2

Programming in
the Simple Raster
Graphics Package (SRGP)

Andries van Dam
and David F. Sklar

In Chapter I, we saw (hal vector and raster displays are two substantially different hardware
technologies for creating images on the screen. Raster displays are now the dominant
hardware technology, because they support several features that are essential to the majority
of modern applications. First, raster displays can fill areas with a uniform color or a
repeated pattern in two or more colors; vector displays can, at best, only simulate filled
areas with closely spaced sequences of parallel veclors, Second, raster displays store images
in a way that allows manipulation at a fine level: individual pixels can be read or written,
and arbitrary portions of the image can be copied or moved. .

The first graphics package we discuss, SRGP (Simple Raster Graphics Package), is a
device-independent graphics package that exploits raster capabilities. SRGP’s repertoire of
primitives (lines, rectangles, circles and ellipses, and text strings) is similar to that of the
popular Macintosh QuickDraw raster package and that of the Xlib package of the X
Window System. Its interaction-handling features, on the other hand, are a subset of those
of SPHIGS, the higher-level graphics package for displaying 3D primitives (covered in
Chapter 7). SPHIGS (Simple PHIGS) is a simplified dialect of the standard PHIGS
graphics package (Programmer’s Hierarchical Interactive Graphics System) designed for
both raster and vector hardware. Although SRGP and SPHIGS were written specifically for
this text, they are also very much in the spirit of mainstream graphics packages, and most of
what you will learn here is immediately applicable to commercial packages. In this book,
we introduce both packages; for a more complele description, you should consult the
reference manuals distributed with the software packages.

We start our discussion of SRGP by examining the operations that applications perform
in order to draw on the screen: the specification of primitives and of the attributes that affect

25

26 Programming In the Simple Raster Graphics Package (SRGP)

their image. (Since graphics printers display information essentially as raster displays do,
we need not concern ourselves with them until we look more closely at hardware in Chapter
4.) Next we learn how to make applications interactive using SRGP's input procedures.
Then we cover the utility of pixel manipulation, available only in raster displays. We
conclude by discussing some limitations of integer raster graphics packages such as SRGP.

Although our discussion of SRGP assumes that it controls the entire screen, the
package has been designed to run in window environments (see Chapter 10), in which case
it controls the interior of a window as though it were a virtual screen. The application

programmer therefore does not need to be concerned about the details of running under
control of a window manager.

2.1 DRAWING WITH SRGP

2.1.1 Specification of Graphics Primitives

Drawing in integer raster graphics packages such as SRGP is like plotting graphs on graph
paper with a very fine grid. The grid varies from 80 to 120 points per inch on conventional
displays to 300 or more on high-resolution displays. The higher the resolution, the better the
appearance of fine detail. Figure 2.1 shows a display screen (or the surface of a printer’s
paper or film) ruled in SRGP's integer Cartesian coordinate system. Note that pixels in
SRGP lie at the intersection of grid lines.

The origin (0, 0) is at the bottom left of the screen: positive x increases toward the right
and positive y increases toward the top. The pixel at the upper-right corner is (width-1,
height-1), where width and height are the device-dependent dimensions of the screen,

On graph paper, we can draw a continuous line between two points located anywhere
on the paper; on raster displays, however, we can draw lines only between grid points, and
the line must be approximated by intensifying the grid-point pixels lying on it or nearest to
it. Similarly, solid figures such as filled polygons or circles are created by intensifying the
pixels in their interiors and on their boundaries. Since specifying each pixel of a line or
closed figure would be far too onerous, graphics packages let the programmer specify
primitives such as lines and polygons via their vertices; the package then fills in the details
using scan-conversion algorithms, discussed in Chapter 3

¥
799

O-‘NQ&U’I_

01234567889 1023

Fig. 2.1 Cartesian coordinate system of a screen 1024 pixels wide by 800 pixals high.
Pixel (7, 3) is shown.

——el

Pl

-yt

2.1 Drawing with SRGP 27

SRGP supports a basic collection of primitives: lines, polygons, circles and ellipses,
and text.! To specify a primitive, the application sends the coordinates defining the
primitive’s shape to the appropriate SRGP primitive-generalor procedure, It is legal for a
specified point to lie outside the screen's bounded rectangular area; of course, only those
portions of a pﬂmmve that lie inside the screen bounds will be visible,

Lines and polylmes The following SRGP procedure draws a line from (x! y.') to
(x2, y2):

procedure SRGP_lineCoord (x/, y!. x2, y2 : integer);?
Thus, to plot a line from (0, 0) to (100, 300), we simply call
SRGP_ lineCoord (0, 0, 100, 300);

Because it is often more natural to think in terms of endpoints rather than of individual x
and y coordinates, SRGP provides an altemate line-drawing procedure:

procedure SRGP_line (pt!, p12 : point);

Here "‘point’" is a defined Lype, a record of two integers holding the point’s x and y values:

type
point = rmrd

x, y: integer
end;

A sequence of lines connecting successive vertices is called a polyline. Although polylines
can be created by repeated calls to the line-drawing procedures, SRGP includes them as a
special case. There are (wo polyline procedures, analogous to the coordinate and point
forms of the line-drawing procedures. These take arrays as parameters:

procedure SRGP_polyLineCoord (
vertexCount : integer; xArray, yArray : vertexCoordinateList);
procedure SRGP_polyLine (verrexCount : integer; verrices : vertexList);

where “*vertexCoordinateList”” and **vertexList’" are types defined by the SRGP package—
arrays of integers and points, respectively.

The first parameter in both of these polyline calls tells SRGP how many vertices o
expect. In the lirst call, the second and third paramelters are intcger arrays of paired x and y
values, and the polyline is drawn from vertex (xArray[0], yArray{0]), to vertex (xArray{1}],
yArray[1]), to vertex (xArray(2), yArray{2]), and so on. This form is convenient, for
instance, when plotting data on a standard set of axes, where xArray is a predetermined set

'Specialized procedures that draw a single pixel or an a.rray of pixels are described in the SRGP
reference manual.

EWe use Pascal with the following typesetting conventions. Pascal keywords and built-in types are in
boldface and user-defined types are in normal face. Symbolic constants are in uppercase type, and
variables are italicized. Comments are in braces, and pseudocode is italicized. For brevity,
declarations of constants and variables are omitied when obvious.

- _ _ ”

28 Programming In the Simple Raster Graphics Pukage!(SHGPl

of values of the independent variable and yArray is the set of data being computed or input
by the user. As an example, let us plot the output of an economic analysis program that
computes month-by-month trade figures and stores them in the 12-entry integer data array
balanceOfTrade. We will start our plot at (200, 200). To be able to see the differences
between successive points, we will graph them 10 pixels apart on the x axis. Thus, we will

_create an integer array, months, 10 represent the 12 months, and will set the entries to the

desired x values, 200, 210, . . ., 310, Similarly, we must increment each value in the data
array by 200 to put the 12 y coordinates in the right place. Then, the graph in Fig. 2.2 is
plotted with the following code:

{Plot the axes}
SRGP_ lineCoord (50, 200, 350, 200);
SRGP_ lineCoord (200, 50, 200, 350);

{Plot the data}
SRGP_polyLineCoord (12, months, balanceOfTrade);

We can use the second polyline form to draw shapes by specifying pairs of x and y values

together as points, passing an array of such points to SRGP. We create the bowtie in Fig.
2.3 by calling

SRGP_polyLine (7, bowiieArray);
The table in Fig. 2.3 shows how bowtieArray was defined.

Markers and polymarkers. It is often convenient to place markers (e.g., dots,
asterisks, or circles) at the data points on graphs. SRGP therefore offers companions to the

line and polyline procedures. The following procedures will create a marker symbol
centered at (x, y):

procedure SRGP_markerCoord (x, y : integer):
procedure SRGP_marker (pr : point);

The marker's style and size can be changed as well, as explained in Section 2.1.2. To create

(100, 100)

‘

Ay 20 S48
ST TERIBIST

bowtieArray

T

Fig 2..2 Graphing a data array.

