
Lecture 23:
Simple User Interface Toolkits and
End-User Programming for UIs;
Low-Code / NoCode

05-431/631 Software Structures for User
Interfaces (SSUI)
Fall, 2021

© 2021 - Brad Myers 1

Logistics
 HW6 due today

© 2021 - Brad Myers 2

Overview
 Approaches to help novice programmers to be

able to create dynamic interfaces
 Static interfaces can just be drawn

 Typically, also easier to program in general
 Most modern tools to make it easy to program focus

on creating interactive software, like games, which
have a UI

 EUP = end-user programmers
 Definition: Visual Programming = “Programming

in which more than one dimension is used to
convey semantics.” - [Myers, 1990]

© 2021 - Brad Myers 3

New terms: Low-Code, No-Code
 “Low-Code” – create app by “graphical user

interfaces and configuration instead of traditional
programming” – Wikipedia
 term coined in 2014
 Often use visual programming
 Require some coding expertise

 “No-Code” – theoretically no coding at all, but
often the same as “low code”
 Aim to allow business people to create the whole app
 Often declarative “model-driven”, with fixed GUI

© 2021 - Brad Myers 4

Older Approaches
 Older visual language

systems did not
necessarily help with UIs

 E.g., Pict from Ephraim
Glinert, 1984 uses
conventional flowcharts
to program algorithms

 Goal: easier to learn
programming

© 2021 - Brad Myers 5

Some Examples
 LabVIEW (1991 - present)
 See also OutSystems (2001- present)

 SUIT [Pausch, 1992]
 Alice [Pausch, 1995]
 HANDS [Pane, 2002]
 Yahoo! Pipes (2007 – 2015)
 Scratch (2003-present)
 AppInventor (2009-present)
 Lego Mindstorms (NXT) Robot kits

© 2021 - Brad Myers 6

Historical trends

7

1960 1980 1990 2000

o AMBIT/G/L
o Grail
o GAL
o Graphical Program

Editor
o Query by Example
o Pygmalion
o I/O Pairs

o Action
Graphics

o FORMAL
o ThingLab
o Hi-Visual
o LabView
o PROGRAPH
o PIGS
o Pict
o Rehearsal
o SmallStar

o Forms
o Editing by

Example
o PICT
o Lotus 1-2-3
o SIL-ICON
o VisiCalc
o HiGraphs
o Miro
o StateMaster

o Cube
o Cantata
o SchemePaint
o CODE 2.0
o Iconicode
o MViews

Techniques
o Graphs
o Flowcharts
o Flowchart derivatives
o FORMS
o Demonstrational

Techniques
o Graphs
o Flowcharts
o Flowchart

derivatives
o FORMS
o Demonstrational
o Data Flows
o Spreadsheets
o Matrices
o Jigsaw Puzzles
o Petri nets
o Flowchart

derivatives

o AVS
o Mondrian
o ChemTrains
o Vampire
o VIPR
o SPE

Techniques/Goals
o 3D Rendering
o Visual Hierarchy
o Procedures
o Control Structures
o Programmable Graphics
o Animations
o Video Imagery Exploitation
o General purpose, declarative language
o Audio, video and image processing
o Graphical models from behavioral models
o Learning and Cognitive abilities in vision

processes
o Handling Scalability, typing, and

imperative design
o Collaborative Software Development

o LOFI/HIPI
o FOXQ
o VMQL
o GXL
o Euler View
o Yahoo Pipes
o Popfly

Techniques/Goals
o Child Learning
o Xquery by FORMS
o Spreadsheet Analysis
o Visual Model Query
o Layouts
o Specification and Interchange
o Mashups
o Web-based design
o Programming for end-users

(non-ProfessionalsFrom: Vishal
Dwivedi,
05-830 in 2013

© 2021 - Brad Myers

LABView
 One of the most successful visual programming

systems
 Started about 1991 on Macintosh, still going
 http://www.ni.com/labview/
 J. Kodosky, J. MacCrisken and G. Rymar. “Visual programming using structured data flow,” Visual

Languages, 1991., Proceedings. 1991 IEEE Workshop on, 8-11 Oct 1991, 1991. pp. 34-39.

