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Logistics
 Homework 5 due on Thursday

© 2021 - Scott Hudson and Brad Myers 2



Form of constraints
 For UI work, typically express in form of 

equations
 Often just data-copying (equality): this.x = that.x
 For graphics, usually arithmetic required:
 this.x = that.x + that.w + 5  

 5 pixels to the right
 this.x = that.x + that.w/2 - this.w/2

 centered
 this.w = 10 + max child[i].x + child[i].w

 10 larger than children
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Power of constraints
 If something changes, system can determine 

effects
 automatically
 just change the object that has to change, the rest 

“just happens”
 very nice property
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Dependency graphs
 Useful to look at a system of constraints as a 

“dependency graph”
 graph showing what depends on what
 two kinds of nodes (bipartite graph)
 variables (values to be constrained)
 constraints (equations that relate)
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Dependency graphs
Example: A = f(B, C, D)

Edges are dependencies

A
B
C
D

f
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Dependency graphs
Dependency graphs chain together:

X = g( A, Y)

A
B
C
D

fX

Y

g
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Kinds of constraint systems
 Actually lots of kinds, but 3 major varieties used in 

UI work 
 one-way, multi-way, numerical (less use)
 reflect kinds of limitations imposed
 Reminder: Angular has both one-way and multi-way

 One-Way constraints
 must have a single variable on LHS
 information only flows to that variable

 can change B,C,D system will find A
 can’t do reverse (change A …)
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One-Way constraints
Results in a directed dependency graph: 
A = f(B,C,D)

Normally require dependency graph 
to be acyclic
 cyclic graph means cyclic definition

A
B
C
D

f
NOTE: These 
arrows are in 
the dataflow
direction. Not
dependency
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One-Way constraints
 Problem with one-way: 

introduces an asymmetry
 this.x = that.x + that.w + 5
 can move “that” (change that.x)

but can’t move “this”
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Multi-way constraints
Don’t require info flow only to the left in 
equation
 can change A and have system find B,C, and/or D

Not as hard as it might seem
 most systems require you to explicitly factor the 

equations for them
 provide B = g(A,C,D), etc.

 I believe this is true for Angular two-way bindings 
– have to supply a function for each “way” unless 
equality
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Multi-way constraints
 Modeled as an undirected dependency graph

 No longer have asymmetry
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Multi-way constraints
But all is not rosy
 most efficient algorithms require that dependency 

graph be a tree (acyclic undirected graph)

A
B
C
D

fX

Y

g
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Multi-way constraints
But: A = f(B,C,D) & X = h(D,A)

Not OK because it has a cycle (not a tree)

A
B
C
D

fX h
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Another important issue
 A set of constraints can be:
 Over-constrained
 No valid solution that meets all constraints

 Under-constrained
 More than one solution
 sometimes infinite numbers
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Over- and under-constrained
 Over-constrained systems
 solver will fail
 isn’t nice to do this in interactive systems
 typically need to avoid this
 need at least a “fallback” solution
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Over- and under-constrained
 Under-constrained
 many solutions
 system has to pick one
 may not be the one you expect
 example: constraint: point stays at midpoint of line 

segment
 move end point, then?
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Over- and under-constrained
 Under-constrained
 example: constraint: point stays at midpoint of line 

segment
 move end point, then?
 Lots of valid solutions
 move other end point
 collapse to one point
 etc.
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Over- and under-constrained
 Good news is that one-way is never over- or 

under-constrained (assuming acyclic)
 system makes no arbitrary choices
 pretty easy to understand
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Over- and under-constrained
 Multi-way can be either over- or under-

constrained
 have to pay for extra power somewhere
 typical approach is to over-constrain, but have a 

mechanism for breaking / loosening constraints in 
priority order
 one way: “constraint hierarchies”
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Over- and under-constrained
 Multi-way can be either over- or under-

constrained
 unfortunately system still has to make arbitrary 

choices
 generally harder to understand and control 
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Implementing constraints
 Algorithm for one-way systems
 Need bookkeeping for variables
 For each keep:

value - the value of the var
eqn - code to eval constraint
dep - list of vars we depend on
done - boolean “mark” for alg
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Implementing constraints
 Algorithm for one-way systems
 Need bookkeeping for variables
 For each keep:

value - the value of the var
eqn - code to eval constraint
dep - list of vars we depend on
done - boolean “mark” for alg