Fig. 2.3 Drawing a polyline.

2.1 Drawing with SRGP 29

a sequence of identical markers at a set of points, we call either of

procedure SRGP_polyMarkerCoord (
vertexCount : integer; xArray, yArray : vertexCoordinateList);
procedure SRGP_polyMarker (vertexCouns : integer; vertices : veriexList);
Thus, the following additional call will add markers to the graph of Fig. 2.2 to produce Fig.
2.4,

SRGP_polyMarkerCoord (12, months, balanceQOfTrade);

Polygons and rectangles. To draw an outline polygon, we can either specify a polyline
that closes on itself by making the first and last vertices identical (as we did to draw the
bowtie in Fig. 2.3), or we can use the following specialized SRGP call:

procedure SRGP_polygon (verfexCouns : integer; vervices : vertexList);

This call automatically closes the figure by drawing a line from the last vertex to the first. To
draw the bowtie in Fig. 2.3 as a polygon, we use the following call, where bowrieArray is
now an array of only six points:

SRGP_polygon (6, bowtieArray),

Any rectangle can be specified as a polygon having four vertices, but an upright rectangle
(one whose edges are parallel to the screen’s edges) can also be specified with the SRGP
“rectangle’” primitive using only two vertices (the lower-left and the upper-right corners).

procedure SRGP_rectangleCoord (leftX, bortomY, rightX, topY : lnteger);
procedure SRGP_rectanglePt (botiomlefi, topRight : point);
procedure SRGP_rectangle (rect : rectangle);

The ‘‘rectangle’” record stores the bottom-left and top-right corners:
rectangle = record

bottomleft, topRight : point
end;

o

Fig. 2.4 Graphing the data aray using markers.

Programming in the Simple Raster Graphics Package (SRGP)

<

(a) (b) (c)
Fig. 2.5 Ellipse arcs,

30

Thus the following call draws an upright rectangle 101 pixels wide and 151 pixels high;

SRGP_rectangleCoord (50, 25, 150, 175);
SRGP provides the following utilities for creating rectangles and points from coordinate

data.

procedure SRGP_defPoint (x, y ! integer; var pt ; point);

procedure SRGP_defRectangle (
lefiX, botomY, rightX, topY : integer; var rect : rectangle):

Our example rectangle could thus have been drawn by

SRGP_defRectangle (50, 25, 150, 175, rect):

SRGP_rectangle (rect);

(;ircles and ellipses. Figure 2.5 shows circular and elliptical arcs drawn by SRGP, Since
c!rc]cs are a special case of ellipses, we use the term ellipse arc for all these forms, whether
circular or elliptical, closed or partial arcs, SRGP can draw only standard ellipses, those
whose major and minor axes are parallel to the coordinate axes.

Altpough there are many mathematically equivalent methods for specilying ellipse
arcs, it is convenient for the programmer to specify arcs via the upright rectangles in which
they are inscribed (see Fig. 2.6); these upright rectangles are called hounding hoves or
extents,

The width and height of the extent determine the shape of the ellipse Whether or not
the arc is closed depends on a pair of angles that specify where the are starts and ends For

convenience, each angle is measured in rectangular degrees that run counterclock wise, with

0° corresponding to the positive portion of the x axis, 90° to the positive portion of the

45°

o g o

extentRect v
= ——‘-‘\ ke startAngle
Y
-
- 5 - ’ Uﬂ
endAngle
270°

Fig. 2.6 Specifying ellipse arcs.

2.1 Drawing with SRGP 31

Fig. 2.7 Lines of various widths and styles.

axis, and 45° to the *‘diagonal”’ extending from the origin to the top-right corner of the
rectangle. Clearly, only if the extent is a square are rectangular degrees equivalent to

circular degrees.

The general ellipse procedure is
procedure SRGP_ellipseArc (extentRect : rectangle; startAngle, endAngle : real);

2.1.2 Attributes
Line style and line width. The appearance of a primitive can be controlied by
specification of its artributes. The SRGP attributes that apply to lines, polylines, polygons,

rectangles, and ellipse arcs are line sivle, line widih, color, and pen style.
Attributes are set modally; that is, they are global state variables that retain their values

until they are changed explicitly. Primitives are drawn with the attributes in effect at the
time the primitives are specified; therefore, changing an attribute’s value in no way affects
previously created primitives—it affects only those that are specified after the change in
attribute value. Modal atiributes are convenient because they spare programmers from
having 1o specify a long parameter list of attributes for each primitive, since there may be
dozens of different attributes in a production system. .
Line style and line width are set by calls to
procedure SRGP_setLineStyle (value : CONTINUQUS / DASHED {porTeD / ... %!
procedure SRGP_setLineWidth (value : integer);
The width of a line is measured in screen units—that is, in pixels. Each attribuie has a
default: line style is CONTINUOUS, and width is 1. Figure 2.7 shows lines in a variety of
widths and styles: the code that generated the figure is shown in Fig. 2.8.

The descriptions here of SRGP’s attributes often lack fine detail, particularly on interactions between

different attributes. The detail is omitied because the exact effect of an aribute is a function of its
implementation. and, for performance reasons, different implementations are used on different
systems; for these details, consult the implementation-specific reference manuals.

*Here and in the following text, we use a shorthand notation. In SRGP, these symbolic constants are
actually values of an enumerated data type “lineStyle."”
/

- (e werere eever WrEPNIocE Package (BRAGP)

SRGP_setLineWidth (3);

SRGP_lineCoord (55, 5, 35, 295): [Line a)

SRGP_selLineStyle (DASHEDY),
SRGP_setLineWidth (10); i

SRGP_lineCoord (108, 5, 155, 295%: [Line b)

SRGP_setLineWidth (15);
SRGP_setLineStyle (DOTTED);

SRGP_lineCoord (155, 5, 285, 255); [Linec)

i : o s
Fig. 2.8 Code used to generate Fig. 2.7.

We can think of the line style as a bit mask used to write pixels selectively as the
primitive is scan-converted by SRGP. A zero in the mask indicates that this pixel should not
be written and thus preserves the original value of this pixel in the frame buffer. One can
think of this pixel of the line as transparent, in that it lets the pixel "*underneath™ show
through. CONTINUOUS thus corresponds to the string of all Is, and DASHED to the string
TLLI001 111001111 . . ., the dash being twice as long as the transparent interdash
segments,

Each attribute has a default: for example, the default for line style is CONTINUOUS, that
for line width is 1, and so on. In the early code examples, we did not set the line style for the
first line we drew; thus, we made use of the line-style default. In practice, however, making
assumptions about the current state of attributes is not safe, and in the code examples that
follow we set attributes explicitly in each procedure, 50 as to make the procedures modular
and thus to facilitate debugging and maintenance. In Section 2.1,4, we see that it is even

safer for the programmer o save and restore attributes explicitly for each procedure,
Altributes that can be set for the marker primitive are

procedure SRGP_setMarkerSize (value : integer);

procedure SRGP_setMarkerStyle (value : MARKER_CIRCLE / MARKER SOUARE / .)

Marker size specifies the length in pixels of the sides of the square extent of cach marker.

The complete set of marker styles is presented in the reference manual: the circle style is the
default shown in Fig. 2.4.

Color. Each of the attributes presented so far affects only some of the SRGP primitives,
but the integer-valued color atiribute affects all primitives. Obviously, the color attribute’s
meaning is heavily dependent on the underlying hardware: the two color values found on
every system are 0 and |. On bilevel systems, these colors’ appearances are easy to
predict—color-1 pixels are black and color-0 pixels are white for black-on-white devices,
green is 1 and black is 0 for green-on-black devices, and so on.