 Focused on scientists and lab equipment
 Wiring diagram backend with front panel
 Drag and drop elements
 Data flow programming

© 2021 - Brad Myers 8

http://www.ni.com/labview/

LabVIEW
 [Kodosky, 91]
 2-view approach

very influential

© 2021 - Brad Myers 9

OutSystems
 2001 – present
 https://www.outsystems.com/ - see video
 “low-code” platform
 Drag and drop, visual programming
 Focus on enterprise

© 2021 - Brad Myers 10

https://www.outsystems.com/

SUIT (1992)

11

 Pausch, R., Conway, M., & DeLine, R. (1992). Lesson Learned
from SUIT, the Simple User Interface Toolkit. ACM Transactions on
Information Systems, 10(4), 320-344.

 Simple User Interface Toolkit
 Implemented in C

 Portable across UNIX, Macintosh, and DOS
 Requires only basic C programming skills

 Used in many courses at UVA
 Become productive in

2½ hours, vs. weeks
 Iterative user testing
 Table of objects

 No inheritance – just global or local
 Property sheets

 Uses CTRL-SHIFT to avoid run/build mode
 Retained object model
 Data-linkages (constraints) through drag-and-drop

© 2021 - Brad Myers

Alice
Randy Pausch, Tommy Burnette, A.C. Capehart, Matthew Conway, Dennis Cosgrove, Rob DeLine, Jim

Durbin, Rich Gossweiler, Suichi Koga and Jeff White. “Alice: A Rapid Prototyping System for 3D
Graphics,” IEEE Computer Graphics and Applications. 1995. 15(3). pp. 8-11. May.

Matthew Conway, Steve Audia, Tommy Burnette, Dennis Cosgrove, Kevin Christiansen, Rob Deline, Jim
Durbin, Rich Gossweiler, Shuichi Koga, Chris Long, Beth Mallory, Steve Miale, Kristen Monkaitis,
James Patten, Jeff Pierce, Joe Shochet, David Staack, Brian Stearns, Richard Stoakley, Chris
Sturgill, John Viega, Jeff White, George Williams and Randy Pausch. “Alice: Lessons Learned from
Building a 3D System For Novices,” Proceedings CHI'2000: Human Factors in Computing Systems,
The Hague, The Netherlands, Apr 1-6, 2000. pp. 486-493. http://www.alice.org

 Started as a 3D extension to SUIT
 PhD dissertation of Matthew Conway (1998)
 Grown to a large-scale system with books

 Wanda Dann, Steven Cooper and Randy Pausch.
Learning to Program With Alice. Prentice-Hall.
August, 2003.

 Many more user studies of what students
found easy and difficult

© 2021 - Brad Myers 12

Alice
 Easy 3D with character-centered movement & rotation

 “Bunny.move (up, 1)”, “Turn Around Once” “Bunny.move(forward,
1, speed=4)”

 No matrices! No X, Y and Z
 Camera control

 “Point Camera At”, “Get a Good Look At”
 Easy parallelism with “do-together”

ArmsOut = DoTogether(
Bunny.Body.LeftArm.Turn(Left, 1/8),
Bunny.Body.RightArm.Turn(Right, 1/8))

 Create scene (by direct manipulation), then script
 All commands animated by default, so no sudden jumps,

disappearing objects
 Early user of Python, switched to Java
 Lots of vocabulary fixes:

 Resize, not Scale; Move, not Translate; Speed, not Rate;
FrontToBack, not Depth:

13© 2021 - Brad Myers

Alice, cont.
 Later versions: Avoid syntax issues with drag-

and-drop editing
 Testing in classrooms showed significantly

better learning and retention

 Tutorial video
(from 2013)
6:44

© 2021 - Brad Myers 14

https://www.youtube.com/watch?v=nBXILTYFZxE

HANDS
 J.F. Pane, B.A. Myers and L.B. Miller. “Using HCI Techniques to Design a More Usable Programming

System,” IEEE 2002 Symposia on Human Centric Computing Languages and Environments (HCC 2002),
Arlington, VA, September 3-6, 2002. 198-206.

