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Logistics
 Changed lecture order because speech or viz 

might be a topic for final projects
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Based on:
Toolkits for Creating 
Conversational Interfaces
by Toby Jia-Jun Li http://toby.li/
04/20/2020
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Conversational Interfaces
 Intelligent personal assistants

Alexa, Siri, Google Assistant, 
Cortana…

 Voice command support for specific 
task domains

e.g., Talking to your car
 Automated phone systems for 

customer service
 Chatbots for tech support or fun
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History

Turing Test (1950)
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History
 Let computers facilitate formulative thinking as 

they now facilitate the solution of formulated 
problems

 Enable men and computers to cooperate in 
making decisions and controlling complex 
situations without inflexible dependence on 
predetermined programs.

 “Man-Computer Symbiosis (1960): 
Cooperative interaction between
men and electronic computers”

J. C. R. Licklider
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Lots of research and 
commercial attempts
 Influential early multi-modal system: Put That There 

(1980)
 Bolt, Richard A. “Put-that-there”: Voice and gesture at the 

graphics interface. SIGGRAPH Computer Graphics. Vol. 14. No. 
3. ACM, 1980.

 https://youtu.be/sC5Zg0fU2e8 (5:30)
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Advantages of conversational 
interfaces
 Hands-free: can handle situations where direct 

manipulation is not possible or convenient (e.g., far away, 
driving, users with accessibility needs)

 Screen size independence: can operate on devices with 
small screens (e.g., wearable) and no screen.

 Intuitive to use: well-designed conversational interfaces 
should have low learning barriers to users.

 Efficient: takes less time and effort for *some tasks* that 
require a lot of text entry, or navigating complex menus.
 Can be inefficient and hard-to-use in some situations too! E.g., 

when the prompts are too verbose, when the affordances are 
unclear (discoverability), or when the error handling mechanism 
is lacking.
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Two classes of conversational 
systems
1. Task-oriented conversational agents
 Purpose: help the user perform some specific 

tasks
2. Social chatbots (“chit-chat” bots)
 Purpose: maintain realistic conversations with 

humans
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Practical architectures for
task-oriented dialog systems

RavenClaw (Bohus and Rudnicky, 2003)
Bohus, Dan, and Alexander I. Rudnicky. "RavenClaw: Dialog management using hierarchical task decomposition and an expectation agenda." Eighth European 
Conference on Speech Communication and Technology. 2003.
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Practical architectures for 
task-oriented dialog systems
 Finite-state
 The developer manually defines all the conversation 

states in the system, and the transitions between the 
states.

 Frame-based
 frame (“intent”): the user’s intention for one 

conversation turn (e.g., book_flight)
 slot: the information that the system needs to know to 

fulfill an intent (e.g., departure_date, destination_city)
 slot values: the values that each slot can take
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User:  I want to book a flight for 2 to Munich. 
book
Flight

book
Hotel

book
Car

confirm
Booking
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User:  I want to book a flight for 2 to Munich. 

Intent: bookFlight    Slots: departureC ity, arrivalC ity, personC ount, date 

Intent recognition
book
Flight

book
Hotel

book
Car

confirm
Booking
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User:  I want to book a flight for 2 to Munich.  

Intent: bookFlight    Slots: departureC ity, arrivalCity,  personCount,  date 

Entity extraction / slot filling
book
Flight

book
Hotel

book
Car

confirm
Booking
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User:  I want to book a flight for 2 to Munich.

Bot:  What city are you flying from?

User:  Pittsburgh.

Intent: bookFlight    Slots: departureC ity, arrivalCity,  personCount,  date 

book
Flight

book
Hotel

book
Car

confirm
Booking
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Intent: bookFlight    Slots: departureCity,  arrivalCity,  personCount,  date 

User:  I want to book a flight for 2 to Munich.

Bot:  What city are you flying from?

User:  Pittsburgh.

book
Flight

book
Hotel

book
Car

confirm
Booking
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Intent: bookFlight    Slots: departureCity,  arrivalCity,  personCount,  date

User:  I want to book a flight for 2 to Munich.

Bot:  What city are you flying from?

User:  Pittsburgh.

Bot:  What’s the departure date for the flight?

User:  Tomorrow.

book
Flight

book
Hotel

book
Car

confirm
Booking
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Intent: bookHotel    Slots: …..

User:  I want to book a flight for 2 to Munich.

Bot:  What city are you flying from?

User:  Pittsburgh.

Bot:  What’s the departure date for the flight?

User:  Tomorrow.

Bot:  Do you want to also book a hotel or a car?