The integer color attribute does not specify a color directly; rather, it is an index into
SRGP's color table, each entry of which defines a color or gray-scale value in a manner that
the SRGP programmer does not need 1o know about. There are 2¢ entries in the color table,
'\l.yh_e;e,d is the depth (number of bits stored for each pixel) of the frame buffes, On bilevel
implementations, the color table is hardwired; on most color implementations, however,

21 Drawing with SRGP 33

iy

SRGP allows the application to modify the table. Some of the many uses for the

indirectness provided by color tables are explored in Chapters 4, 17, and 21. ¥

There are two methods that applications can use to specify colors. An applmhon I'fx
which machine independence is important should use the integers 0 and | directly; it will

i icati color support or is *"
then run on all bilevel and color displays. !l'the appiu!_wn assumes. 4
written for a particular display device, then it can use the implementation-dependent color

names supported by SRGP. These names are symbolic constants that slm whew. u:n;u

standard colors have been placed within the default color table for that display device.]r

instance, a black-on-white implementation pmvidesll.he two color names COLOR_BLACK (in:

and COLOR_WHITE (0); we use these two values in _me sample oodz.fraglmls in o

chapter. Note that color names are not useful to applications that modify the color tab e.;
We select a color by calling

procedure SRGP_setColor (colorindex : integer);

wif

2.1.3 Filled Primitives and Their Attributes

Primitives that enclose areas (the so-called area-defining primiti.\m) can be drawn in two
ways: outlined or filled. The procedures described in lhe previous section generale lhc i
former style: closed outlines with unfilled interiors. S_RGP s filled versions o.f area—deﬁ:ungr :
primitives draw the interior pixels with no outline. Figure _2.9 shows SRGP's repertoire o
filled primitives, including the filled ellipse arc, or pie :du-e. : ; "
Note that SRGP does not draw a contrasting outline, suc!1 as a |-plxcl:lhlck.sfll
boundary, around the interior; applications wanting such an outline must draw. it explhcft!y. ‘
There is also a subtle issue of whether pixels on the bon‘.ie: of an m'c:a-dc.ﬁnulg primitive
should actually be drawn or whether only pixels lt:u;i; strictly in the interior should. This .
is discussed in detail in Sections 3.5 and 3.0,
pmb'lret:ng‘:nerate a filled polygon, we use SRGP_ﬁI!Po!ygon or SRGP.ﬁ]IPo:iygonusm
with the same parameter lists used in the unfilled versions afﬂlese_alh. We dc ne :
area-filling primitives in the same way, by prefixing “fill'’ to their names. Since polygons

(d)

7

Fig. 2.9 Filled primitives, (a-c) Bitmap pattem opaque. l.dl Bitmap pattern transpar-
ent. (e) Solid.

&
4
;
¢

1 by sl B Ry
34 Prog'rlmmlng in the Simple Raster Graphics Package (SRGP)

may be concave or even self-intersecting, we need a rule for specifying what regions are
interior and thus should be filled, and what regions are exterior. SRGP polygons follow the
odd-parity rule. To determine whether a region lies inside or outside a given polygon,
choose as a test point any point inside the particular region. Next, choose a ray that starts at
the test point and extends infinitely in direction, and that does not pass through any
vertices. If this ray intersects the polygon outline an odd number of times, the region is
considered to be interior (see Fig. 2.10).

SRGP does not actually perform this test for each pixel while drawing; rather, it uses
the optimized polygon scan-conversion techniques described in Chapter 3, in which the
odd-parity rule is efficiently applied to an entire row of adjacent pixels that lie either inside
or outside. Also, the odd-parity ray-intersection test is used in a process called pick

correlation to determine the object a user is selecling with the cursor, as described in
Chapter 7. v

Fill style and fill pattern for areas. The fill-style attribute can be used to control the
appearance of a filled primitive's interior in four different ways, using

 procedure SRGP_setFillStyle (| -
mode: SOLID / BITMAP_PATTERN_OPAQUE / BITMAP_PATTERN_TRANSPARENT /
PIXMAP_PATTERN),

The first option, SOLID, produces a primitive uniformly filled with the current value of the
color attribute (Fig. 2.9e, with color set to COLOR_WHITE). The second two options,
BITMAP_PATTERN_OPAQUE and BITMAP_PATTERN_TRANSPARENT, fill primitives with a
regular, nonsolid pattern, the former rewriting all pixels underneath in either the current
color, or another color (Fig. 2.9¢), the latter rewriting some pixels underneath the primitive
in the current color, but letting others show through (Fig. 2.9d). The last option,
PIXMAP_PATTERN, writes patlerns containing an arbitrary number ol colors, always in
opaque mode.

Bitmap fill patterns are bitinap arrays of Is and Os chosen (rom a table of available

ve
2 Exterior
points have an

aven number

é ol crossings
1 Interior
points have an
odd number
P> 3 of crossings

' Wy
Fig. 2.10 Odd-parity rule for determining interior of a polygon.

2.1 Drawing with SRGP 36

patterns by specifying
procedure SRGP_setFillBitmapPatiern (pamndndu integer);

Eadimuymtlrpnmubleslmnumqucpmun l.heonuprwﬂedmthRGP stmn
in the reference manual, include gray-scale tones (ranging from nearly black to nearly -
white) and various regular and random patterns. In transparent mode, these patterns are
generated as follows. Consider any pattern in the pattern table as a small bitmap—say, 8 by
8—10 be repeated as needed (tiled) to fill the primitive. On a bilevel system, the current
color (in effect, the foreground color) is written where there are Is in the pattern; where
there are Os—the **holes’*—the corresponding pixels of the original image are not wrilten,
and thus ‘‘show through®* the partially transparent primitive written on top. Thus, the
bitmap pattern acts as a ‘‘memory write-enable mask'’ for patterns in transparent mode,
much as the line-style bit mask did for lines and outline primitives.

In the more commonly used BITMAP_PATTERN_OPAQUE mode, the 1s are writlen in the
current color, but the Os are written in another color, the background color, previously set
by '

procedure SRGP_setBackgroundColor (colorindex : integer);

On bilevel displays, each bitmap pattern in OPAQUE mode can generate only two distinctive
fill patterns. For example, a bitmap pattern of mostly Is can be used on a black-and-white
display to generale a dark-gray fill pattern if the current color is set to black (and the
background to white), and a light-gray fill pattern if the current color is set to white (and the
background to black). On a color display, any combination of a foreground and a
background color may be used for a variety of two-tone effects. A typical application on a
bilevel display always sets the background color whenever it sets the foreground color, since
opaque bitmap patterns are not visible if the two are equal; an application could create a
SetColor procedure to set the background color automatically to contrast with the
foreground whenever the foreground color is set explicitly.

Figure 2.9 was created by the code fragment shown in Fig. 2.11. The adw.nlage of

SRGP_sctFllStvle (BITMAP_PATTERN_OPAQUE); i
SRGP _setFillBitmapPattern (BRICK _BIT_PATTERN), { Brick pattern|
SRGP_lillPalygon (3, triangle_coards), (a]
SRGP_setFillBitmapPattern (MEDIUM_GRAY _BIT_PATTERN); {50 percent gray|
SRGP_flIEllipseArc (ellipseArcRect, 60.0, 290.0); {b)
SRGP_setFillBitmapPattern (DIAGONAL_BIT_PATTERN);

SRGP_fillRectangle (opaqueFilledRect); {cl

SRGP_selFillStyle (BITMAP_PATTERN_TRANSPARENT):
SRGP_fillRectangle (transparentFilledRect); (d}

. SRGP_setFillStyle (SOLID); .8
" SRGP_setColor (COLOR_WHITE); -
' SRGP_fillEllipse (circleRect); el 2 e

Fig. 2.11 Code used to generate Fig. 2.9.

