
Lecture 20:
Toolkits for building
speech/conversational/chatbot
User Interfaces, and Visualizations

05-431/631 Software Structures for User
Interfaces (SSUI)
Fall, 2021

© 2021 - Brad Myers and others 1

Logistics
 Changed lecture order because speech or viz

might be a topic for final projects

© 2021 - Brad Myers and others 2

Based on:
Toolkits for Creating
Conversational Interfaces
by Toby Jia-Jun Li http://toby.li/
04/20/2020

© 2021 - Brad Myers and others 3

http://toby.li/

Conversational Interfaces
 Intelligent personal assistants

Alexa, Siri, Google Assistant,
Cortana…

 Voice command support for specific
task domains

e.g., Talking to your car
 Automated phone systems for

customer service
 Chatbots for tech support or fun

4
© 2021 - Brad Myers and others

History

Turing Test (1950)

5
© 2021 - Brad Myers and others

History
 Let computers facilitate formulative thinking as

they now facilitate the solution of formulated
problems

 Enable men and computers to cooperate in
making decisions and controlling complex
situations without inflexible dependence on
predetermined programs.

 “Man-Computer Symbiosis (1960):
Cooperative interaction between
men and electronic computers”

J. C. R. Licklider

6
© 2021 - Brad Myers and others

Lots of research and
commercial attempts
 Influential early multi-modal system: Put That There

(1980)
 Bolt, Richard A. “Put-that-there”: Voice and gesture at the

graphics interface. SIGGRAPH Computer Graphics. Vol. 14. No.
3. ACM, 1980.

 https://youtu.be/sC5Zg0fU2e8 (5:30)

7
© 2021 - Brad Myers and others

https://youtu.be/sC5Zg0fU2e8

Advantages of conversational
interfaces
 Hands-free: can handle situations where direct

manipulation is not possible or convenient (e.g., far away,
driving, users with accessibility needs)

 Screen size independence: can operate on devices with
small screens (e.g., wearable) and no screen.

 Intuitive to use: well-designed conversational interfaces
should have low learning barriers to users.

 Efficient: takes less time and effort for *some tasks* that
require a lot of text entry, or navigating complex menus.
 Can be inefficient and hard-to-use in some situations too! E.g.,

when the prompts are too verbose, when the affordances are
unclear (discoverability), or when the error handling mechanism
is lacking.

8
© 2021 - Brad Myers and others

Two classes of conversational
systems
1. Task-oriented conversational agents
 Purpose: help the user perform some specific

tasks
2. Social chatbots (“chit-chat” bots)
 Purpose: maintain realistic conversations with

humans

9
© 2021 - Brad Myers and others

Practical architectures for
task-oriented dialog systems

RavenClaw (Bohus and Rudnicky, 2003)
Bohus, Dan, and Alexander I. Rudnicky. "RavenClaw: Dialog management using hierarchical task decomposition and an expectation agenda." Eighth European
Conference on Speech Communication and Technology. 2003.

10
© 2021 - Brad Myers and others

Practical architectures for
task-oriented dialog systems
 Finite-state
 The developer manually defines all the conversation

states in the system, and the transitions between the
states.

 Frame-based
 frame (“intent”): the user’s intention for one

conversation turn (e.g., book_flight)
 slot: the information that the system needs to know to

fulfill an intent (e.g., departure_date, destination_city)
 slot values: the values that each slot can take

11
© 2021 - Brad Myers and others

User: I want to book a flight for 2 to Munich.
book
Flight

book
Hotel

book
Car

confirm
Booking

© 2021 - Brad Myers and others 12

User: I want to book a flight for 2 to Munich.

Intent: bookFlight Slots: departureC ity, arrivalC ity, personC ount, date

Intent recognition
book
Flight

book
Hotel

book
Car

confirm
Booking

© 2021 - Brad Myers and others 13

User: I want to book a flight for 2 to Munich.

Intent: bookFlight Slots: departureC ity, arrivalCity, personCount, date

Entity extraction / slot filling
book
Flight

book
Hotel

book
Car

confirm
Booking

© 2021 - Brad Myers and others 14

User: I want to book a flight for 2 to Munich.

Bot: What city are you flying from?

User: Pittsburgh.

Intent: bookFlight Slots: departureC ity, arrivalCity, personCount, date

book
Flight

book
Hotel

book
Car

confirm
Booking

© 2021 - Brad Myers and others 15

Intent: bookFlight Slots: departureCity, arrivalCity, personCount, date

User: I want to book a flight for 2 to Munich.

Bot: What city are you flying from?

