Lecture 3:
Review of JavaScript

 \
05-431/631 Software Structures for User
Interfaces (SSUI)

Fall, 2022

© 2022 - Brad Myers

|\
Human-Computer Interaction Institute N

Logistics

e Switch back to 4x3 format to leave room for
the video

e Homework 1 due 1 week from today

e Slides and recordings of labs are on Canvas

© 2022 - Brad Myers 2

JavaScript Syntax nscampann s ()

e Syntax similar to C, C++, Java:

Blocks use { }
Separate statements with ;
Arithmetic and precedence the same: +, ++, *, %, >= etc.
LOOpSZ for (let step = 0; step < 5; step++) { .. }
Also do { } while (), while() { }
Conditionals: i £ (i<0) {...}
AlSO switch () {..}

“ternary”: cond ? exprlfTrue : exprlIfFalse; (let x = flag ? 3 : 5;)
Used a lot in JS!

Assignment with =

Equality test with == or === (equal value and equal type)
Almost always use ===

Arrays: [] — zero based

Comments are /* xxx */ Or //xxx

|dentifiers with letters, numbers, _or $ (not -)

Case sensitive

Strings with " " or

Can next the other klndl nside: 'Brad said "hi".'
© 2022 - Brad Myers 3

|\
Human-Computer Interaction Institute N

Dynamically Typed

Never declare the type of variables, parameters, functions, etc.
e let 1 = 3; i="str"; 1 = null;

Special undefined value: let x; =2 undefined
Arrays can contain multiple types: [3, "foo"]
Numbers are 23 or 45. 3 (no distinction int <-> float)
Automatic conversion: "5"+2+3 > "523"

o Vs.2+3+"5" > n"55%

e "11" - 1 -2 10

str.length - note NOT a method SEr—enagtrH

But lots of other string methods, e.qg., str.trim()

Like Java, strings are immutable (cannot change):
o—stxrf21 =151, & doesn’t work

e All string methods return new strings

Empty string "", undefined, null, 0 areall false:
1f(b) {}

© 2022 - Brad Myers 4

|\
Human-Computer Interaction Institute N

Declaring variables

o let x — block scope —inside { }

e var x — function scope — anywhere in the
function

e Either at top-level of file — global scope (all code
running on this web page)
e Resets if page is reloaded

e const x — block scope, and cannot be

reassigned, so assign on declaration
const x = 123; =4 error

e Butif x is an object or array, it can be modified
const x = [2,3]; x[0]=5; € OK

© 2022 - Brad Myers 5

|\
Human-Computer Interaction Institute N
Deb [

e Chrome debugger has “console” where can type any
JavaScript code
e Can see the values of global variables
And locals if at a breakpoint inside a function
e Can assign values, define functions, evaluate code
e “Sources” tab allows breakpoints, editing code
But not saved, so just for experiments
e At breakpoints, can see stack (“Scope” tab)
Run code in the context of that function

e console.log(anything); < OUtpUt anything to the
console without stopping
e alert ("I am an alert box!"); < pause

e debugger; € break into debugger when run (ref) - retH

© 2022 - Brad Myers 6

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/debugger

\)
Human-Computer Interaction Institute N

Functions

e function myFunction (pl, p2) {
return pl * p2;
}

e Empty parameters: function myFunc() {}

e If N0 return orif it has return; then returns
undefined

e Functions can be values: const f = myFunction;
e () signalstoinvokeit: £(1,2);

© 2022 - Brad Myers 7

Arrow functions

|\
Human-Computer Interaction Institute N

e Shorter way to write function definitions

e Especially useful when

Many people use them

the name

@ const h =
return

}

e hello =
hello =
hello =
hello =

function () {
"Hello World!";

()
()

=> {return
=> "Hello";

shorter

Very popular, but harder to read

exclusively

Emphasizes that the function is a value connected to

function h ()
return

}

"Hello World!";

{

"hello"};

> omit {3} and return if one line

© 2022 - Brad Myers

(val) => "Hello" + wval; —> parameter
val => "Hello" + val; —> parameter

C onne Cti n g to D O M T ——— N

e Built-in JavaScript functions to access and set the
DOM for the web pages

e Getting DOM elements

The current page is available as the global variable
document

document.getElementById (id) —remember that ID is
always unique per page
document .getElementsByTagName (name) - tags like
“div”, “p”, etc. B
document.getElementsByClassName (name) — based
on the CSS class name
The last 2 return HTML.Collection

Supports some array functions, like [0], .length

Or turn into an array with: Array.from (htmlCollection)

© 2022 - Brad Myers 9

https://developer.mozilla.org/en-US/docs/Web/API/HTMLCollection

Change, Create & Add =@
DOM elements

Add content to an element, like for a paragraph

e Change or add content as a string

element.innerHTML = "new html content";
Change attribute, like href for a, or src for img, or classname
element.setAttribute (attribute, value);

element.attribute = new value;
e.g., element.classname = "product"; //CSS class becomes product