User:  I’d like to get a place to stay too.

book
Flight

book
Hotel

book
Car

confirm
Booking
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Existing tools for building slot-filling bots
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Dialogflow
 One of the more popular toolkits

 https://cloud.google.com/dialogflow/docs
 Can easily connect

to other Google
components
(e.g., speech
recognition,
speech synthesis,
knowledge graph…)
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Other architectures for dialog 
systems

1. Rule-based
(if (contains (or “hi” “hello”)) (output “hello”))
(if (and (= detect_comm_type SELF_DISCLOSURE) (= detect_emotion SAD))

(output “I'm sorry to hear [$USER_DISCLOSURE]”)) 

2. Corpus-based: use a very large corpus of human-
human or human-machine conversations
 Information retrieval (IR) based approach: find 

the best-matched prior utterance for the user’s 
input in the corpus, and use the prior response for 
that utterance

 Sequence-to-sequence dialog generation:
model conversation as a sequence transduction 
problem -> generate a response from a user input 
(and probably with some other contexts encoded 
in)
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Example: 05-830 project (Spring’20)

 Use DialogFlow to create a GUI Builder
 Thanks to Hongyi Zhang, Mengxin Cao, 

Ron Chew
 1-month project

22
© 2021 - Brad Myers and others



Two intents: Initialization, Interaction
Capability vs Complexity: What things do we need to specify via voice, or could we
use a demonstration?

Conversation Design in DialogFlow
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Conversation Design in 
DialogFlow

 Everyone has a different word for everything…
 Provide synonyms
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Interface Design
 Features
 Continuous voice monitoring
 Voice control to interact with graphical objects
 Dialog feedback in both audio and text
 Property sheet that supports direct manipulation
 Export existing canvas

as a static picture

Property sheet
of  active object
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DialogFlow Issues

● Speech-to-text is pretty crappy
○ Generic speech recognition  

service vs Google Assistant
○ Compounded by audio recording  

quality in Java
● Cannot have too many parameters in  

one intent, but graphics need many
○ Possible Solution: multiple intents,  

but difficult to manage

Interface Issues

● Hardware heterogeneity
● Background noise interference
● Errors in text recognized from audio
● Timeout for slow interaction
● Property sheet not updated properly  

when integrated with our toolkit

Issues Encountered

Current limitations

● Doesn’t give response in ideally real time
● Doesn’t properly deal with errors from user input and systeminternals
● One way conversation, doesn’t support constraints and “natural” placement 26© 2021 - Brad Myers and others



Video demo of result
 Local video (4:28)
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Based on:
Toolkits for Visualization and UIs 
in Data Science
by Dominik Moritz, April 8, 2020
https://dig.cmu.edu
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Origins
 Four major influences act on data analysis 

today:
1. The formal theories of statistics.
2. Accelerating developments in computers and display 

devices.
3. The challenge, in many fields, of more and ever 

larger bodies of data.
4. The emphasis on quantification in  an ever wider

variety of disciplines.
 Data Analysis & Statistics. Turkey and Wilk. 1965.
 Effective Data Visualization. Heer. 2015.
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How do people create 
visualizations?

Chart Typology
Pick from a stock of templates
Easy-to-use but limited expressiveness  
Prohibits novel designs, new data types

Component Architecture
Permits more combinatorial
possibilities  Novel views require new 
operators,  which requires software
engineering
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Drawing Visualizations with 
Imperative Programs
 Graphics APIs: Processing, OpenGL, 

Java2D, JavaScript/html SVG and Canvas
 Program by giving explicit steps. e.g.:
 "Put a red bar here and a blue bar there."  
 "Draw a line and some text."

 Specification and execution are intertwined.
 "You have unlimited power on

this canvas. You can literally
move mountains." — Bob Ross

Va
lu

e
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Example:
processing.
org
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Component Architectures
 Component Architectures on top of the graphics 

APIs
 Examples: Prefuse, Flare, Improvise,VTK

 Dataflow architecture – wire together nodes

Raw  
Data

Data  
Tables

Visual  
Structures

Interactive  
View

Data VisualForm

Data  
Transformations

Visual  
Encodings

View 
Transformations

Task

© 2021 - Brad Myers and others 33



© 2021 - Brad Myers and others 34



Prefuse & Flare
 Operator-based toolkits for visualization design
 Vis = (Input Data -> Visual Objects) + Operators

Prefuse (http://prefuse.org) Flare (http://flare.prefuse.org)
© 2021 - Brad Myers and others
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Panopoly of visualizations
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Other extreme: Chart 
Typologies

 Excel, Many Eyes, Google Charts, Tableau
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Select from Menus…
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Results:
 Inflexible
 Can tinker

after
generated
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Visual Analysis Grammars
 Examples: VizQL, ggplot2
 Specialized programming 

language
 Declarative – what to 

produce, not how (like html)
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Grammar examples
 ggplot(diamonds, aes(x=price, fill=cut))
+ geom_bar(position="dodge")
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Chart Typologies
Excel, Many Eyes, Google Charts

Visual Analysis Grammars
VizQL, ggplot2

Visualization Grammars
Protovis, D3.js

Component Architectures
Prefuse, Flare, Improvise,VTK

Graphics APIs
Processing, OpenGL, Java2D

ExpressivenessEa
se

-o
f-U

se
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Protovis: A Grammar forVisualization

A graphic is a composition of data-representative marks.