5]
: 3R
i ré

Wi o i

e N

i o R e ¥ '
36 ngrﬁmmlug In the Simple Raster Graphics Package (SRGP)

having two-tone bitmap patterns is that the colors are not specified explicitly, but rather are
determined by the color attributes in effect, and thus can be generaled in any color
combination. The disadvantage, and the reason that SRGP also supports pixmap patterns, is
that only two colors can be generated. Often, we would like to fill an area of a display with
multiple colors, in an explicitly specified pattern. In the same way that a bitmap pattern is a
small bitmap used to tile the primitive, a small pixmap can be used to tile the primitive,
where the pixmap is a pattern array of color-table indices. Since each pixel is explicitly set
in the pixmap, there is no concept of holes, and therefore there is no distinction between
transparent and opaque filling modes. To fill an area with a color pattern, we select a fill
style of PIXMAP_PATTERN and use the corresponding pixmap pattern-selection procedure:

procedure SRGP_setFnllemapPatlcm (patternindex : integer);

Since both bitmap and pixmap patterns generate pixels with color values that are indices
into the current color table, the appearance of filled primitives changes if the programmer
modifies the color-table entries. The SRGP reference manual discusses how to change or
add to both the bitmap and pixmap pattern tables. Also, although SRGP provides default
entries in the bitmap pattern table, it does not give a default pixmap pattern table, since
there is an indefinite number of color pixmap patterns that might be useful.

Pen pattern for outlines. The advantages of patterning are not restricted to the use of
this technique in area-defining primitives; patterning can also be used to affect the
appearance of lines and outline primitives, via the pen-style attribute. Using the line-width,
line-style, and pen-style attributes, it is possible, for example, to create a 5-pixel-thick,
dot-dashed ellipse whose thick dashes are patterned. Examples of solid and dashed thick
lines with various patterns in transparent and opaque mode and their interactions with
previously drawn primitives are shown in Fig. 2.12; the code that generated the image is in
Fig. 2.13. The use of a pen pattern for extremely narrow lines (| or 2 pixels wide) is not
recommended, because the pattern is not discernible in such cases.

The interaction between line style and pen style is simple: Os in the line-style mask

%

1 “
@ 7% L
| 7% 7

(@ (B (o (@

Fig. 2.12 Interaction between pen style and line style. (a) Continuous solid.
{b) Dashed solid. (c) Dashed bitmap pattern opaque. (d) Dashed bitmap pattemn
transparent,

2.1 Drawing with SRGP 37

| We show only the drawing of the lines, not the background rectangle.
We draw the lines in order from left 1o right.]

SRGP_setLineWidth (15); (Thick lines show the interaction better.) = 1"
SRGP_selLineStyle (CONTINUOUS); '
SRGP_sctPenStyle (SOLID):

SRGP_line (pral. ptal). [a: Solid. continuous)

SRGP_setLineStyle (DASHED);

SRGP_line (pihl, ptb2); {b: Solid, dashed|

SRGP_setPenBitmapPatemn (DIAGONAL_BIT_PATTERN);
SRGP_setPenStyle (BITMAP_PATTERN_OPAQUE);
SRGP_line (prel, ptc2); {c: Dashed, bitmap pattern opaque |

SRGP_setPenStyle (BITMAP_PATTERN_TRANSPARENT);
SRGP_line (ptd!, ptd2); [d: Dashed, bitmap pattern transparent }

Fig. 2.13 Code used to generate Fig. 2.12.

fully protect the pixels on which they fall, so the pen style influences only those pixels for
which the line-style mask is |.
Pen style is selected with the same four options and the same patterns as fill style. The
same bitmap and pixmap pattern tables are also used, but separate indices are mammuqi
50 that resetting a pen style's pattern index will not affect the ﬁll style's patiem index

procedure SRGP_setPenStyle (mode: SOUD / BITMAP_PATTERN_OPAQUE / ...); i
procedure SRGP_sctPenBitmapPattemn (patternindex : integer);
procedure SRGP_setPenPixmapPatiern (patternindex ; integer);

Application screen background. We have defined “*background color'" as the color of
the 0 bits in bitmap patterns used in opaque mode, but the term background is used in
another, unrelated way. Typically, the user expects the screen to display primitives on some
uniform application screen background pattern that covers an opaque window or the entire
screen. The application screen background pattern is often solid color 0, since SRGP
initializes the screen to that color upon initialization. However, the background pattern is
sometimes nonsolid, or solid of some other color; in these cases, the application is
responsible for setting up the application screen background by drawing a full-screen
rectangle of the desired pattem, before drawing any other primitives.

A common technique to *‘erase’” primitives is to redraw them in the application screen
background pattern, rather than redrawing the entire image each time a primitive is deleted.
However, this *‘quick and dirty’* updating technique yields a damaged image when the
erased primitive overlaps with other primitives. For example, assume that the screen
background pattern in Fig. 2.9 is solid white and that we erase the rectangle marked (c) by
redrawing it using solid COLOR_WHITE. This would leave a white gap in the filled ellipse arc
(b) underneath. ‘‘Damage repair’’ involves going back to the application dalabasc md
respecifying primitives (see Exercise 2.9).

il

38 Programming In the Simple Rester Graphics Package (SRGP)

| EOR ! % i | i
2.{ i Saving anJ Restoring Attributes

As you can see, SRGP supports a variety of attributes for its various primitives. Individual
attributes can be saved for later restoration; this feature is especially useful in designing
application procedures that perform their functions without side effects—that is, without
affecting the global attribute state, For each attribute-setting SRGP procedure, there is a

corresponding inquiry procedure that can be used to determine the current value; for
cxamplc.

procedun SRGP mqulrtheStylc (var value : CONTINUOUS / DASHED /...).

For convenience, SRGP allows the inquiry and restoration of the entire set of attributes—
called the attribute group—via

procedure SRGP_inquireAtiributes (Var group : attributeGroup);
procedure SRGP_restoreAltributes (group : attributeGroup);

The application -program does not have access to the fields of the SRGP-defined
**attributeGroup’”* record; the record returned by the inquiry procedure can be used only for
later restoration.

g DA
2.1.5 Text
Specifying and implementing text drawing is always complex in a graphics package,
because of the large number of options and attributes text can have. Among these are the
style or font of the characters (Times Roman, Helvetica, Clarinda, eic.), their
appearance (‘‘Roman,’’ beold, iralic, underlined, etc.), their size (typically measured in
points®) and widths, the intercharacter spacing, (he spacing between conseculive lines, the
angle at which characters are drawn (horizontal, vertical, or at a specified angle), and so on.
The most rudimentary facility, typically found in simple hardware and software, is
fixed-width, monospace character spacing, in which all characters occupy the same width,
and the spacing between them is constant. At the other end of the spectrum. proportional
spacing varies both the width of characters and the spacing between them (o make the tex!
as legible and aesthetically pleasing as possible. Books, magazines, and newspapers all uw
proportional spacing, as do most raster graphics displays and laser printers SRGP provides
in-between functionality: Text is horizontally aligned. character widths vary, but space
between characters is constant, With this simple form of proportional spacing, the
application can annotate graphics diagrams, interact with the user via textual menus and
fill-in forms, and even implement simple word processors. Text-intensive applications,
however, such as desktop-publishing programs for high-quality documents, need special-
ized packages that offer more control over text specification and attributes than does SRGP.
PostScript [ADOB87], offers many, such advanced features and has become an industry

standard for describing text and other primitives with a large variety of options and
attributes,

‘A point is a unit commonly used in the publishing industry; it is equal to approximately Yz inch.

2.1 . Drawing with SRGP 39

Text is generated by a call to I KRR
procedure SRGP_text (origin : point; fex : string);

The location of a text primitive is controlled by specification of its origin, also known as its
anchor point. The x coordinate of the origin marks the leRt edge of the first character, and
the y coordinate specifies where the baseline of the string should appear. (The baseline is

the hypothetical line on which characters rest, as shown in the textual meau buttons of Fig..