Incoming 
Edges
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Naïve algorithm
For each variable v do
evaluate(v)

evaluate(v):
Parms = empty
for each DepVar in v.dep do

Parms += evaluate(DepVar)
v.value = v.eqn(Parms)
return v.value
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Why is this not a good plan?
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Exponential Wasted Work

© 2021 - Scott Hudson and Brad Myers

NOTE: These 
arrows are in 
the dataflow
direction. Not
dependency
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Exponential Wasted Work

1 3 279 3n
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Exponential Wasted Work
Breadth first does not fix this

No fixed order works for all graphs
Must respect topological ordering of 
graph (do in reverse topsort order)

1 2 84 2n
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Simple algorithm for one-way
(Embed evaluation in topsort)
After any change:
// reset all the marks

for each variable V do

V.done = false

// make each var up-to-date

for each variable V do

evaluate(V)
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Simple algorithm for one-way
evaluate(V):
if (!V.done)
V.done = true

Parms = empty

for each DepVar in V.dep do
Parms += evaluate(DepVar)

V.value = V.eqn(Parms)

return V.value
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Still a lot of wasted work
 Typically only change small part of system, 

but this algorithm evaluates all variables 
every time

 Also evaluates variables even if nothing they 
depend on has changed, or system never 
needs value 
 e.g., with non-strict functions such as boolean ops 

and conditionals
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An efficient incremental 
algorithm
 Add bookkeeping
 For each variable: OODMark
 “Out Of Date mark”
 Indicates variable may be out of date with respect to 

its constraint
 For each dependency edge: pending
 Indicates that variable depended upon has changed, 

but value has not propagated across the edge
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Part one (of two)
When variable (or constraint) 
changed, call MarkOOD() at point 
of change

MarkOOD(v):                   [x]
if !v.OODMark
v.OODMark = true
for each depV depending upon v do
MarkOOD(depV)
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Part one (of two)
When variable (or constraint) 
changed, call MarkOOD() at point 
of change

MarkOOD(v):
if !v.OODMark
v.OODMark = true
for each depV depending upon v do
MarkOOD(depV)

Outgoing 
Edges
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Part 2: only evaluate variables 
when value requested (lazy 
eval)
Evaluate(v):
if v.OODMark
v.OODMark = false

Parms = empty 

for each depVar in V.dep do
Parms += Evaluate(depVar)

UpdateIfPending(v,Parms)

return v.value
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Part 2: only evaluate variables 
when value requested (lazy 
eval)
Evaluate(v):
if v.OODMark
v.OODMark = false

Parms = empty 

for each depVar in V.dep do
Parms += Evaluate(depVar)

UpdateIfPending(v,Parms)

return v.value

Incoming 
Edges

© 2021 - Scott Hudson and Brad Myers 36



UpdateIfPending(v,Parms):
pendingIn = false  //any incoming pending?
For each incoming dep edge E do

pendingIn |= E.pending
E.pending = false

if pendingIn
newVal = V.eqn(Parms)      [*]
if newval != v.value

v.value = newval
Foreach outgoing dependency edge D do
D.pending = true

Part 2: only evaluate variables 
when value requested (lazy 
eval)
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UpdateIfPending(v,Parms):
pendingIn = false  //any incoming pending?
For each incoming dep edge E do

pendingIn |= E.pending
E.pending = false

if pendingIn
newVal = V.eqn(Parms)      [*]
if newval != v.value

v.value = newval
Foreach outgoing dependency edge D do
D.pending = true

Part 2: only evaluate variables 
when value requested (lazy 
eval)

