “User Interface Software”
 All the software that implements the user interface
 “User Interface” = The part of an application that a person (user) can 

see or interact with (look + feel)
 Often distinguished from the “functionality” (back-end) implementation
 Some ambiguity if a tool is specifically for “UI” part

 User Interface Software Tools
 Ways to help programmers create user interface software

 Tools used by UI Designers and UI Builders

© 2022 - Brad Myers 3



Names

 Tools = UI Frameworks, Toolkits, Development Kits 
= SDK, Libraries
 UI APIs = Application Programming Interfaces (APIs)
 Old names = User Interface Management Systems 

(UIMS), User Interface Development Environments 
(UIDE)

 Micro-Service Architecture for web UIs
 Also interactive tools: Resource Editors, Interface 

Builders, Prototypers, UI Builders

© 2022 - Brad Myers 4



Examples of UI Software Tools
 We created a list in 2017 = 

https://docs.google.com/document/d/1qeBkQaoIBmwK9Z7LmWP4L_4GKgddzNn7YmvSQu
PukGo
 Over 100!
 Lots of new ones that should be added

 APIs for UI development:
 JavaScript/Web: ReactJS, Vue, AngularJS
 Apple Cocoa, Carbon
 Microsoft Foundation Classes, .Net, wx-Python
 Java AWT, Swing, Android UI classes

 Interactive tools 
 Visual Basic .Net
 Adobe Flash, Adobe Catalyst
 Prototypers like Axure, Balsamiq, Adobe XD

 Research systems:
 Garnet
 Amulet
 ConstraintJS
 InterState

© 2022 - Brad Myers 5

https://docs.google.com/document/d/1qeBkQaoIBmwK9Z7LmWP4L_4GKgddzNn7YmvSQuPukGo/edit


Why is This Important?
 Virtually all UIs are created using such Tools
 Previous research has influenced today’s tools
 Enormous impact!

 New tools are created all the time
 E.g., Flutter for Dart language and mobile
 Some are easier to use than others!

 Principles and architectures for good designs
 Avoid “reinventing the wheel”
 What are the “best practices” for these tools

 Modern UIs and Tools for web, phones, wearables, 
Smart TVs, etc. all use similar designs
 Speech and conversational interfaces are different

 Research topic in ACM UIST, CHI
 Also ICSE, SPLASH, PLATEAU, CHASE, many others

© 2022 - Brad Myers 6



Analogy with OS or Compilers

 In CS curriculums, often teach Operating Systems, 
Compilers, Networking
 Even though most people will just use these
 Useful to know the key principles
 Lasts longer than the specifics of one current tool

 Some people will need to know how to build the next 
generation of tools

 The algorithms, architectures, design patterns, and principles 
are useful in other situations as well

© 2022 - Brad Myers 7



Stakeholders

 Many groups of people
 Need unambiguous names
 Too many “users”

 Tool Designers
 Tool Users (are programmers)
 Users of products created with the 

tools = consumers or end-users

 Source: Jeffrey Stylos and Brad Myers, "Mapping the Space of API Design 
Decisions," 2007 IEEE Symposium on Visual Languages and Human-Centric 
Computing, VL/HCC'07. Sept 23-27, 2007, Coeur d'Alene, Idaho. pp. 50-57. pdf

© 2022 - Brad Myers 8

http://www.cs.cmu.edu/%7ENatProg/papers/Stylos2007APIDesignDecisions.pdf


Who Are Developers?
 Programming tools are not just used by highly-trained 

professional programmers
 End-User Programmers = People whose primary job is not

programming
 In 2012 in USA at work: — [Scaffidi, Shaw and Myers 2005]
 3 million professional programmers
 6 million scientists & engineers
 13 million will describe themselves as programmers
 55 million will use spreadsheets or databases at work
 90 million computer users at work in US

 All these may be the tool users!

90,000,000

55,000,000

13,000,000
6,000,000 3,000,000

0

20,000,000

40,000,000

60,000,000

80,000,000

100,000,000

Users Spreadsheets and
DBs

Self-Described
Programmers

Scientists &
Engineers

Professional
Programmers

© 2022 - Brad Myers 9



UI Runtime Pipeline

© 2022 - Brad Myers 10

Toolkit 

input

output

Toolkit Drawing 
Package 

Application 
Code 

Syntactic
feedback /
View/controller



UI Runtime Pipeline
w/ Browser

© 2022 - Brad Myers 11

Application 
Code 

input

output

Html / 
canvas 
spec 

Toolkits 

Html / 
canvas 
spec 

Toolkits 



UI Tools stack

© 2022 - Brad Myers 12

Interactive Tools
(Builders, Prototypers)

Automatic
Tools

UI Framework
(Architecture, Objects)

UI Toolkit
(library, programming interface)

OS / Windows Interface / Browser
(Input and Output)

Device Drivers & Hardware

Optional}



From the bottom: Windows & OS

 Window System + Operating System
 Microsoft Windows, MacOS, Android, iOS, etc.