User: Pittsburgh.

book
Flight

book
Hotel

book
Car

confirm
Booking

© 2021 - Brad Myers and others 16

Intent: bookFlight Slots: departureCity, arrivalCity, personCount, date

User: I want to book a flight for 2 to Munich.

Bot: What city are you flying from?

User: Pittsburgh.

Bot: What’s the departure date for the flight?

User: Tomorrow.

book
Flight

book
Hotel

book
Car

confirm
Booking

© 2021 - Brad Myers and others 17

Intent: bookHotel Slots: …..

User: I want to book a flight for 2 to Munich.

Bot: What city are you flying from?

User: Pittsburgh.

Bot: What’s the departure date for the flight?

User: Tomorrow.

Bot: Do you want to also book a hotel or a car?

User: I’d like to get a place to stay too.

book
Flight

book
Hotel

book
Car

confirm
Booking

© 2021 - Brad Myers and others 18

Existing tools for building slot-filling bots

© 2021 - Brad Myers and others 19

Dialogflow
 One of the more popular toolkits

 https://cloud.google.com/dialogflow/docs
 Can easily connect

to other Google
components
(e.g., speech
recognition,
speech synthesis,
knowledge graph…)

20
© 2021 - Brad Myers and others

https://cloud.google.com/dialogflow/docs

Other architectures for dialog
systems

1. Rule-based
(if (contains (or “hi” “hello”)) (output “hello”))
(if (and (= detect_comm_type SELF_DISCLOSURE) (= detect_emotion SAD))

(output “I'm sorry to hear [$USER_DISCLOSURE]”))

2. Corpus-based: use a very large corpus of human-
human or human-machine conversations
 Information retrieval (IR) based approach: find

the best-matched prior utterance for the user’s
input in the corpus, and use the prior response for
that utterance

 Sequence-to-sequence dialog generation:
model conversation as a sequence transduction
problem -> generate a response from a user input
(and probably with some other contexts encoded
in)

21
© 2021 - Brad Myers and others

Example: 05-830 project (Spring’20)

 Use DialogFlow to create a GUI Builder
 Thanks to Hongyi Zhang, Mengxin Cao,

Ron Chew
 1-month project

22
© 2021 - Brad Myers and others

Two intents: Initialization, Interaction
Capability vs Complexity: What things do we need to specify via voice, or could we
use a demonstration?

Conversation Design in DialogFlow

23© 2021 - Brad Myers and others

Conversation Design in
DialogFlow

 Everyone has a different word for everything…
 Provide synonyms

24© 2021 - Brad Myers and others

Interface Design
 Features
 Continuous voice monitoring
 Voice control to interact with graphical objects
 Dialog feedback in both audio and text
 Property sheet that supports direct manipulation
 Export existing canvas

as a static picture

Property sheet
of active object

25© 2021 - Brad Myers and others

DialogFlow Issues

● Speech-to-text is pretty crappy
○ Generic speech recognition

service vs Google Assistant
○ Compounded by audio recording

quality in Java
● Cannot have too many parameters in

one intent, but graphics need many
○ Possible Solution: multiple intents,

but difficult to manage

Interface Issues

● Hardware heterogeneity
● Background noise interference
● Errors in text recognized from audio
● Timeout for slow interaction
● Property sheet not updated properly

when integrated with our toolkit

Issues Encountered

Current limitations

● Doesn’t give response in ideally real time
● Doesn’t properly deal with errors from user input and systeminternals
● One way conversation, doesn’t support constraints and “natural” placement 26© 2021 - Brad Myers and others

Video demo of result
 Local video (4:28)

27© 2021 - Brad Myers and others

Based on:
Toolkits for Visualization and UIs
in Data Science
by Dominik Moritz, April 8, 2020
https://dig.cmu.edu

© 2021 - Brad Myers and others 28

https://dig.cmu.edu/

Origins
 Four major influences act on data analysis

today:
1. The formal theories of statistics.
2. Accelerating developments in computers and display

devices.
3. The challenge, in many fields, of more and ever

larger bodies of data.
4. The emphasis on quantification in an ever wider

variety of disciplines.
 Data Analysis & Statistics. Turkey and Wilk. 1965.
 Effective Data Visualization. Heer. 2015.

© 2021 - Brad Myers and others 29

How do people create
visualizations?

Chart Typology
Pick from a stock of templates
Easy-to-use but limited expressiveness
Prohibits novel designs, new data types

Component Architecture
Permits more combinatorial
possibilities Novel views require new
operators, which requires software
engineering

© 2021 - Brad Myers and others 30

Drawing Visualizations with
Imperative Programs
 Graphics APIs: Processing, OpenGL,

Java2D, JavaScript/html SVG and Canvas
 Program by giving explicit steps. e.g.:
 "Put a red bar here and a blue bar there."
 "Draw a line and some text."