2.14. Some characters, such as *'y"’ and *‘q,”” have a tail, called the descender, that goes
below the baseline.)

A text primitive’s appearance is determined by only two attributes, the current color
and the font, which is an index moanimplemwnm-depmdmlubleotﬁmumvm

sizes and styles:
procedure SRGP_selFonl (value : lnteler):

Each character in a font is defined as a rectangular bitmap, and SRGP draws a character by
filling a rectangle using the character's bitmap as a pattern, in bitmap-pattemn-transparent
mode. The Is in the bitmap define the character’s interior, and the Os specify the
surrounding space and gaps such as the hole in '*0."" (Some more sophisticated packages
define characters in pixmaps, allowing a character’s interior to be patterned.)

"

Formatting text. Because SRGP implementations offer a restricted repertoire of fonts
and sizes, and because implementations on different hardware rarely offer equivalent
repertoires, an application has limited control over the height and width of text strings,
Since text-extent information is needed in order to produce well-balanced compositions (for

instance, to center a lext string within a rectangular frame), SRGP provides the following '

pmodmquuamngﬂuamdnwmngwngﬂnmvﬂuold&efm
attribute:

procedure SRGP_inquireTextExtent (!
text : string; var width, height, descent : integer);

Although SRGP does not support bitmap opaque mode for writing characters, such a mode
can be simulated easily. As an example, the procedure in Fig. 2.15 shows how extent

Computed Computed center
text ongin ol bunm‘: axtent

i

I*m*{

Fig. 2.14 Dimensions of text centered within a rectangular button and points W—
ed from these dimensions for centering purposes.

'.',"..:t

RRFLSE 3%

.40 Programming In the Simple Raster Graphics Package (SRGP)

procedure MakeQuitButton (huitonRect : reclangle);
var
centerOfButton, textQOrigin | point;
- ., width, height, descent : integer;
begin
SRGP_setFillStyle (SOLID);
SRGP_setColor (COLOR_WHITE);
SRGP_fillRectangle (buttonRect);
SRGP_setColor (COLOR_BLACK);
SRGP_setLineWidth (2);
SRGP_Rectangle (burtonRect);

SRGP_inquireTextExtent (‘'quil’, width, height, descent):

centerOfButton.x 1= (buttonRect.bottomLeft.x + buttonRect.topRighi.x) div 2;
centerOfBution.y := (buttonRect.bottomLeft.y + buttonRect.iopRight.y) div 2;

textOriginx := centerOfBution.x — (widrth div 2); *
textOrigin.y := centerOfButton.y - (height div 2);

SRGP_setColor (COLOR_BLACK);
SRGP_text (texrOrigin, 'quit’)
end;

Fig. 2.1 6 Code used to create Fig. 2.14.

information and text-specific attributes can be used to produce black text, in the current
font, centered within a white enclosing rectangle, as shown in Fig. 2.14. The procedure
first creates the background button rectangle of the specified size, with a separate border,
and then centers the text within it. Exercise 2.10 is a variation on this theme.

2.2 BASIC INTERACTION HANDLING

Now that we know how to draw basic shapes and text, the next step is to learn how o write
interactive programs that communicate effectively with the user, using input desices such ay
the keyboard and the mouse. First, we look at general guidelines fur making ellective and
pleasant-to-use interactive programs; then, we discuss the fundamental notion of logical
(abstract) input devices. Finally, we look at SRGP's mechanisms for dealing with various
aspects of interaction handling,

2.2.1 Human Factors

The designer of an interactive program must deal with many matters that do not arise in a
noninteractive, batch program. These are the so-called human factors of a program, such as
its interaction style (often called "*look and feel'') and its ease of learning and of use, and
they are as important as its functional completeness and correctness. Techniques for
user-computer interaction that exhibit good human factors are studied in more detail in
Chapters 8 and 9. The guidelines discussed there include these:

e

62 ‘Progttlumrrlingi i!n ihe Slmplo Raster Graphics Package (SRGP)

Fig 2.23 Rubber-echo scenarios.

reset to the center of the screen whenever the locator is deactivated. Unless the programmer
explicitly resets it, the measure (and feedback position, if the echo is active) is initialized to
that same position when the device is reactivated. At any time, whether the device is active
or inactive, the programmer can reset the locator’s measure (the position portion, not the
fields concerning the buttons) using

procedure SRGP_setLocatorMeasure (position : point);

Resetting the measure while the locator is inactive has no immediate effect on the
screen, but resetting it while the locator is active changes the echo (if any) accordingly.
Thus, if the program wants the cursor to appear initially at a position other than the center

when the locator is activated, a call to SRGP_setLocatorMeasure with that initial position-

must precede the call to SRGP_setlnputMode. This technique is commonly used to achieve
continuity of cursor position: The last measure before the locator was deactivated is stored,
and the cursor is returned to that position when it is reactivated.

Keyboard attributes and measure control. Unlike the locator, whose echo is posi-
tioned to reflect movements of a physical device, there is no obvious screen position for a
keyboard device's echo. The position is thus an attribute (with an implementation-specific
default value) of the keyboard device that can be set via

procedure SRGP_setKeyboardEchoOrigin (origin : point);

The default measure for the keyboard is automatically reset to the null string when the
keyboard is deactivated. Setting the measure explicitly to a nonnull initial value just before
activating the keyboard is a convenient way to present a default input string (displayed by
SRGP as soon as echoing begins) that the user can accept as is or modify before pressing the
Return key, thereby minimizing typing. The keyboard's measure is set via

pfocedure SRGP_setKeyboardMeasure (meastire : string);

3

{ (I [- I i 1
2.3 RASTER GRAPHICS FEATURES

By now, we have introduced most of the features of SRGP. This seclim.i disc;ssscs't.he
remaining facilities that take particular advantage of raster hardware, especially the ability

R

2.3 Raster Graphics Foatures 63

to save and restore pieces of the screen as they are overlaid by other images, such as
windows or temporary menus. Such image manipulations are done under control of
window- and menu-manager application programs. We also introduce offscreen bitmaps
(called canvases) for storing windows and menus, and we discuss the use of clipping
rectangles.

2.3.‘i Canvases

The best way to make complex icons or menus appear and disappear quickly is to create
them once in memory and then to copy them onto the screen as needed. Raster graphics
packages do this by generating the primitives in invisible, offscreen bitmaps or pixmaps of
the requisite size, called canvases in SRGP, and then copying the canvases to and from
display memory. This technique is, in effect, a type of buffering. Moving blocks of pixels
back and forth is faster, in general, than is regenerating the information, given the existence
of the fast SRGP_copyPixel operation that we shall discuss soon.

An SRGP canvas is a data structure thal stores an image as a 2D array of pixels. It also
slores some control information concerning the size and attributes of the image. Each
canvas represents its image in its own Cartesian coordinate system, which is identical to that
of the screen shown in Fig. 2.1; in fact, the screen is itself a canvas, special solely in that it
is the only canvas that is displayed. To make an image stored in an off-screen canvas visible,
the application must copy it onto the screen canvas. Beforehand, the portion of the screen
image where the new image—for example, a menu—will appear can be saved by copying
the pixels in that region to an offscreen canvas. When the menu selection has taken place,
the screen image is restored by copying back these pixels.

At any given lime, there is one currently active canvas: the canvas into which, new
primitives are drawn and to which new attribute settings apply. This canvas may be the
screen canvas (the default we have been using) or an offscreen canvas. The coordinates
passed to the primitive procedures are expressed in terms of the local coordinate space of
the currently active canvas. Each canvas also has its own complete set of SRGP attributes,
which affect all drawing on that canvas and are set to the standard default values when the
canvas is created. Calls to attribute-setting procedures modifly only the attributes in the
currently active canvas. It is convenient to think of a canvas as a virtual screen of
program-spectlied dimensions, having its own associated pixmap, coordinate system, and
attribute group. These properties of the canvas are sometimes called the stare or context of
the canvas.