 PhD 2002 of John Pane (now at Rand in Pgh)
 Studies:
 How people naturally express

programming concepts and algorithms
 1) Nine scenes from PacMan
 2) Transforming and calculating

data in a spreadsheet
 Specific issue of language design

 3) Selecting specific objects from a group (“and”, “or”, “not”)
 Lots of interesting results

© 2021 - Brad Myers 15

© 2021 - Brad Myers

Examples of Results
 Rule-based style

“If PacMan loses all his lives, its game over.”

 Set operations instead of iterations
“When PacMan eats all of the dots, he goes to the next level.”

 “And”, “Or”, “Not” don’t match computer interpretation
 Most arithmetic used natural language style

“When PacMan eats a big dot, the score goes up 100.”

 Operations suggest data as lists, not arrays
 People don’t make space before inserting

 Objects normally moving
“If PacMan hits a wall, he stops.”

 so objects remember their own state

16

© 2021 - Brad Myers

New Language and
System: HANDS
 Properties:
 All data visible on cards
 Metaphor of agent (Handy

the dog) operating on cards
 Natural language style for

code
 Domain-specific operations, like movement in a direction
 All operations can operate on single items or sets of items
 Sets can be dynamically constructed and used

 “Set the speed of all bees to 0”
 Event handlers: “when U is typed”

 See the video: YouTube (7:36)

17

https://www.youtube.com/watch?v=zyrqcYxqDtI&list=PL3856C8FlIWfr_tX8CMUhOJvl34ylClgb&index=7

Scratch
 Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn Eastmond,

Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian Silverman and Yasmin Kafai.
“Scratch: Programming for All,” Comm. ACM. 2009. 52(11). pp. 60-67. See also:
http://scratch.mit.edu/.

 MIT has long history of helping kids program
 Logo (Seymour Papert, 1967)
 Lego Mindstorms
 ”Constructionist” movement in education

 Scratch comes out of that program (MIT
Media Lab) – started about 2003
 https://scratch.mit.edu/
 “Create stories, games, and animations

Share with others around the world”

© 2021 - Brad Myers 18

https://en.wikipedia.org/wiki/Constructionism_(learning_theory)
https://scratch.mit.edu/

Scratch, cont.
 Metaphor of puzzle pieces

with properties
 Connectors shaped by type

to eliminate type errors
 Control structures wrap

around
 Uses event handlers

for behaviors
 https://vimeo.com/65583694, 1:37

© 2021 - Brad Myers 19

https://vimeo.com/65583694

AppInventor
 Ideas from Scratch to build real Apps for Android phones

 Briefly was a product from Google, while Hal Abelson was on
sabbatical there (2009)

 http://appinventor.mit.edu/
 2 panel view, like

LabVIEW
 Drag in elements

for UI
 Blocks view for

code
 event handlers

using “when”

© 2021 - Brad Myers 20

http://appinventor.mit.edu/

Many other “blocks”
style languages
 Blockly Developer Tools from Google from

AppInventor
 Used by Code.org, RoboBlockly, Wonder

Workshop, etc.
 Define own set of primitive blocks

© 2021 - Brad Myers 21

https://developers.google.com/blockly/guides/create-custom-blocks/blockly-developer-tools
https://en.wikipedia.org/wiki/Code.org
https://en.wikipedia.org/wiki/RoboBlockly
https://en.wikipedia.org/wiki/Wonder_Workshop

IFTTT.com
 Founded 2011
 “If this then that”
 Condition-action rules (same as stimulus-

response)
 Web-based conditions
 Often used with Internet of Things (IoT), “smart

home” appliances
 New services added with Ruby programming

 Single condition and action

© 2021 - Brad Myers 22

IFTTT

© 2021 - Brad Myers 23

Yahoo! Pipes (2007 – 2015)
 Was a web application to process data feeds on the web

 Originally focused on “RSS feeds”
 Visual data flow architecture, like LabVIEW
 Studies showed wasn’t easy for non-programmers to use
 Sandeep K Kuttal, A. Sarma, and G. Rothermel, "Debugging Support for End-User Mashup

Programming", in Proceedings of Computer and Human Interactions - CHI, Paris, France,pages
1609 - 1618, April 2013.[pdf]

 Issues with
connections,
parameters,
debugging, etc.