 Specification and execution are intertwined.
 "You have unlimited power on

this canvas. You can literally
move mountains." — Bob Ross

Va
lu

e
A B 31© 2021 - Brad Myers and others

Example:
processing.
org

© 2021 - Brad Myers and others 32

Component Architectures
 Component Architectures on top of the graphics

APIs
 Examples: Prefuse, Flare, Improvise,VTK

 Dataflow architecture – wire together nodes

Raw
Data

Data
Tables

Visual
Structures

Interactive
View

Data VisualForm

Data
Transformations

Visual
Encodings

View
Transformations

Task

© 2021 - Brad Myers and others 33

© 2021 - Brad Myers and others 34

Prefuse & Flare
 Operator-based toolkits for visualization design
 Vis = (Input Data -> Visual Objects) + Operators

Prefuse (http://prefuse.org) Flare (http://flare.prefuse.org)
© 2021 - Brad Myers and others

35

Panopoly of visualizations

36© 2021 - Brad Myers and others

Other extreme: Chart
Typologies

 Excel, Many Eyes, Google Charts, Tableau

© 2021 - Brad Myers and others 37

Select from Menus…

38© 2021 - Brad Myers and others

Results:
 Inflexible
 Can tinker

after
generated

39© 2021 - Brad Myers and others

Visual Analysis Grammars
 Examples: VizQL, ggplot2
 Specialized programming

language
 Declarative – what to

produce, not how (like html)

© 2021 - Brad Myers and others 40

Grammar examples
 ggplot(diamonds, aes(x=price, fill=cut))
+ geom_bar(position="dodge")

41© 2021 - Brad Myers and others

© 2021 - Brad Myers and others 42

Chart Typologies
Excel, Many Eyes, Google Charts

Visual Analysis Grammars
VizQL, ggplot2

Visualization Grammars
Protovis, D3.js

Component Architectures
Prefuse, Flare, Improvise,VTK

Graphics APIs
Processing, OpenGL, Java2D

ExpressivenessEa
se

-o
f-U

se

© 2021 - Brad Myers and others 43

Protovis: A Grammar forVisualization

A graphic is a composition of data-representative marks.

Jef f r ey H eer , M ik e Bos tock & V adim O gievets k y

© 2021 - Brad Myers and others 44

V is ualiz ation Gram m ar
Data
Transforms
Scales

Input data to visualize
Grouping, stats, projection, layout
Map data values to visual values

Jacques Bertin
Sémiologie Graphique, 1967

© 2021 - Brad Myers and others 45

V is ualiz ation Gram m ar
Data
Transforms
Scales
Guides
Marks

Input data to visualize
Grouping, stats, projection, layout
Map data values to visual values

Axes & legends visualize scales
Data-representative graphics

Area Rect Symbol Image

Line Text Rule Arc
46© 2021 - Brad Myers and others

RECT λ : D → R
data 1 1.2 1.7 1.5 0.7

visible true
left 1 * 25
bot tom 0
width 20
height 1.2 * 80
fillStyle blue
strokeStyle black
lineWidth 1.5
... ...

Properties of a “Mark”

var vis = newpv.Panel();
vis.add(pv.Bar)

.data([1,1.2, 1.7, 1.5, 0.7])

.vis ible(true)

.left((d) = > this.index * 25)

.bottom(0)

.width(20)

.height((d) = > d * 80)

.f illStyle(“blue”)

.s trok eStyle(“black”)

.lineWidth(1.5);
vis.render();

© 2021 - Brad Myers and others 47

vis.add(pv.Rule).data([0,-10,-20,-30])
.top((d) => 300 - 2*d - 0.5).lef t(200).r igh t(150)
.l in eWidth (1).s tr ok eSty le("#ccc")
.an ch or ("right").a dd(pv.Label)
.f on t("italic 10px Georgia")
.tex t((d) => d+"°").tex tBa s el in e("center");

vis.add(pv.Line).data(napoleon.temp)
.lef t(lon).top(tmp) .s tr ok eSty le("#0")