When SRGP is initialized, the screen canvas is automatically created and made active.
All our programs thus far have generated primitives into only that canvas. It is the only
canvas visible on the screen, and its 1D is SCREEN_CANVAS, an SRGP constant. A new

offscreen canvas is created by calling the following procedure, which returns the 1D
allocated for the new canvas: X

procedure SRGP_createCanvas (width, heigh : integer; var canvaslD : integer);

Like the screen. the new canvas’s local coordinale system origin (0, 0) is at the bottom-left
comer and the top-right corner is al (width~1, heighi—=1). A 1 by | canvas is therefore
defined by width and height of 1, and its bottom-left and top-right comers are both (0, 0)!
This is consistent with our treatment of pixels as being at grid intersections: The single pixel
ina | by 1 canvas is at (0, 0).

54 i’mgrammlng In the Simple Raster Graphics Package (SRGP)

A newly created canvas is automatically made active and its pixels are initialized to
color 0 (as is also done for the screen canvas before any primitives are displayed). Once a
canvas is created, its size cannot be changed. Also, the programmer cannot control the
number of bits per pixel in a canvas, since SRGP uses as many bits per pixel as the hardware
allows. The attributes of a canvas are kept as part of its ‘*local’’ state information; thus, the
program does not need to save the currently active canvas’s altributes explicitly before
creating a new active canvas,

The application selects a previously created canvas to be the currently active canvas via

procedure SRGP_useCanvas (canvasiD : Integer);

A canvas being activated in no way implies that that canvas is made visible; an image in an
offscreen canvas must be copied onto the screen canvas (using the SGRP_copyPixel
procedure described shortly) in order to be seen.

Canvases are deleted by the following procedure, which may not be used to delete the
screen canvas or the currently active canvas.

procedure SRGP_deleteCanvas (canvasiD : integer);

The following procedures allow inquiry of the size of a canvas; one returns the reclangle
which defines the canvas coordinate system (the bottom-left point always being (0, 0)), and
the other returns the width and height as separate quantities.

procedure SRGP_inquireCanvasExtent (canvaslD : Integer; var extent : rectangle);
procedure SRGP_inquireCanvasSize (
canvasiD : integer; var width, height : integer);

Let us examine the way canvases can be used for the implementation of Perform-
PulldownMenulnteraction, the procedure called by the high-level interaction handler
presented in Fig. 2.22 and Section 2.2.6. The procedure is implemented by the pseudocode
of Fig. 2.24, and its sequence of actions is illustrated in Fig. 2.25. Each menu has a unique

function PerformPulldownMenulnteraction (menulD : integer) : integer;
{The saving/copying of rectangular regions of canvases is described in Section 21 1)
begin
highlight the menu header in the menu bar;
menuBodyScreenExtent := screen-area rectungle at which menu body should appear,
save the current pixels of the menuBodyScreenExient in ¢ temporary canias;
[See Fig. 2.25a.)
copy menu body image from hady canvas to menuBodyScreenExtent,
[See Fig. 2.25b and Pascal code in Fig. 2.28.}
wait for button-up signalling the user made a selection, then gei locator measure.
copy saved image [rom temporary canvas back to menuBodyScreenExtent:
(See Fig. 2.25¢)
if GEOM_pointInRect (measureOfLocator.position, menuBodyScreenExtent) then
calculate and return index of chosen item, using y coord of measure position
else
return 0
end;

Fig. 2.24 Pseudocode for PerformPulldownMenulnteraction.

2.3 Raster Graphics Features 65

Save canvas

Cult ! |
Menu body | 8w |
canvases E =

bstate

File Edit Pen Shape Pattem

menu menu menu menu

Fig. 2.25 Saving and restoring area covered by menu body.

ID (returned by the CorrelateMenuBar function) that can be used to locate a database record
containing the following information about the appearance of the menu body:

® The ID of the canvas storing the menu's body

® The rectangular area (called menuBodyScreenExtens in the pseudocode), specified in
screen-canvas coordinates, in which the menu’s body should appear when the user
pulls down the menu by clicking in its header

2.3.2 Clipping Rectangles

Often, it is desirable to restrict the effect of graphics primitives to a subregion of the active
canvas, (o pratect other portions of the canvas. To facilitate this, SRGP maintains a clip
rectangle attribute. All primitives are clipped to the boundaries of this rectangle; that is,
primitives (or portions of primitives) lying outside the clip rectangle are not drawn. Like any
attribute, the clip rectangle can be changed at any time, and its most recent setting is stored
with the canvas's attribute group. The default clipping rectangle (what we have used so far)
is the full canvas; it can be changed to be smaller than the canvas, but it cannot extend
beyond the canvas boundaries. The relevant set and inquiry calls for the clip rectangle are

procedure SRGP_setClipRectangle (clipRect : rectangle);
procedure SRGP_inquireClipRectangle (var clipRect : integer);

A painting application like that presented in Section 2.2.4 would use the clip rectangle to
restrict the placement of paint to the drawing region of the screen, ensuring that the
surrounding menu areas are not damaged. Although SRGP offers only a single upright
rectangle clipping boundary, some more sophisticated software such as POSTSCRIPT offer
multiple, arbitrarily shaped clipping regions.

i

66 Programming in the Simple Raster Graphics Package (SRGP)

2.3.3 The SRGi’_copyPluel Operation

The powerful SRGP_copyPixel command is a typical raster command that is often called
bitBlt (bit block transfer) or pixBlt (pixel Blt) when implemented directly in hardware; it
first became available in microcode on the pioneering ALTO bitmap workstation at Xerox
Palo Alto Research Center in the early 1970s [INGAB1]. This command is used to copy an
array of pixels from a rectangular region of a canvas, the source region, 0 a destination
region in the currently active canvas (see Fig. 2.26). The SRGP facility provides only
restricted functionality in that the destination rectangle must be of the same size as the
source. In more powerful versions, the source can be copied lo a destination region of a
different size, being automatically scaled to fit (see Chapter 19). Also, additional features
may be available, such as masks to selectively shield desired source or destination pixels
from copying (see Chapter 19), and halftone patierns that can be used to *'screen’ (i.e.,
shade) the destination region.
SRGP_copyPixel can copy between any two canvases and is specified as follows:

procedure SRGP_copyPixel (
sourceCanvasiD : integer; sourceRect | rectangle; destCorner | point);

The sourceRect specifies the source region in an arbitrary canvas, and destCorner specifies
the bottom-left corner of the destination rectangle inside the currently active canvas, each in
their own coordinate systems. The copy operation is subject to the same clip rectangle that
prevents primitives from generating pixels into protected regions of a canvas. Thus, the
region into which pixels are ultimately copied is the intersection of the extent of the
destination canvas, the destination region, and the clip rectangle, shown as the striped
region in Fig. 2.27.

To show the use of copyPixel in handling pull-down menus, let us implement the fourth
statement of pseudocode—'‘copy menu body image’ —from the PerformPulldownMenu-
Interaction function (Fig. 2.24). In the third statement of the pseudocode, we saved in an
offscreen canvas the screen region where the menu body is to go; now, we wish to copy the
menu body to the screen.

The Pascal code is shown in Fig. 2.28. We must be sure to distinguish between the two
rectangles that are of identical size but that are expressed in different coordinate systems

Destination

rectangle r--/.mm0
Source :
rectangle

: Dssiin:rtigc::? }\V

Currently active canvas

Source canvas

Fig. 2.26 SRGP_copyPixel.

2.3 Raster Graphics Features 57

B

Source canvas

Fig. 2.27 Clipping during copyPixel.

