Lecture 18:
Constraints 2: Implementations
(with help from Scott Hudson)

 \
05-431/631 Software Structures for User
Interfaces (SSUI)

Fall, 2021

© 2021 - Scott Hudson and Brad Myers

Human-Computer Interaction Institute

Logistics
e Homework 5 due on Thursday

© 2021 - Scott Hudson and Brad Myers 2

|\
Human-Computer Interaction Institute N

Form of constraints

e For Ul work, typically express in form of
equations

e Often just data-copying (equality): this.x = that.x

e For graphics, usually arithmetic required:

this.x = that.x + thatw + 5
5 pixels to the right

this.x = that.x + that.w/2 - this.w/2
centered

this.w = 10 + max child[i].x + child[i].w
10 larger than children

© 2021 - Scott Hudson and Brad Myers 3

\)
Human-Computer Interaction Institute N

Power of constraints

e |f something changes, system can determine
effects
e automatically

e just change the object that has to change, the rest
“Just happens”

very nice property

© 2021 - Scott Hudson and Brad Myers 4

Dependency graphs

e Useful to look at a system of constraints as a
“dependency graph”
e graph showing what depends on what

e two kinds of nodes (bipartite graph)
variables (values to be constrained)
constraints (equations that relate)

© 2021 - Scott Hudson and Brad Myers 5

Dependency graphs

Example: A = (B, C, D)

B
A -C

Edges are dependencies D

© 2021 - Scott Hudson and Brad Myers 6

\)
Human-Computer Interaction Institute N

Dependency graphs
Dependency graphs chain together:
X=9g(AY)
B
X A e
| D
Y

© 2021 - Scott Hudson and Brad Myers 7

|\
Human-Computer Interaction Institute N

Kinds of constraint systems

e Actually lots of kinds, but 3 major varieties used in
Ul work
e one-way, multi-way, numerical (less use)
e reflect kinds of limitations imposed
e Reminder: Angular has both one-way and multi-way

e One-Way constraints

e must have a single variable on LHS

e information only flows to that variable
can change B,C,D system will find A
can’t do reverse (change A ...)

© 2021 - Scott Hudson and Brad Myers 8

|\
Human-Computer Interaction Institute w

One-Way constraints

Results in a directed dependency graph:
A =1(B,C,D)

B NOTE: These
arrows are in

A‘ the dataflow
‘C direction. Not
dependency

Normally require dependency graph

to be acyclic
e cyclic graph means cyclic definition

© 2021 - Scott Hudson and Brad Myers 9

\)
Human- Computer Interaction Institute N

One-Way constraints

e Problem with one-way:
introduces an asymmetry

e this.x =that.x + thatw + 5

e can move “that” (change that.x)
but can’'t move “this”

© 2021 - Scott Hudson and Brad Myers 10

|\
Human- Computer Interaction Institute w

Multi-way constraints A = (B,C,D)

Don’t require info flow only to the left in
equation
e can change A and have system find B,C, and/or D

Not as hard as it might seem
e most systems require you to explicitly factor the
equations for them
provide B = g(A,C,D), etc.
e | believe this is true for Angular two-way bindings

— have to supply a function for each “way” unless
equality

© 2021 - Scott Hudson and Brad Myers 11

|\
ion Institute

Multi-way constraints

e Modeled as an undirected dependency graph

e No longer have asymmetry

© 2021 - Scott Hudson and Brad Myers 12

\)
Human- Computer Interaction Institute N

Multi-way constraints

But all is not rosy

e most efficient algorithms require that dependency
graph be a tree (acyclic undirected graph)

B
X A -C

| :

© 2021 - Scott Hudson and Brad Myers 13

\)
Human-Computer Interaction Institute N

Multi-way constraints

But: A = f(B,C,D) & X = h(D,A)

X A -C
D

Not OK because it has a cycle (not a tree)

© 2021 - Scott Hudson and Brad Myers 14

\)
Human-Computer Interaction Institute N

Another important issue

e A set of constraints can be:
e Over-constrained
No valid solution that meets all constraints

e Under-constrained

More than one solution
= sometimes infinite numbers

© 2021 - Scott Hudson and Brad Myers 15

\)
Human-Computer Interaction Institute N

Over- and under-constrained

e Over-constrained systems
e solver will fail
e isn’'t nice to do this in interactive systems

e typically need to avoid this
need at least a “fallback” solution

© 2021 - Scott Hudson and Brad Myers 16

\)
Human- Computer Interaction Institute N

Over- and under-constrained

e Under-constrained

many solutions
system has to pick one
may not be the one you expect

example: constraint: point stays at midpoint of line
segment
move end point, then?