 Video (1:50) or
tutorial (5:15)

© 2021 - Brad Myers 24

http://dl.acm.org/citation.cfm?id=2466213
https://youtu.be/Xv-4TOit5_g?t=47
https://www.youtube.com/watch?v=UpQd9cfT4w8

Another Approach: PBD
 Programming by Demonstration (PBD)
 Also: Programming by Example (PBE)

 Give examples of desired input and output
 Or of desired behavior

 For example:
 Learns that size of boxes

should match text from these
examples

 Arrows stay attached
 Like Machine Learning (ML)

but only a few examples
 E.g., gesture learning from 15 examples

© 2021 - Brad Myers 25

Demonstrational Interfaces

 "Classic" Reference: Allen Cypher,
ed. Watch What I Do, MIT Press.
1993.

 Later book: Henry Lieberman, ed.
Your Wish is My Command. 2001:
Morgan Kaufmann.

 My group has chapters in both

26© 2021 - Brad Myers

Motivation
 Demonstrational techniques expand how much of

the interface can be specified interactively.
 And Interactive editors are much faster to use than

programming with toolkits
 Frameworks improve productivity by factors of 3 to 5,

interactive tools by factors of 10 to 50!
 It might take an hour to draw an interface interactively,

compared to days to program it.
 Because they are faster, this promotes rapid prototyping

 It is much more natural to specify the graphical parts
of applications using a graphical editor.

 Because they do not require programming skills,
graphic designers can design the graphical parts of
the interface.

© 2021 - Brad Myers 27

Key Challenges
 “Data description problem”
 What does the reference mean?

 Charlie Palmer Steak
 The least expensive steakhouse near me
 The closest one in Midtown East
 The one with 1,000 bonus points
 A promoted restaurant
 The second restaurant in the list
 ….

 (Operator is usually easy – like “click”)
 Control structures
 Conditionals and loops

© 2021 - Brad Myers 28

Examples (of uses to
create UIs)
 (chronological order)

29© 2021 - Brad Myers

Peridot (1986-88)
 Myers B. "Creating User Interfaces Using Programming-by-Example,

Visual Programming, and Constraints," ACM Transactions on
Programming Languages and Systems. vol. 12, no. 2, April, 1990. pp.
143-177. (Peridot)

 Myers B., Creating User Interfaces by Demonstration, Academic Press,
San Diego, 1988.

 Myers B., "Creating Interaction Techniques by Demonstration," IEEE
Computer Graphics and Applications, Vol. 7, No. 9, IEEE, September
1987, pp. 51 - 60.

 First demonstrational tool, and it used by-example techniques to allow
the creation of new widgets.

 From the drawings, it infers:
 Graphical constraints among the objects, such as that the boxes should be the

same size as the text.
 control structures such as iteration over all the items in a menu
 how the mouse affects the graphics, such as that the check mark should follow

the mouse.
 feedback: question and answer
 video (8 min)

© 2021 - Brad Myers 30

https://www.youtube.com/watch?v=8snp79cctX8&index=41&list=PL3856C8FlIWfr_tX8CMUhOJvl34ylClgb

Peridot Pictures

© 2021 - Brad Myers 31

Lapidary (1989-1993)
 Myers B., Vander Zanden B. and Dannenberg R., "Creating Graphical

Interactive Application Objects by Demonstration," Proceedings of the ACM
Symposium on User Interface Software and Technology, UIST'89,
Williamsburg, November 1989, pp. 95 - 104.

 Brad Vander Zanden and Brad A. Myers. "Demonstrational and Constraint-
Based Techniques for Pictorially Specifying Application Objects and
Behaviors," ACM Transactions on Computer-Human Interaction. vol. 2, no.
4, Dec, 1995. pp. 308-356.

 Extends Peridot to allow the creation of application-specific
graphical objects, like nodes in a graphics editor.

 Uses less inferencing and more dialog boxes
 Is "real" and you get it as part of the Garnet distribution
 Problems:

 can only demonstrate "syntactic" parts of application
 hard to set up correct constraints

 video (12 min)

32© 2021 - Brad Myers

https://www.youtube.com/watch?v=p6xHDB_U6Yk&list=PL3856C8FlIWfr_tX8CMUhOJvl34ylClgb&index=36

Lapidary dialog boxes

© 2021 - Brad Myers 33

Lapidary,
cont.

© 2021 - Brad Myers 34

Lapidary, cont.

