
Lecture 3:
Review of JavaScript

05-431/631 Software Structures for User
Interfaces (SSUI)
Fall, 2022

© 2022 - Brad Myers 1

Logistics
 Switch back to 4x3 format to leave room for

the video
 Homework 1 due 1 week from today

 Slides and recordings of labs are on Canvas

© 2022 - Brad Myers 2

JavaScript Syntax
 Syntax similar to C, C++, Java:

 Blocks use { }
 Separate statements with ;
 Arithmetic and precedence the same: +, ++, *, %, >= etc.
 Loops: for (let step = 0; step < 5; step++) { … }

 Also do { } while (), while() { }
 Conditionals: if (i<0) {…}

 Also switch() {…}
 “ternary”: cond ? exprIfTrue : exprIfFalse; (let x = flag ? 3 : 5;)

 Used a lot in JS!
 Assignment with =
 Equality test with == or === (equal value and equal type)

 Almost always use ===
 Arrays: [] – zero based
 Comments are /* xxx */ or //xxx
 Identifiers with letters, numbers, _ or $ (not -)
 Case sensitive
 Strings with " " or ' '

 Can next the other kind inside: 'Brad said "hi".'
© 2022 - Brad Myers 3

Dynamically Typed
 Never declare the type of variables, parameters, functions, etc.

 let i = 3; i="str"; i = null;
 Special undefined value: let x;  undefined
 Arrays can contain multiple types: [3, "foo"]
 Numbers are 23 or 45.3 (no distinction int <-> float)
 Automatic conversion: "5"+2+3  "523"

 Vs. 2+3+"5"  "55“
 "11" - 1  10

 str.length  note NOT a method str.length()
 But lots of other string methods, e.g., str.trim()
 Like Java, strings are immutable (cannot change):

 str[2] = 'p';  doesn’t work
 All string methods return new strings

 Empty string "", undefined, null, 0 are all false:
if(b){}

© 2022 - Brad Myers 4

Declaring variables
 let x – block scope – inside { }
 var x – function scope – anywhere in the

function
 Either at top-level of file – global scope (all code

running on this web page)
 Resets if page is reloaded

 const x – block scope, and cannot be
reassigned, so assign on declaration
const x = 123; x = 4;  error
 But if x is an object or array, it can be modified
const x = [2,3]; x[0]=5;  OK

© 2022 - Brad Myers 5

Debugging
 Chrome debugger has “console” where can type any

JavaScript code
 Can see the values of global variables

 And locals if at a breakpoint inside a function
 Can assign values, define functions, evaluate code
 “Sources” tab allows breakpoints, editing code

 But not saved, so just for experiments
 At breakpoints, can see stack (“Scope” tab)

 Run code in the context of that function
 console.log(anything); output anything to the

console without stopping
 alert("I am an alert box!");  pause
 debugger;  break into debugger when run (ref) - not ()

© 2022 - Brad Myers 6

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/debugger

Functions
 function myFunction(p1, p2) {

return p1 * p2;
}

 Empty parameters: function myFunc() {}
 If no return or if it has return; then returns
undefined

 Functions can be values: const f = myFunction;
 () signals to invoke it: f(1,2);

© 2022 - Brad Myers 7

Arrow functions
 Shorter way to write function definitions
 Especially useful when shorter
 Very popular, but harder to read
 Many people use them exclusively
 Emphasizes that the function is a value connected to

the name
 const h = function() {

return "Hello World!";
}

 hello = () => {return "hello"};
hello = () => "Hello";  omit {} and return if one line
hello = (val) => "Hello" + val;  parameter
hello = val => "Hello" + val;  parameter

© 2022 - Brad Myers 8

function h() {
return "Hello World!";

}

Connecting to DOM
 Built-in JavaScript functions to access and set the

DOM for the web pages
 Getting DOM elements
 The current page is available as the global variable

document
 document.getElementById(id) – remember that ID is

always unique per page
 document.getElementsByTagName(name) – tags like

“div”, “p”, etc.
 document.getElementsByClassName(name) – based

on the CSS class name
 The last 2 return HTMLCollection

 Supports some array functions, like [0], .length
 Or turn into an array with: Array.from(htmlCollection)

© 2022 - Brad Myers 9

https://developer.mozilla.org/en-US/docs/Web/API/HTMLCollection

Change, Create & Add
DOM elements

 Add content to an element, like for a paragraph
 Change or add content as a string

element.innerHTML = "new html content";
 Change attribute, like href for a, or src for img, or classname

element.setAttribute(attribute, value);
element.attribute = new value;
e.g., element.classname = "product"; //CSS class becomes product