The first rectangle, which we call menuBodyExient in the code, is simply the extent of the
menu body’s canvas in its own coordinate system. This extent is used as the source
rectangle in the SRGP_copyPixel operation that puts the menu on the screen. The
menuBodyScreenExtent is a rectangle of the same size that specifies in screen coordinates
the position in which the menu body should appear; that extent’s bottom-left corner is
horizontally aligned with the left side of the menu header, and its top-right corner abuts the
bottom of the menu bar. (Figure 2.25 symbolizes the Edit menu's screen extent as a dotted
outline, and its body extent as a solid outline.) The menuBodyScreenExiens's bottom-left
point is used to specify the destination for the SRGP_copyPixel that copies the menu body.
It is also the source rectangle for the initial save of the screen area o be overlaid by the
menu body and the destination of the final restore.

[This code fragment copies a menu-body image onto screen,
al the screen position stored in the body's record.)

[Save the 1D of the currently active canvas. |
wuneCamaddl) = SRGP_inquire ActiveCanvas;

| Save the screen canvas’ clip-rectangle attribute value.)
SRGP_useCanvas (SCREEN_CANVAS);
SRGP_inquireClipRectangle (saveClipRectangle):

| Temporarily set screen clip rectangle to allow writing to all of the screen. |
SRGP_sciClipRectangle (SCREEN_EXTENT):

[Copy menu body from its canvas lo its proper area below the header in the menu bar.)
SRGP_copyPixel (menuCanvasID, menuBodyExtent, menuBodyScreenExtent lowerLeft);

{Restore screen altributes and active canvas. |

SRGP _seiClipRectangle (saveClipRectangle);
SRGP_useCanvas (suveCanvasiD);

Fig. 2.28 Code for copying the menu body to the screen.

" B8 Programming In the Simple Raster Graphics Package (SRGP)

Notice that the application's state is saved and restored to eliminate side effects. We set
the screen clip rectangle to SCREEN_EXTENT before copying; alternatively, we could set it to
the exact menuBodyScreenExtent.

{3 . i . ? '
2.3.4 Write Mode or RasterOp

SRGP_copyPixel can do more than just move an array of pixels from a source region to a
destination. It can also execute a logical (bitwise) operation between each corresponding
pair of pixels in the source and destination regions, then place the result in the destination
region. This operation can be symbolized as

D«SopD

where op, frequently called the RasterOp or write mode, consists in general of the 16
Boolean operators, Only the most common of these—replace. or, xor, and and—are
supported by SRGP; these are shown for a |-bit-per-pixel image in Fig. 2.29.

Write mode affects not only SRGP_copyPixel, but also any new primitives written onto
acanvas. As each pixel (either of a source rectangle of a SRGP_copyPixel or of a primitive)
is stored in its memory location, either it is wrilten in destructive replace mode or its value
is logically combined with the previously stored value of the pixel. (This bitwise
combination of source and destination values is similar to the way a CPU’s hardware
performs arithmetic or logical operations on the contents of a memory location during a
read-modify-write memory cycle.) Although replace is by far the most common mode,
xor is quite useful for generating dynamic objects, such as cursors and rubberband echoes,

as we discuss shortly.
] I replace
1 = Black v——
Dastination u ot

0 = While

Source

l:lop

G -

Fig. 2.29 Write modes for combining source and destination pixels.

N S

o

et

'
T

oy e

-y

g 4Tl

PRk e

2.3 Raster Graphics Features 59

We set the write-mode attribute with:

procedure SRGP_setWriteMode (
mode : WRITE_REPLACE / WRITE_XOR / WRITE_OR / WRITE_AND);

Since all primitives are generated according to the current write mode, the SRGP
programmer must be sure to set this mode explicitly and not to rely on the default setting of
WRITE_REPLACE.

To see how RasterOp works, we look at how the package actually stores and
manipulates pixels; this is the only place where hardware and implementation considera-
tions intrude on the abstract view of raster graphics that we have maintained so far.

RasterOps are performed on the pixel values, which are indices into the color table, not
on the hardware color specifications stored as entries in the color table. Thus, for a bilevel,
I-bit-per-pixel system, the RasterOp is done on two indices of | bit each. For an
8-bit-per-pixel color system, the RasterOp is done as a bitwise logical operation on two
8-bit indices.

Although the interpretation of the four basic operations on 1-bit-per-pixel monochrome
images shown in Fig. 2.29 is natural enough, the results of all but replace mode are not
nearly so natural for n-bit-per-pixel images (n > 1), since a bitwise logical operation on the
source and destination indices yields a third index whose color value may be wholly
unrelated to the source and destination colors.

The replace mode involves wriling over what is already on the screen (or canvas). This
destructive write operation is the normal mode for drawing primitives, and is customarily
used to move and pop windows. It can also be used to *‘erase’’ old primitives by drawing
over them in the application screen background pattern,

The or mode on bilevel displays makes a nondestructive addition to what is already on
the canvas. With color 0 as white background and color | as black foreground, oring a gray
fill pattern onto a white background changes the underlying bits to show the gray pattern.
But oring the gray pattern over a black area has no effect on the screen. Thus, oring a
light-gray paint swath over a polygon filled with a brick pattern merely fills in the bricks
with the brush pattern: it does not erase the black edges of the bricks, as replace mode
would, Painting is often done in or mode for this reason (sce Exercise 2.7).

The xor muxde on bilevel displays inverts a destination region. For example, to highlight
a button sclected by the user, we sel xor mode and generale a filled rectangle primitive with
color I, thereby toggling all pixels of the button: 0 xorl = 1, | xor | = 0. To restore the
button’s original status, we simply leave xor mode, set and draw the rectangle a second
time, thereby toggling the bits back to their original state. This technique is also used
internally by SRGP to provide the locator’s rubber-line and rubber-rectangle echo modes
(see Exercise 2.4). .

On many bilevel graphics displays, the xor technique is used by the underlying
hardware (or in some cases software) lo display the locator's cursor image in a
nondestructive manner. There are some disadvantages (o this simple technique; when the
cursor is on top of a background with a fine pattern that is almost 50 percent black and 50
percent white, it is possible for the cursor 1o be only barely noticeable. Therefore, many

60 Programming in the Simple Raster Graphics Package (SRGP)

bilevel displays and most color displays use replace mode for the cursor echo; this
technique complicates the echo hardware or software (see Exercise 2.5).

The and mode can be used, for example, to reset pixels selectively in the destination
region to color 0.

e "

2.4 LIMITATIONS OF SRGP

Although SRGP is a powerful package supporting a large class of applications, inherent
limitations make it less than optimal for some applications. Most obviously, SRGP provides
no support for applications displaying 3D geometry. There are also more subtle limitations
that affect even many 2D applications:

® The machine-dependent integer coordinate system of SRGP is too inflexible for those

applications that require the greater precision, range, and convenience of floating-
point,

SRGP stores an image in a canvas in a semantics-free manner as a matrix of
unconnected pixel values rather than as a collection of graphics objects (primitives),
and thus does not support object-level operations, such as ‘‘delete,” *‘move,”
“‘change color.”” Because SRGP keeps no record of the actions that produced the
current screen image, it also cannot refresh a screen if the image is damaged by other

software, nor can it re~scan-convert the primitives to produce an image for display on a
device with a different resolution.

lo§ i 1 | o ;
241 Aplplication Coordinate Systems

In the previous chapter, we introduced the notion that, for most applications, drawings are
only a means to an end, and that the primary role of the application database is to support
such processes as analysis, simulation, verification. and manufacturing. The database must
therefore store geometric information using the range and precision required by these
processes, independent of the coordinate system and resolution of the display device. For
example, a VLSl CAD/CAM program may need to represent circuils that are | 1o 2
centimeters (cm) long at a precision of half a micron, whereas an astronomy program may
need a range of | to 10" light-years with a precision of a nullion mules. For maximum
flexibility and range, many applications use floating-point world coordinates for stoning
geometry in their database.

Such an application could do the mapping [rom world to device coordinates itself;
however, considering the complexity of this mapping (which we shall discuss in Chapter 6),
it is convenient to use a graphics package that accepts primitives specified in world
coordinates and maps them to the display device in a machine-independent manner, The
recent availability of inexpensive floating-point chips offering. roughly the performance of
integer arithmetic has significantly reduced the time penalty associated with the use of
floating-point—the flexibility makes it well worth its cost to the applications that need it.