© 2021 - Brad Myers 35

Marquise (1993-1994)
 Myers B., McDaniel, R. and Kosbie, D.. "Marquise:

Creating Complete User Interfaces by Demonstration,"
Proceedings CHI'94: Human Factors in Computing
Systems. Amsterdam, The Netherlands, April 24-29,
1993. pp. 293-300.

 Go back to doing more by demonstration, and just show
the way that the interface should operate.

 In particular, demonstrate when the behaviors should
start and what the feedback looks like.
 mouse button does one of 10 things, depending on where press

and global mode.
 Demonstrate both behavior and conditions
 Built-in support for palettes and modes.

36© 2021 - Brad Myers

Marquise windows

© 2021 - Brad Myers 37

Marquise
feedback
window

 video (12 min)

© 2021 - Brad Myers 38

https://www.youtube.com/watch?v=W-3E8RFYArA&feature=youtu.be

InferenceBear & Grizzly Bear (1994-1996)
 Martin R. Frank, Piyawadee "Noi" Sukaviriya, James D.

Foley. “Inference bear: designing interactive interfaces
through before and after snapshots,” DIS’95. Ann Arbor,
Michigan, pp. 167 – 175. pdf

 Martin Frank, Model-Based User Interface Design by
Demonstration and By Interview. PhD Thesis, Georgia
Tech, 1996.

 (Discussed his "Elements, Events & Transitions (EET)
language in the event-language lecture)

 User control through dialog boxes, edit using textual
language: EET

 Snapshots of before and after
 Multiple examples

 More positive examples to cause generalization
 Negative examples to specify exceptions

 Pictures – next slide

© 2021 - Brad Myers 39

http://portal.acm.org/citation.cfm?id=225453
http://delivery.acm.org/10.1145/230000/225453/p167-frank.pdf?key1=225453&key2=9022319401&coll=portal&dl=ACM&CFID=9385029&CFTOKEN=92130528

InferenceBear Pictures

40© 2021 - Brad Myers

http://portal.acm.org/citation.cfm?id=225453

Gamut (1996 - 1999)
 PhD thesis of Rich McDaniel.
 Richard G. McDaniel and Brad A. Myers. "Building Applications Using Only

Demonstration," IUI'98: 1998 International Conference On Intelligent User Interfaces,
January 6-9, 1998, San Francisco, CA. pp. 109-116. pdf

 Richard G. McDaniel and Brad A. Myers, "Getting More Out Of Programming-By-
Demonstration." Proceedings CHI'99: Human Factors in Computing Systems.
Pittsburgh, PA, May 15-20, 1999. pp. 442-449. ACM DL Reference

 Domain: "board games" and
educational software

 Goal: new interaction techniques
so can infer more complex behaviors

 E.g., how a piece can move in
Monopoly / Chess

 Reduce number of modes
 New interaction techniques to

provide hints
 "Do Something!", "Stop That", Hint highlighting, Temporal Ghosts, Guide

objects, Deck of Playing Cards, etc.
 Better inferencing algorithms
 video (4.5 min)

© 2021 - Brad Myers 41

http://www.cs.cmu.edu/%7Eamulet/papers/p109-mcdaniel-iui98.pdf
http://doi.acm.org/10.1145/302979.303127
https://youtu.be/dAoK-uVP9ko

Topes (2004-2009)
 Chris Scaffidi’s PhD thesis: 2009

 Christopher Scaffidi, Brad Myers, Mary Shaw, "Topes: Reusable
Abstractions for Validating Data." ICSE'2008: 30th International
Conference on Software Engineering, Leipzig, Germany, 10 - 18 May
2008. pp. 1-10. IEEE DL pdf

 “topes” = user-level types for end-user programming (EUP)
 Create parsers, data-transformations

 Infers topes from a list of examples
 Patterns in text input

 Phone numbers, addresses, social security numbers, etc.

42© 2021 - Brad Myers

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4814111&isnumber=4814110

Topes, cont.
 Inferred pattern

© 2021 - Brad Myers 43

Topes, cont.
 Validator – never vs. rarely

© 2021 - Brad Myers 44

Topes, cont.
 Converter

© 2021 - Brad Myers 45

Draco, Skuid
 Rubaiat Habib Kazi, Fanny Chevalier, Tovi Grossman, Shengdong Zhao, and George

Fitzmaurice. 2014. Draco: bringing life to illustrations with kinetic textures.
In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI '14). 351-360. DOI: https://doi.org/10.1145/2556288.2556987

 Sketch to show animations and movements
 Augmented with dynamic animation effects
 Commercialized by AutoDesk
 Video (4:57)!