© 2021 - Scott Hudson and Brad Myers 17

\)
Human-Computer Interaction Institute N

Over- and under-constrained

e Under-constrained

e example: constraint: point stays at midpoint of line
segment
move end point, then?

Lots of valid solutions
= move other end point
= collapse to one point
= efc.

© 2021 - Scott Hudson and Brad Myers 18

\)
Human- Computer Interaction Institute N

Over- and under-constrained

e Good news is that one-way is never over- or
under-constrained (assuming acyclic)

e system makes no arbitrary choices
e pretty easy to understand

© 2021 - Scott Hudson and Brad Myers 19

|\
Human-Computer Interaction Institute N

Over- and under-constrained

e Multi-way can be either over- or under-
constrained
e have to pay for extra power somewhere

e typical approach is to over-constrain, but have a
mechanism for breaking / loosening constraints in
priority order

one way: “constraint hierarchies”

© 2021 - Scott Hudson and Brad Myers 20

\)
Human- Computer Interaction Institute N

Over- and under-constrained

e Multi-way can be either over- or under-
constrained

e unfortunately system still has to make arbitrary
choices

e generally harder to understand and control

© 2021 - Scott Hudson and Brad Myers 21

\)
Human-Computer Interaction Institute N

Implementing constraints

e Algorithm for one-way systems
e Need bookkeeping for variables

e For each keep:
value - the value of the var
egn - code to eval constraint
dep - list of vars we depend on
done - boolean “mark” for alg

© 2021 - Scott Hudson and Brad Myers 22

.
4
Human-Computer Interaction Institute

Implementing constraints

e Algorithm for one-way systems
e Need bookkeeping for variables

e For each keep:
value - the value of the var
egn - code to eval constraint
dep - list of vars we depend on
done - boolean “mark” for alg

© 2021 - Scott Hudson and Brad Myers 23

Human-Computer Interaction Institute

Naive algorithm

For each variable v do
evaluate(v)

evaluate(v):
Parms = empty
for each Depvar 1n v.dep do
Parms += evaluate(Depvar)
v.value = v.egn(Parms)
return v.value

© 2021 - Scott Hudson and Brad Myers 24

Why is this not a good plan?

© 2021 - Scott Hudson and Brad Myers 25

L)
Human-Computer Interaction Institute N

Exponential Wasted Work

NOTE: These
arrows are in
the dataflow
direction. Not
dependency

© 2021 - Scott Hudson and Brad Myers 26

Exponential Wasted Work

@@ o 3"

© 2021 - Scott Hudson and Brad Myers 27

Exponential Wasted Work

Breadth first does not fix this

@@ o 2"

No fixed order works for all graphs

Must respect topological ordering of
graph (do in reyerse topsort order)

L]
L\
ion Institute

Simple algorithm for one-V\;g;mm
(Embed evaluation in topsort)

e After any change:
// reset all the marks
for each variable Vv do

V.done = false

// make each var up-to-date
for each variable Vv do
evaluate(V)

© 2021 - Scott Hudson and Brad Myers 29

L]
L)
Human-Computer Interaction Institute

Simple algorithm for one-way

evaluate(V):
1t (!v.done)

V.done = true

Parms = empty

for each Depvar i1n V.dep do
‘Parms += evaluate(Depvar)

V.value = V.eqgn(Parms)
return V.value

© 2021 - Scott Hudson and Brad Myers 30

|\
Human- Computer Interaction Institute w

Still a lot of wasted work

e Typically only change small part of system,
but this algorithm evaluates all variables
every time

e Also evaluates variables even if nothing they
depend on has changed, or system never
needs value

e e.g., with non-strict functions such as boolean ops
and conditionals

© 2021 - Scott Hudson and Brad Myers 31

An efficient incremental s)
algorithm

e Add bookkeeping

e For each variable: OODMark
“Out Of Date mark”

Indicates variable may be out of date with respect to
its constraint

e For each dependency edge: pending

Indicates that variable depended upon has changed,
but value has not propagated across the edge

© 2021 - Scott Hudson and Brad Myers 32

|\
Human-Computer Interaction Institute w

Part one (of two)

When variable (or constraint)
changed, call MarkOOD() at point
of change

© 2021 - Scott Hudson and Brad Myers 33

Part one (of two)

When variable (or constraint)

changed, call MarkOOD() at point
of change

MarkooD(v) :
1f !v.0ODMark
v.00DMark = true

for each depv depending upon v do
MarkooD (depV)

© 2021 - Scott Hudson and Brad Myers 34

Part 2: only evaluate variables™ ™ @
when value requested (lazy
eval)

Evaluate(v):

1f v.O0ODMark
v.00DMark = false
Parms = empty
for each depvar i1n Vv.dep do
Parms += Evaluate(depvar)