Can do lazy evaluation 
here
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Example
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Example
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Example
Mark out of date

© 2021 - Scott Hudson and Brad Myers 41



Example
Eval this
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Example
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Example
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Example

Don’t need to 
eval any of these! (Not out-of-date)© 2021 - Scott Hudson and Brad Myers 45



Example
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Example
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Example

(Trivial) eval
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Example

Eval
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Example

Eval

© 2021 - Scott Hudson and Brad Myers 50



Example
Eval
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Example Done
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Example

Notice we can do that 
1000 times and these 
never get evaluated
because they aren’t needed
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Rewind

Suppose this value didn’t change
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Example 2

No pending marks placed here
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Example 2
Skip eval 
(and no outgoing 
pending marks)

© 2021 - Scott Hudson and Brad Myers 56



Example 2
Skip eval 
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Example 2 Done 

Didn’t have to eval these
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Algorithm is “partially optimal”
 Optimal in set of equations evaluated    [*]
 Under fairly strong assumptions 

 Does non-optimal total work [x]
 “Touches” more things than optimal set during 

Mark_OOD phase
 Fortunately simplest / fastest part

 Very close to theoretical lower bound 
 No better algorithm known 
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Good asymptotic result, but 
also very practical
 Minimal amount of bookkeeping
 Simple and statically allocated
 Only local information

 Operations are simple
 Also has very simple extension to handling 

pointers and dynamic dependencies
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Multi-way implementation
 Use a “planner” algorithm to assign a 

direction to each undirected edge of 
dependency graph

 Now have a one-way problem
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The DeltaBlue incremental 
planning algorithm
 Assume “constraint hierarchies”
 Strengths of constraints
 Important to allow more control when over or 

under constrained
 Force all to be over constrained, then relax weakest 

constraints
 Substantially improves predictability

 Restriction: acyclic (undirected) dependency 
graphs only
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A plan is a set of edge 
directions
 Assume we have multiple methods for 

enforcing a constraint
 One per (output) variable 
 Picking method sets edge directions

 Given existing plan and change to 
constraints, find a new plan
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Finding a new plan
 For added constraints
 May need to break a weaker constraint 

(somewhere) to enforce new constraint
 For removed constraints
 May have weaker unenforced constraints that can 

now be satisfied
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Finding possible constraints 
to break when adding a new 
one
 For some variable referenced by new 

constraint
 Find an undirected path from var to a variable 

constrained by a weaker constraint (if any)
 Turn edges around on that path
 Break the weaker constraint
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Key to finding path: 
“Walkabout Strengths”
 Walkabout strength of variable indicates 

weakest constraint “upstream” from that 
variable
 Weakest constraint that could be revoked to allow 

that variable to be controlled by a different 
constraint
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Walkabout strength
 Walkabout strength of var V currently defined 

by method M of constraint C is:
 Min of C.strength and walkabout strengths of 

variables providing input to M
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DeltaBlue planning
 Given WASs of all vars
 (WalkAbout Strength)

 To add a constraint C:
 Find method of C whose output var has weakest 

WAS and is weaker than C
 If none, constraint can’t be satisfied

 Revoke constraint currently defining that var
 Attempt to reestablish that constraint recursively
 Will follow weakest WAS 

 Update WASs as we recurse
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DeltaBlue Planning
 To remove a constraint C
 Update all downstream WASs
 Collect all unenforced weaker constraints along 

that path
 Attempt to add each of them (in strength order)
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DeltaBlue Evaluation
 A DeltaBlue plan establishes an evaluation 

direction on each undirected dependency 
edge

 Based on those directions, can then use a 
one-way algorithm for actual evaluation
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References
 Optimal one-way algorithm

http://doi.acm.org/10.1145/117009.117012
Note: constraint graph formulated differently 
 Edges in the other direction
 No nodes for functions (not bipartite graph)

 DeltaBlue
http://doi.acm.org/10.1145/76372.77531
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