For 2D graphics, the most common software that provides floating-point coordinates is
Adobe’s PostScript (see Chapter 19), used both as the standard page-description language
for driving hardcopy printers and (in an extension called Display PostScript) as the graphics

134 Graphics Hardware

Pixel on u:[rujm at xg. ¥

RED
GREEN

BLUE

1001]1010]0001]
R G

& 67 1001

Pixel in memory
atxg, g
7

x—p

CRT display

x—

Refresh buffer

Image refresh system

Fig. 3.37 Video look-up table. A pixel with value 67 is shown.

Exercises 135

age image
& i 3 » | Rafresh display
system Duffer system

1 Interaction
devices

v
v

Fig. 3.38 Complete raster-display system.

A raster-display instruction set usually includes points, lines, conic sections,
solid areas, and text. Various attributes of these output primitives can be controlled,
such as color or intensity, line style (solid, dashed, dotted, etc.), and text spacing,
orientation, font, and size. Coordinates are usually given in the coordinate system of
the refresh buffer itself: if the bufferis 512 x 512, then the coordinates range from 0
to 511 in each dimension.

The image creation system is also typically able to accept images which already
exist in pixel form, such as images of real objects or images of synthetic objects that
have already been scan converted. Often a rectangular area of the image storage can
be moved around in the buffer. The image creation system can usually load the
video look-up table, start and stop image refresh, and deal with interaction devices
in much the same way as vector displays.

While there are certainly nontrivial differences between raster and vector dis-
plays (discussed further in Chapters 10 and 12), our discussion in the next few chap-

ters considers them as essentially equivalent from the user’s and application pro-
grammer's points of view. Thus for the time being we will not deal with the ability of
a raster display to show solid areas.

EXERCISES

3.1 Modify the line-drawing algorithm in Fig. 3.22 to draw lines with all slopes. Implement
the algorithm and test it, observing the visual results for lines with different slopes.

3.2 Design a DPU instruction set in which each opcode (move, point, line) includes both an x
and y coordinate, perhaps using multiple words. Do this for a 16-bit and 24-bit instruction
length.

3.3 Extend the DPU instruction set from Section 3.3.6 to include two line styles (such as solid
and dotied) and lour intensity levels. Do this in two different ways: (i) include the style and
intensity with each line, point, or text string display instruction; (ii) design instruction(s) to
load style and intensity registers. The register values affect all following output primitives
until the values are changed.

3.4 Make a list of the advantages and disadvantages of random refresh displays, random
DVST displays, and raster refresh displays.

3.5 In some raster systems the image storage is part of the image creation system’s memory
address space, while in others the image storage and the image creation system’s memory are
separate, Describe the possible advantages and disadvantages of each arrangement,

132 Graphics Hardware

rlesolution 1 » 1024 image must be displayed at about 30 microsecope
line, or about 2 noseconds per pixel. Halving this pixel time for
play requires displajhQf one pixel each 12 nanoseconds. These

the deflection amplifiersqnd intensity control amplifier ma

per scan
¢peat-field dis-
times mean that
have very high band-

TV monitor, We avoid random vectors ing s#eir need for fast, linear, accurate vec-
tor generators and corresponding high deflection amplifier technology.
Indeed, the well-developed and inexpénsive defléstjon and beam control technology
of commercial TV can be used £t medium-quality256 x 256) resolution, Addi-

: hguous grey scale or color,

and video disks. Fipa
in applications wé
raster techpe

y, there is no flicker, regardless of plexity. Except
eding arbitrary motion, rapid update, and very Rt} resolution,
Ogy today dominates.xectosteehnotoyy MH-Bricerpe MeTz

3.5.1

Color and Grey-Level Raster-Display Systems

Two-intensity images are fine for some applications but grossly unsatisfactory for
others. Additional control over the intensity of each pixel is obtained by storing mul-
tiple bits for each pixel: two bits yield four intensities, etc. The bits can be used to
control not only intensity, but color as well.

How many bits per pixel are needed for a stored image to be perceived as having
continuous shades of grey? Five or six bits are often enough, but up to eight bits can
be needed. Thus for color displays, a somewhat simplified analysis suggests that
three times as many bits would be needed; eight bits for each of the three additive
primary coldrs red, blue, and green (see Chapter 17),

Systems with 24 bits per pixel are still relatively expensive, despite the dramatic
decreases in cost of random-access solid-state memory. Furthermore, many color
applications don’t require up to 2** different colors in a single picture (which typical-
ly has only 2'* to 2% pixels). On the other hand, there is frequent need for both a
relatively small number of colors in any one picture or application and the ability to
change colors from picture to picture or from application to application. Also, in
many image analysis and enhancement applications, it is desirable to change the
}*isual appearance of an image without changing the underlying data defining the
image; for example, one might want to display all pixels with values below some
threshold as black, to expand an intensity range, or to create a pseudo-color display
of a monochromatic image.

For these various reasons the image refresh system of raster displays often
includes a so-called video look-up table (also called a color table or color map). A
pixel's value is not routed directly to the intensity digital-to-analog converter, but is
instead used as an index into this look-up table. The table entry’s value is used to

3.5 Raster-Scan Display Processing Unit 133

control the intensity or color on the CRT. A pixel value of 67 would cause the con-
tents of table location 67 to be accessed and used to control the CRT beam. This
look-up operation is done for each pixel on each display cycle, so the table must be
accessible quickly; for a 512 x 512 image, about [00 nanoseconds is available to
process each pixel. The associated computer must be able to load and change the
look-up table on program command. The look-up table has as many entries as there
are pixel values.

We can diagram systems with 7 bits per pixel and a look-up table w bits wide as
shown in Fig. 3.37. For a monochromatic CRT, 2" intensity levels are therefore
defined. With color, the w bits are typically divided into three equal groups, one for
each of the red, blue, and green electron guns of the shadow-mask CRT. Sometimes
other color representations with more intuitive appeal (such as intensity and chromi-
nance) are used in the application program and are stored in the refresh buffer. This
representation is then converted into red, green, and blue control signals by a fixed-
content intensity/chrominance to red/green/blue look-up table. These and other
color representations are discussed further in Chapter 17.

3.5.2 Image Creation

How is an image created in the first place? The images of real objects come directly
or indirectly from a scanning device of some sort: film scanner, TV scanner, ultra-
sound scanner, etc. Here, however, we concentrate instead on the creation of syn-
thetic images: images of objects which exist as abstract collections of lines, points,
curves, areas, etc. in the computer’s memory. This is the usual domain of interactive
computer graphics.

There is a fundamental mismatch between the two-dimensional array of pixel
values used to drive a raster system and the line, point, and area representation of
objects stored and manipulated by the application program. We first saw this mis-
match in our discussion of printers as hardcopy raster-scan devices (Section 3.1.1).
The process of converting a line, point, and area representation to the pixel array of
the image storage is called scan conversion. Figure 3.22 is a simple scan-conversion
algorithm, Other algorithms for scan-converting lines, as well as areas and circles,
are discussed in Chapter 11. For now it is sufficient to say that the algorithms exist
and must be executed each time some or all of the displayed image changes. Scan
conversion can therefore be a major bottleneck in updating the picture.

Because the scan-conversion algorithms are universally needed in raster-scan
systems for interactive graphics, they are often incorporated into the raster-display
system as another functional unit, the image creation system shown in Fig. 3.38. The
entire raster system now loosely corresponds to a random-display DPU. The system
accepts a DPU program having the general form of the one discussed in Section
3.3.6. Instead of driving a vector CRT directly, the instructions are converted into a
simpler representation—the refresh buffer. Of course, the image creation system
need not reprocess its input commands each 1/30 of a second.