UpdateIfPending(v,Parms)
return v.value

© 2021 - Scott Hudson and Brad Myers 35

Part 2: only evaluate varia”fi"'l”geém'm‘W

when value requested (lazy
eval)

Evaluate(v):

1f v.O0ODMark
v.00DMark = false
Parms = empty
for each depvar in Vv.dep do
Parms += Evaluate(depvar)

UpdateIfPending(v,Parms)
return v.value

© 2021 - Scott Hudson and Brad Myers 36

Part 2: only evaluate variabies ™ @
when value requested (lazy
eval)

UpdateIfPending(v,Parms):
pendi ngln = false //any incoming pending?
For each incoming dep edge E do
pendingIn |= E.pending
E.pending = false

1f pendingIn
newval = V.eqn(Parms) [*]
1f newval != v.value
v.value = newval
Foreach outgoing dependency edge D do
D.pending = true

© 2021 - Scott Hudson and Brad Myers 37

Part 2: only evaluate variables ™ @
when value requested (lazy
eval)

UpdateIfPending(v,Parms):
pendingIn = false //any incoming pending?
For each incoming dep edge E do

pendingIn |= E.pending
E.pending = false

1t pendingIn
newval = V.eqgn(Parms [*]
1f newval != v.value
v.value = newval
Foreach outgoing dependency edge D do
D.pending = true

© 2021 - Scott Hudson and Brad Myers 38

4
Human-Computer Interaction Institute N

Example

© 2021 - Scott Hudson and Brad Myers 39

4
Human-Computer Interaction Institute N

Example

Change Here © 2021 - Scott Hudson and Brad Myers 40

4
Human-Computer Interaction Institute N

Example

Mark out of date

N

© 2021 - Scott Hudson and Brad Myers 41

4
Human-Computer Interaction Institute N

Example

Eval this

© 2021 - Scott Hudson and Brad Myers 42

4
Human-Computer Interaction Institute N

© 2021 - Scott Hudson and Brad Myers 43

4
Human-Computer Interaction Institute N

© 2021 - Scott Hudson and Brad Myers 44

4
Human-Computer Interaction Institute N

Example

N

Don’t need to
eval any of these! (Not ont-0fzdate).. ... p

4
Human-Computer Interaction Institute N

Example

N

© 2021 - Scott Hudson and Brad Myers 46

4
Human-Computer Interaction Institute N

Example

N

© 2021 - Scott Hudson and Brad Myers 47

4
Human-Computer Interaction Institute N

Example

(Trivial) eval

© 2021 - Scott Hudson and Brad Myers 48

4
Human-Computer Interaction Institute N

© 2021 - Scott Hudson and Brad Myers 49

4
Human-Computer Interaction Institute N

© 2021 - Scott Hudson and Brad Myers 50

4
Human-Computer Interaction Institute N

Eval

© 2021 - Scott Hudson and Brad Myers 51

4
Human-Computer Interaction Institute N

Example

Done

© 2021 - Scott Hudson and Brad Myers 52

4
Human-Computer Interaction Institute N

Example

Notice we can do that
1000 times and these
never get evaluated
because they aren’t needed

© 2021 - Scott Hudson and Brad Myers 53

4
Human-Computer Interaction Institute N

Rewind

N

Suppose this value didn’t change

© 2021 - Scott Hudson and Brad Myers 54

4
Human-Computer Interaction Institute N

Example 2

N

No pending marks placed here

© 2021 - Scott Hudson and Brad Myers 55

4
Human-Computer Interaction Institute N

Example 2

Skip eval
(and no outgoing\
pending marks)

N

© 2021 - Scott Hudson and Brad Myers 56

Example 2

© 2021 - Scott Hudson and Brad Myers 57

4
Human-Computer Interaction Institute N

Example 2 Done

Didn’t have to eval these

N

© 2021 - Scott Hudson and Brad Myers 58

Algorithm is “partially optimal”

e Optimal in set of equations evaluated [*]‘
e Under fairly strong assumptions

e Does non-optimal total work [X]

e “Touches” more things than optimal set during
Mark OQOD phase

Fortunately simplest / fastest part
e Very close to theoretical lower bound
e No better algorithm known