 Unix & older OS’s separated OS, Windows
 SunOS: X Windows or NeWS or SunTools

 Or the equivalent provided by the browser’s “OS”
 Low level input events – keycodes, mouse position, values 

from accelerometers
 Low level graphics primitives
 Draw Circle, Draw Line, set pixel color
 Called “Imaging Model”

 Clipped to window boundaries

© 2022 - Brad Myers 13



UI Toolkits

 (Specific meaning, one part of the tool set)
 A library of UI widgets that application programs can use
 Only a programming interface

 Provides higher-level “widgets”
 Also called “controls”
 Scroll bars, buttons, text input fields

 Examples:
 Html “input”
 Java Swing, SWT, AWT
 Win32, Macintosh “toolbox”

© 2022 - Brad Myers 14



UI Frameworks
 Higher-level programming architecture
 Generally all-encompassing – controls all of the ways apps are built

 Supports common design patterns
 Listener pattern, data bindings, etc.

 Significantly affects design of applications
 Often object-oriented
 “Foundation Classes”

 Often cross-platform (iOS + Android)
 React native, Flutter, Microsoft’s Xamarin, Titanium, …
 Electron (https://electronjs.org/): cross-platform toolkit for desktop apps

 Sometimes hard to distinguish from “toolkits”
 (So we usually won’t!)
 Note: React says it is a “library” and not a “framework”, but provides 

React.Component and other classes from which developers should inherit 
 Other Examples:
 Historical: Apple MacApp (invented in 1986), my Amulet
 Current: Unity, AngularJS

© 2022 - Brad Myers 15

https://electronjs.org/


Historical Notes
 OO
 Early toolkits and Frameworks invented their own object systems
 Before C++ was widely used

 Look and Feel 
 Early UI Toolkits and Frameworks tried not to enforce a look-and-

feel
 Microsoft DOS
 Unix and “X window system” (1986) originally
 “…the system must provide hooks (mechanism) rather than religion (policy).” 

[Scheifler, 1986]
 “intrinsics” layer of the toolkit
 How widgets would be built

 Gave up on this approach as early as 1989
 Windows, Mac, iOS, Android – quite constrained look and feel
 Web – still pretty open, but built-in widgets (html “input”) 

standardized

© 2022 - Brad Myers 16



APIs

 Application Programming Interface (API)
 “the collection of software utilized without change to create other 

software”
 Covers both UI Toolkits and UI Frameworks
 Plus all the other libraries programmers need to use

© 2022 - Brad Myers 17



Interactive Tools

 Not a programming interface
 Supports designers who might not be programmers
 Select widgets and place them
 Layout, possibly with constraints
 Specify properties of widgets

 Two categories:
 GUI Tools – create representations used by the real code

 Often built into IDEs
 Prototypers – just to work out look and feel, and must be re-implemented

 Examples:
 Adobe Dreamweaver for web pages
 Resource editors & builders: Eclipse, Xcode IB, Android studio, Microsoft 

Visual Basic IDE
 Prototypers: Figma, Balsamiq, Axure, etc.

© 2022 - Brad Myers 18



Android Studio Builder

 https://stacktips.com/tutorials/android/android-studio-
features/attachment/android-studio-viewing-layout_builder

© 2022 - Brad Myers 19

https://stacktips.com/tutorials/android/android-studio-features/attachment/android-studio-viewing-layout_builder


Balsamiq

 https://balsamiq.com/
wireframes/

© 2022 - Brad Myers 20

https://balsamiq.com/wireframes/


Automatic Tools

 Take a high-level specification of the UI
 Use algorithms to decide on such features as which specific 

widgets to use, the layout of where the widgets should go, 
and properties of the widgets

 Often AI-based
 Sometimes called “model-based design”
 Many research examples; few commercial successes
 Html “decides” on layout but not AI based, so doesn’t really 

“count”

© 2022 - Brad Myers 21



Research Example
 Jeff Nichols’ PhD system PUC took high-level spec in XML of a 

consumer electronics device and created personalized UI on a portable 
device
 Jeffrey Nichols and Brad A. Myers. "Creating a Lightweight User Interface Description Language: An Overview 

and Analysis of the Personal Universal Controller Project". ACM Transactions on Computer-Human 
Interaction,. Vol. 16, no. 4, (November 2009). pp. 1-37. ACM DL

© 2022 - Brad Myers

22

http://doi.acm.org/10.1145/1614390.1614392

	Lecture 5:�What is "User Interface Software", Overview of UI Software and Tools
	Logistics
	What does UI Software encompass?
	Names
	Examples of UI Software Tools
	Why is This Important?
	Analogy with OS or Compilers
	Stakeholders
	Who Are Developers?
	UI Runtime Pipeline
	UI Runtime Pipeline�w/ Browser
	UI Tools stack
	From the bottom: Windows & OS
	UI Toolkits
	UI Frameworks
	Historical Notes
	APIs
	Interactive Tools
	Android Studio Builder
	Balsamiq
	Automatic Tools
	Research Example