Change style property
element.style.property = new style; o —
Create a new element of any kind of tag P
e Note: always created in the document ‘®

var newdiv = document.createElement ("div"):; -

(or other tag)

e Then add to the correct element as a child: &=
element.appendChild (newdiv) ; '

e Remember the DOM tree =

© 2022 - Brad Myers

|\
Human-Computer Interaction Institute N

Triggering functions

e Will cover event handling in detail in Lecture 4
e For hw1, only need simple event handling

e E£.g., to call initpetaiis function when page is
loaded, put this in the html file:

<body onload="initDetails()">

e Call function when button is pressed:

myButton.addEventListener ("click", myfunction) OF
element.onclick = myfunction;

© 2022 - Brad Myers 11

|\
Human-Computer Interaction Institute N

Storing values between pages

e Global variables reinitialized on each html page
load

e Many options to store information across pages

e localStorage or sessionStorage APIs — easiest
local is permanent, session is reset on browser restart

Recommend localstorage for HW1
localStorage.setltem('myCat', 'cupcake');

Hint. per URL address, so be careful if run same application
twice in different tabs!

e Passing values in the URL and parsing them at the
receiving page (decodeURIComponent)

e Cookies (used to be the only way)
e Store in the browser (browser specific)
e Store on a remote server (various APls — hwo)

© 2022 - Brad Myers 12

https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

|\
Human-Computer Interaction Institute N

2 ways to think of objects:
1) Just a collection of name-value pairs:

var car = {brand:"Fiat", model:"500", color:"white"};

e Note: defined inside of {} (vs. [] for arrays)
e Both separated by,

e Access fields the usual way: car.brand; > "riat"
e Or by array indexed by field name: car["mode1"]; = "500"
e Same for assignment: car.brand = "Honda";

e New fields can be added dynamically, just by assigning it:

car.size = 232;

e Any value can be a function = method:

car.f = function(x) {return this.size+x;} _ o
car.f(12); = 244; car.f; =2 returns the function definition

e Usually use arrow functions

© 2022 - Brad Myers 13

\)
C I Human-Computer Interaction Institute N

e 2) Second way is as Classes, with subclasses
e Think Java classes, not CSS classes

e Must have a constructor

Assign class variables in constructor using this — don’t

declare them:
class Car {
constructor (brand) {
this.carname = brand;

}

present () { //define a method
return "I have a " + this.carname;

}
}

e Create instances with new classname
let mycar = new Car ("Ford");

© 2022 - Brad Myers 14

\)
Human-Computer Interaction Institute N

Inheritance (subclasses)

e Use extends

e Like Java, subclass has everything of super-class plus whatever is
added

e Constructor must call super:
class Model extends Car {
constructor (brand, mod) {
super (brand) ;
this.model = mod;

}
show () {
return this.present() + ', it is a ' + this.model;

}
}

e Can override methods like in Java, etc.
Often call super in those as well, to call the super-class’s method

e Can add new fields to any instance dynamically
mycar.price = 5000;
e Can add new methods, since they are just values

© 2022 - Brad Myers 15

.
)
Human-Computer Interaction Institute

Arrow Function and this

e Treatment of this is different

e With function, is the object that the function is in dynamically
e With arrow, is object that was defined in

> Obj = {val:4};

{val: 4}

> Obj.f = function (i) {return this.val+i;};
f (1) {return this.val+i;}

> Obj.£(12); //since function, gets this from Obj
16

> this

Window {parent: Window, ..}

> this.val = "window";

"window"

> Obj.v = 1 => this.val+i; //since arrow, gets ‘this’

//from scope v is defined in
1 => this.val+i
> Obj.v(12);

"windowl2" // note the meaning of + determined dynamically

© 2022 - Brad Myers 16

|\
Human-Computer Interaction Institute N

Shortcut syntaxes

e Lots of shortcut syntaxes
e Sometimes clear, other times less readable

e “Object Destructuring”
const { top, left } = originalRect;
e Uses the names “top” and “1eft” both as names of the
variables and names of fields of the object

e Spreading (expand) the values, use . . . operator

e Takes values of following item, and puts them into the

new container:; like “flatten”
let arry = [...htmlCollection]
myFunction(...0obj)

© 2022 - Brad Myers 17

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax

	Lecture 3:�Review of JavaScript
	Logistics
	JavaScript Syntax
	Dynamically Typed
	Declaring variables
	Debugging
	Functions
	Arrow functions
	Connecting to DOM
	Change, Create & Add�DOM elements
	Triggering functions
	Storing values between pages
	Objects
	Classes
	Inheritance (subclasses)
	Arrow Function and this
	Shortcut syntaxes