© 2021 - Scott Hudson and Brad Myers 59

Good asymptotic result, but=@
also very practical

e Minimal amount of bookkeeping
e Simple and statically allocated
e Only local information

e Operations are simple

e Also has very simple extension to handling
pointers and dynamic dependencies

© 2021 - Scott Hudson and Brad Myers 60

\)
Human-Computer Interaction Institute N

Multi-way implementation

e Use a "planner” algorithm to assign a
direction to each undirected edge of
dependency graph

e Now have a one-way problem

© 2021 - Scott Hudson and Brad Myers 61

The DeltaBlue incrementat~= =@
planning algorithm

e Assume “constraint hierarchies”
e Strengths of constraints

e Important to allow more control when over or
under constrained

Force all to be over constrained, then relax weakest
constraints

Substantially improves predictability

e Restriction: acyclic (undirected) dependency
graphs only

© 2021 - Scott Hudson and Brad Myers 62

A plan is a set of edge "= @
directions

e Assume we have multiple methods for
enforcing a constraint

e One per (output) variable
e Picking method sets edge directions

e Given existing plan and change to
constraints, find a new plan

© 2021 - Scott Hudson and Brad Myers 63

|\
Human-Computer Interaction Institute N

Finding a new plan

e For added constraints

e May need to break a weaker constraint
(somewhere) to enforce new constraint

e For removed constraints

e May have weaker unenforced constraints that can
now be satisfied

© 2021 - Scott Hudson and Brad Myers 64

Finding possible constraints: -
to break when adding a new
one

e For some variable referenced by new
constraint

e Find an undirected path from var to a variable
constrained by a weaker constraint (if any)

e Turn edges around on that path
e Break the weaker constraint

© 2021 - Scott Hudson and Brad Myers 65

Key to finding path: e)
“Walkabout Strengths”

e Walkabout strength of variable indicates
weakest constraint “upstream” from that
variable

e Weakest constraint that could be revoked to allow
that variable to be controlled by a different
constraint

© 2021 - Scott Hudson and Brad Myers 66

Walkabout strength

e Walkabout strength of var V currently defined
by method M of constraint C is:

e Min of C.strength and walkabout strengths of
variables providing input to M

© 2021 - Scott Hudson and Brad Myers 67

DeltaBlue planning

e Given WASSs of all vars
e (WalkAbout Strength)

e [0 add a constraint C:

e Find method of C whose output var has weakest
WAS and is weaker than C

If none, constraint can’t be satisfied
e Revoke constraint currently defining that var

e Attempt to reestablish that constraint recursively
Will follow weakest WAS

e Update WASSs as we recurse

© 2021 - Scott Hudson and Brad Myers 68

DeltaBlue Planning

e Toremove a constraint C
e Update all downstream WASSs
e Collect all unenforced weaker constraints along

that path
e Attempt to add each of them (in strength order)

© 2021 - Scott Hudson and Brad Myers 69

|\
Human-Computer Interaction Institute N

DeltaBlue Evaluation

e A DeltaBlue plan establishes an evaluation
direction on each undirected dependency
edge

e Based on those directions, can then use a
one-way algorithm for actual evaluation

© 2021 - Scott Hudson and Brad Myers 70

References

e Optimal one-way algorithm
http://doi.acm.org/10.1145/117009.117012
Note: constraint graph formulated differently

e Edges in the other direction
e No nodes for functions (not bipartite graph)

e DeltaBlue
http://doi.acm.org/10.1145/76372.77531

© 2021 - Scott Hudson and Brad Myers 71

http://doi.acm.org/10.1145/117009.117012
http://doi.acm.org/10.1145/76372.77531

	Lecture 18:�Constraints 2: Implementations�(with help from Scott Hudson)
	Logistics
	Form of constraints
	Power of constraints
	Dependency graphs
	Dependency graphs
	Dependency graphs
	Kinds of constraint systems
	One-Way constraints
	One-Way constraints
	Multi-way constraints
	Multi-way constraints
	Multi-way constraints
	Multi-way constraints
	Another important issue
	Over- and under-constrained
	Over- and under-constrained
	Over- and under-constrained
	Over- and under-constrained
	Over- and under-constrained
	Over- and under-constrained
	Implementing constraints
	Implementing constraints
	Naïve algorithm
	Why is this not a good plan?
	Exponential Wasted Work
	Exponential Wasted Work
	Exponential Wasted Work
	Simple algorithm for one-way�(Embed evaluation in topsort)
	Simple algorithm for one-way
	Still a lot of wasted work
	An efficient incremental algorithm
	Part one (of two)
	Part one (of two)
	Part 2: only evaluate variables when value requested (lazy eval)
	Part 2: only evaluate variables when value requested (lazy eval)
	Part 2: only evaluate variables when value requested (lazy eval)
	Part 2: only evaluate variables when value requested (lazy eval)
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Rewind
	Example 2
	Example 2
	Example 2
	Example 2
	Algorithm is “partially optimal”
	Good asymptotic result, but also very practical
	Multi-way implementation
	The DeltaBlue incremental planning algorithm
	A plan is a set of edge directions
	Finding a new plan
	Finding possible constraints to break when adding a new one
	Key to finding path: �“Walkabout Strengths”
	Walkabout strength
	DeltaBlue planning
	DeltaBlue Planning
	DeltaBlue Evaluation
	References