© 2021 - Brad Myers 46

https://www.youtube.com/watch?v=l84YK1_ytks

Toby Li’s Sugilite
 Toby Li, Amos Azaria, and Brad Myers. "SUGILITE: Creating Multimodal Smartphone

Automation by Demonstration", Proceedings CHI'2017: Human Factors in Computing
Systems, Denver, CO, May 6-11, 2017. To appear. preprint pdf and video. Best
paper Honorable Mention award.

 Programming by example for Android
 Scripts (macros) of common or repetitive tasks
 Uses the Android accessibility API
 Invoke using Speech or GUI
 Generalizes based on other menu items seen
 Currently, uses multiple examples only when

script fails
 Can replace or add fork

 Video (6:48)

© 2021 - Brad Myers 47

http://www.toby.li/wp-content/uploads/2017/01/TobyLi-CHI2017-Sugilite.pdf
http://www.toby.li/sugilite_video
https://www.youtube.com/watch?v=KMx7Ea6W6AQ

Sugilite pictures

© 2021 - Brad Myers 48

Commercial Systems
 Excel Flashfill
 Adobe Catalyst
 Create menus by giving examples of the items
 Scroll bars by indicating the parts (thumb, track, etc.)
 But discontinued 

 Adobe XD
 Repeat grid
 Component behaviors ??

 What else?

49© 2021 - Brad Myers

General Disadvantages of PBD
 People are actually not very good at coming

up with concrete examples
 examples tend to show the system the same

thing over and over
 people can’t think of the edge cases and

negative examples
 People need to be able to edit the code, so

need a representation they can understand

50© 2021 - Brad Myers

Open Issues with PBD
 Sometimes examples are harder than specifying
 “and” vs. “or”

 How intelligent is enough?
 Predictability
 AI problem

 Techniques for feedback and editing
 Combining inferencing with direct editing of the

code
 A “really” successful product using this

technology

51© 2021 - Brad Myers

Some newer systems
 Claim to be: “Low code” or “No code”
 Examples (all founded in 2012!):
 AirTable – based on a spreadsheet model
 Bubble.io – visual programming
 Zapier – move data between web applications

(automate repetitive tasks)
 Like Yahoo! pipes!

© 2021 - Brad Myers 52

Airtable
 From Wikipedia:

© 2021 - Brad Myers 53

Bubble.io

© 2021 - Brad Myers 54

Zapier

© 2021 - Brad Myers 55

	Lecture 23:�Simple User Interface Toolkits and End-User Programming for UIs; Low-Code / NoCode
	Logistics
	Overview
	New terms: Low-Code, No-Code
	Older Approaches
	Some Examples
	Historical trends
	LABView
	LabVIEW
	OutSystems
	SUIT (1992)
	Alice
	Alice
	Alice, cont.
	HANDS
	Examples of Results
	New Language and�System: HANDS
	Scratch
	Scratch, cont.
	AppInventor
	Many other “blocks”�style languages
	IFTTT.com
	IFTTT
	Yahoo! Pipes (2007 – 2015)
	Another Approach: PBD
	Demonstrational Interfaces
	Motivation
	Key Challenges
	Examples (of uses to�create UIs)
	Peridot (1986-88)
	Peridot Pictures
	Lapidary (1989-1993)
	Lapidary dialog boxes
	Lapidary, cont.
	Lapidary, cont.
	Marquise (1993-1994)
	Marquise windows
	Marquise�feedback�window
	InferenceBear & Grizzly Bear (1994-1996)
	InferenceBear Pictures
	Gamut (1996 - 1999)
	Topes (2004-2009)
	Topes, cont.
	Topes, cont.
	Topes, cont.
	Draco, Skuid
	Toby Li’s Sugilite
	Sugilite pictures
	Commercial Systems
	General Disadvantages of PBD
	Open Issues with PBD
	Some newer systems
	Airtable
	Bubble.io
	Zapier