 Change style property
element.style.property = new style;

 Create a new element of any kind of tag
 Note: always created in the document

var newdiv = document.createElement("div");
(or other tag)

 Then add to the correct element as a child:
element.appendChild(newdiv);

 Remember the DOM tree
© 2022 - Brad Myers 10

Triggering functions
 Will cover event handling in detail in Lecture 4
 For hw1, only need simple event handling
 E.g., to call initDetails function when page is

loaded, put this in the html file:
<body onload="initDetails()">

 Call function when button is pressed:
myButton.addEventListener("click", myfunction) or
element.onclick = myfunction;

© 2022 - Brad Myers 11

Storing values between pages
 Global variables reinitialized on each html page

load
 Many options to store information across pages
 localStorage or sessionStorage APIs – easiest

 local is permanent, session is reset on browser restart
 Recommend localstorage for HW1
localStorage.setItem('myCat', 'cupcake');

 Hint: per URL address, so be careful if run same application
twice in different tabs!

 Passing values in the URL and parsing them at the
receiving page (decodeURIComponent)

 Cookies (used to be the only way)
 Store in the browser (browser specific)
 Store on a remote server (various APIs – hw6)

© 2022 - Brad Myers 12

https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

Objects
 2 ways to think of objects:
 1) Just a collection of name-value pairs:

var car = {brand:"Fiat", model:"500", color:"white"};

 Note: defined inside of {} (vs. [] for arrays)
 Both separated by ,

 Access fields the usual way: car.brand;  "Fiat"

 Or by array indexed by field name: car["model"];  "500"
 Same for assignment: car.brand = "Honda";

 New fields can be added dynamically, just by assigning it:
car.size = 232;

 Any value can be a function  method:
car.f = function(x) {return this.size+x;}
car.f(12);  244; car.f;  returns the function definition
 Usually use arrow functions

© 2022 - Brad Myers 13

Classes
 2) Second way is as Classes, with subclasses
 Think Java classes, not CSS classes
 Must have a constructor

 Assign class variables in constructor using this – don’t
declare them:
class Car {
constructor(brand) {
this.carname = brand;

}
present() { //define a method
return "I have a " + this.carname;

}
}

 Create instances with new classname
let mycar = new Car("Ford");

© 2022 - Brad Myers 14

Inheritance (subclasses)
 Use extends

 Like Java, subclass has everything of super-class plus whatever is
added

 Constructor must call super:
class Model extends Car {

constructor(brand, mod) {
super(brand);
this.model = mod;

}
show() {

return this.present() + ', it is a ' + this.model;
}

}

 Can override methods like in Java, etc.
 Often call super in those as well, to call the super-class’s method

 Can add new fields to any instance dynamically
mycar.price = 5000;
 Can add new methods, since they are just values

© 2022 - Brad Myers 15

Arrow Function and this
 Treatment of this is different

 With function, is the object that the function is in dynamically
 With arrow, is object that was defined in
> Obj = {val:4};
{val: 4}
> Obj.f = function(i){return this.val+i;};
ƒ (i){return this.val+i;}
> Obj.f(12); //since function, gets this from Obj
16
> this
Window {parent: Window, …}
> this.val = "window";
"window"
> Obj.v = i => this.val+i; //since arrow, gets ‘this’

//from scope v is defined in
i => this.val+i
> Obj.v(12);
"window12" // note the meaning of + determined dynamically

© 2022 - Brad Myers 16

Shortcut syntaxes
 Lots of shortcut syntaxes
 Sometimes clear, other times less readable

 “Object Destructuring”
const { top, left } = originalRect;

 Uses the names “top” and “left” both as names of the
variables and names of fields of the object

 Spreading (expand) the values, use ... operator
 Takes values of following item, and puts them into the

new container; like “flatten”
let arry = [...htmlCollection]
myFunction(...obj)

© 2022 - Brad Myers 17

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax

	Lecture 3:�Review of JavaScript
	Logistics
	JavaScript Syntax
	Dynamically Typed
	Declaring variables
	Debugging
	Functions
	Arrow functions
	Connecting to DOM
	Change, Create & Add�DOM elements
	Triggering functions
	Storing values between pages
	Objects
	Classes
	Inheritance (subclasses)
	Arrow Function and this
	Shortcut syntaxes