.add(pv.Label)
.top((d) => 5 + tmp(d))
.tex t((d) => d.temp+"° "+d.date.substr(0,6))

var army = pv.nest(napoleon.army, "dir", "group“);
var vis = newpv.Panel();

var l ines = vis.add(pv.Panel).data(army);
l in es .add(pv.Line)
.data(() => army[this.idx])
.lef t(lon).top(lat).s iz e((d) => d.size/8000)
.s tr ok eStyle(() => color[army[paneIndex][0].dir]);

vis.add(pv.Label).d a ta(napoleon.cities)
.lef t(lon).top(lat)
.tex t((d) => d.city).f on t("italic 10pxGeorgia")
.tex tA l ig n ("center").tex tB a s el in e("middle");

Minard 1869: Napoleon’s
March, in ProtoViz

© 2021 - Brad Myers and others 48

d3.js: Data-Driven Documents

M ik e Bos tock , Dominik Moritz, Vadim
Ogievetsky, Jeff Heer, etc.

© 2021 - Brad Myers and others 49

Protovis vs. D3
Protovis
Specialized mark types
+ Streamlined design
-Limits expressiveness
-More overhead (slower)
-Harder to debug
-Self-contained model
Specify a scene (nouns)
+ Quick for static vis
-Delayed evaluation
- Animation, interaction
are more cumbersome

D3
Bind data to DOM
-Exposes SVG/CSS/…
+ Exposes SVG/CSS/…
+ Less overhead (faster)
+ Debug in browser
+ Use with other tools
Transform a scene (verbs)
-More complex model
+ Immediate evaluation
+ Dynamic data, anim,
and interaction natural

© 2021 - Brad Myers and others
50

 The core abstraction in D3 is a selection.
// Add and configure an SVG element

var svg = d3.append(“svg”)
.attr(“width”, 500)
.attr(“height”, 300);

// Select & update existing rectangles contained in the SVG element

svg.selectAll(“rect”)

.attr(“width”, 100)

.style(“fill”, “steelblue”);

/ / add new SVG to page body

// set SVG width to 500px

// set SVG height to 300px

// select allSVG rectangles

// set rect widths to 100px

// set rect fill colors

D3 Selections

© 2021 - Brad Myers and others 51

Selections can bind data and DOM elements.
var values = [{…}, {…}, {…}, …]; / / input data as JS objects

// Select SVG rectangles and bind them to data values.
var bars = svg.selectAll(“rect.bars”).data(values);

// What if the DOM elements don’t exist yet? The enter set represents data
// values that do not yet have matching DOM elements.
bars.enter().append(“rect”).attr(“class”, “bars”);

// What if data values are removed? The exit set is a selection of existing
// DOM elements who no longer have matching data values.
bars.exit().remove();

Data Binding

© 2021 - Brad Myers and others 52

Data Parsing / Formatting (JSON, CSV, …)
Shape Helpers (arcs, curves, areas, symbols, …)
Scale Transforms (linear, log, ordinal,…)
Color Spaces (RGB, HSL, LAB, …)
Animated Transitions (tweening, easing, …)
Geographic Mapping (projections, clipping, …)
Layout Algorithms (stack, pie, force, trees, …)
Interactive Behaviors (brush, zoom, drag,…)

D3 Modules

© 2021 - Brad Myers and others 53

	Lecture 20:�Toolkits for building speech/conversational/chatbot User Interfaces, and Visualizations
	Logistics
	Based on:�Toolkits for Creating Conversational Interfaces�by Toby Jia-Jun Li http://toby.li/�04/20/2020
	Conversational Interfaces
	History
	History
	Lots of research and commercial attempts
	Advantages of conversational interfaces
	Two classes of conversational systems
	Practical architectures for�task-oriented dialog systems
	Practical architectures for task-oriented dialog systems
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Dialogflow
	Other architectures for dialog systems
	Example: 05-830 project (Spring’20)
	Conversation Design in DialogFlow
	Conversation Design in DialogFlow
	Interface Design
	Issues Encountered
	Video demo of result
	Based on:�Toolkits for Visualization and UIs in Data Science�by Dominik Moritz, April 8, 2020�https://dig.cmu.edu
	Origins
	How do people create visualizations?
	Drawing Visualizations with Imperative Programs
	Example:�processing.�org
	Component Architectures
	Slide Number 34
	Prefuse & Flare
	Panopoly of visualizations
	Other extreme: Chart Typologies
	Select from Menus…
	Results:
	Visual Analysis Grammars
	Grammar examples
	Slide Number 42
	Slide Number 43
	Protovis:	A Grammar for Visualization
	Visualization Grammar
	Visualization Grammar
	Properties of a “Mark”
	Minard 1869: Napoleon’s March, in ProtoViz
	d3.js: Data-Driven Documents
	Protovis vs. D3
	D3 Selections
	Data Binding
	D3 Modules