Jef f r ey H eer , M ik e Bos tock & V adim O gievets k y
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V is ualiz ation Gram m ar
Data  
Transforms  
Scales

Input data to visualize
Grouping, stats, projection, layout  
Map data values to visual values

Jacques Bertin
Sémiologie Graphique, 1967
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V is ualiz ation Gram m ar
Data  
Transforms  
Scales
Guides  
Marks

Input data to visualize
Grouping, stats, projection, layout  
Map data values to visual values

Axes & legends visualize scales  
Data-representative graphics

Area Rect Symbol Image

Line Text Rule Arc
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RECT λ : D → R
data 1 1.2 1.7 1.5 0.7

visible true
left 1 * 25
bot tom 0
width 20
height 1.2 * 80
fillStyle blue
strokeStyle black
lineWidth 1.5
... ...

Properties of a “Mark”

var vis =  newpv.Panel();
vis.add(pv.Bar )

.data([1,1.2, 1.7, 1.5, 0.7])

.vis ible(true)

.left((d) = > this.index *  25)

.bottom(0)

.width(20)

.height((d) = > d * 80)

.f illStyle(“blue”)

.s trok eStyle(“black”)

.lineWidth(1.5);
vis.render();
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vis.add(pv.Rule).data([0,-10,-20,-30])
.top((d) => 300 - 2*d - 0.5).lef t(200).r igh t(150)
.l in eWidth (1).s tr ok eSty le("#ccc")
.an ch or ("right").a dd(pv.Label)
.f on t("italic 10px Georgia")
.tex t((d) => d+"°").tex tBa s el in e("center");

vis.add(pv.Line).data(napoleon.temp)
.lef t(lon).top(tmp) .s tr ok eSty le("#0")

.add(pv.Label)
.top((d) => 5 + tmp(d))
.tex t((d) => d.temp+"° "+d.date.substr(0,6))

var army = pv.nest(napoleon.army, "dir", "group“);  
var vis = newpv.Panel();

var l ines  = vis.add(pv.Panel).data(army);
l in es .add(pv.Line)
.data(() => army[this.idx])
.lef t(lon).top(lat).s iz e((d) => d.size/8000)
.s tr ok eStyle(() => color[army[paneIndex][0].dir]);

vis.add(pv.Label).d a ta(napoleon.cities)
.lef t(lon).top(lat)
.tex t((d) => d.city).f on t("italic 10pxGeorgia")
.tex tA l ig n ("center").tex tB a s el in e("middle");

Minard 1869: Napoleon’s 
March, in ProtoViz
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d3.js: Data-Driven Documents

M ik e Bos tock , Dominik Moritz, Vadim
Ogievetsky, Jeff Heer, etc.
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Protovis vs. D3
Protovis
Specialized mark types
+ Streamlined design
-Limits expressiveness
-More overhead (slower)
-Harder to debug
-Self-contained model
Specify a scene (nouns)
+ Quick for static vis
-Delayed evaluation
- Animation, interaction  
are more cumbersome

D3
Bind data to DOM
-Exposes SVG/CSS/…
+ Exposes SVG/CSS/…
+ Less overhead (faster)
+ Debug in browser
+ Use with other tools
Transform a scene (verbs)
-More complex model
+ Immediate evaluation
+ Dynamic data, anim,  
and interaction natural
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 The core abstraction in D3 is a selection.
// Add and configure an SVG element

var svg = d3.append(“svg”)
.attr(“width”, 500)
.attr(“height”, 300);

// Select & update existing rectangles contained in the SVG element

svg.selectAll(“rect”)

.attr(“width”, 100)

.style(“fill”, “steelblue”);

/ / add new SVG to page body

// set SVG width to 500px

// set SVG height to 300px

// select allSVG rectangles

// set rect widths to 100px

// set rect fill colors

D3 Selections
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Selections can bind data and DOM elements.
var values = [ {…}, {…}, {…}, … ]; / / input data as JS objects

// Select SVG rectangles and bind them to data values.
var bars = svg.selectAll(“rect.bars”).data(values);

// What if the DOM elements don’t exist yet? The enter set represents data
// values that do not yet have matching DOM elements.
bars.enter().append(“rect”).attr(“class”, “bars”);

// What if data values are removed? The exit set is a selection of existing
// DOM elements who no longer have matching data values.
bars.exit().remove();

Data Binding
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Data Parsing /  Formatting (JSON, CSV, …)  
Shape Helpers (arcs, curves, areas, symbols, …)  
Scale Transforms (linear, log, ordinal,…)
Color Spaces (RGB, HSL, LAB, …)
Animated Transitions (tweening, easing, …)  
Geographic Mapping (projections, clipping, …)  
Layout Algorithms (stack, pie, force, trees, …)  
Interactive Behaviors (brush, zoom, drag,…)

D3 Modules
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