
Lecture 18:
Constraints 2: Implementations
(with help from Scott Hudson)

05-431/631 Software Structures for User
Interfaces (SSUI)
Fall, 2021

© 2021 - Scott Hudson and Brad Myers 1

Logistics
 Homework 5 due on Thursday

© 2021 - Scott Hudson and Brad Myers 2

Form of constraints
 For UI work, typically express in form of

equations
 Often just data-copying (equality): this.x = that.x
 For graphics, usually arithmetic required:
 this.x = that.x + that.w + 5

 5 pixels to the right
 this.x = that.x + that.w/2 - this.w/2

 centered
 this.w = 10 + max child[i].x + child[i].w

 10 larger than children

© 2021 - Scott Hudson and Brad Myers 3

Power of constraints
 If something changes, system can determine

effects
 automatically
 just change the object that has to change, the rest

“just happens”
 very nice property

© 2021 - Scott Hudson and Brad Myers 4

Dependency graphs
 Useful to look at a system of constraints as a

“dependency graph”
 graph showing what depends on what
 two kinds of nodes (bipartite graph)
 variables (values to be constrained)
 constraints (equations that relate)

© 2021 - Scott Hudson and Brad Myers 5

Dependency graphs
Example: A = f(B, C, D)

Edges are dependencies

A
B
C
D

f

© 2021 - Scott Hudson and Brad Myers 6

Dependency graphs
Dependency graphs chain together:

X = g(A, Y)

A
B
C
D

fX

Y

g

© 2021 - Scott Hudson and Brad Myers 7

Kinds of constraint systems
 Actually lots of kinds, but 3 major varieties used in

UI work
 one-way, multi-way, numerical (less use)
 reflect kinds of limitations imposed
 Reminder: Angular has both one-way and multi-way

 One-Way constraints
 must have a single variable on LHS
 information only flows to that variable

 can change B,C,D system will find A
 can’t do reverse (change A …)

© 2021 - Scott Hudson and Brad Myers 8

One-Way constraints
Results in a directed dependency graph:
A = f(B,C,D)

Normally require dependency graph
to be acyclic
 cyclic graph means cyclic definition

A
B
C
D

f
NOTE: These
arrows are in
the dataflow
direction. Not
dependency

© 2021 - Scott Hudson and Brad Myers 9

One-Way constraints
 Problem with one-way:

introduces an asymmetry
 this.x = that.x + that.w + 5
 can move “that” (change that.x)

but can’t move “this”

© 2021 - Scott Hudson and Brad Myers 10

Multi-way constraints
Don’t require info flow only to the left in
equation
 can change A and have system find B,C, and/or D

Not as hard as it might seem
 most systems require you to explicitly factor the

equations for them
 provide B = g(A,C,D), etc.

 I believe this is true for Angular two-way bindings
– have to supply a function for each “way” unless
equality

© 2021 - Scott Hudson and Brad Myers 11

A = f(B,C,D)

Multi-way constraints
 Modeled as an undirected dependency graph

 No longer have asymmetry

© 2021 - Scott Hudson and Brad Myers 12

Multi-way constraints
But all is not rosy
 most efficient algorithms require that dependency

graph be a tree (acyclic undirected graph)

A
B
C
D

fX

Y

g

© 2021 - Scott Hudson and Brad Myers 13

Multi-way constraints
But: A = f(B,C,D) & X = h(D,A)

Not OK because it has a cycle (not a tree)

A
B
C
D

fX h

© 2021 - Scott Hudson and Brad Myers 14

Another important issue
 A set of constraints can be:
 Over-constrained
 No valid solution that meets all constraints

 Under-constrained
 More than one solution
 sometimes infinite numbers

© 2021 - Scott Hudson and Brad Myers 15

Over- and under-constrained
 Over-constrained systems
 solver will fail
 isn’t nice to do this in interactive systems
 typically need to avoid this
 need at least a “fallback” solution

© 2021 - Scott Hudson and Brad Myers 16

Over- and under-constrained
 Under-constrained
 many solutions
 system has to pick one
 may not be the one you expect
 example: constraint: point stays at midpoint of line

segment
 move end point, then?

© 2021 - Scott Hudson and Brad Myers 17

Over- and under-constrained
 Under-constrained
 example: constraint: point stays at midpoint of line

segment
 move end point, then?
 Lots of valid solutions
 move other end point
 collapse to one point
 etc.

© 2021 - Scott Hudson and Brad Myers 18

Over- and under-constrained
 Good news is that one-way is never over- or

under-constrained (assuming acyclic)
 system makes no arbitrary choices
 pretty easy to understand

© 2021 - Scott Hudson and Brad Myers 19

Over- and under-constrained
 Multi-way can be either over- or under-

constrained
 have to pay for extra power somewhere
 typical approach is to over-constrain, but have a

mechanism for breaking / loosening constraints in
priority order
 one way: “constraint hierarchies”

© 2021 - Scott Hudson and Brad Myers 20

Over- and under-constrained
 Multi-way can be either over- or under-

constrained
 unfortunately system still has to make arbitrary

choices
 generally harder to understand and control

© 2021 - Scott Hudson and Brad Myers 21

Implementing constraints
 Algorithm for one-way systems
 Need bookkeeping for variables
 For each keep:

value - the value of the var
eqn - code to eval constraint
dep - list of vars we depend on
done - boolean “mark” for alg

© 2021 - Scott Hudson and Brad Myers 22

Implementing constraints
 Algorithm for one-way systems
 Need bookkeeping for variables
 For each keep:

value - the value of the var
eqn - code to eval constraint
dep - list of vars we depend on
done - boolean “mark” for alg

Incoming
Edges

© 2021 - Scott Hudson and Brad Myers 23

Naïve algorithm
For each variable v do
evaluate(v)

evaluate(v):
Parms = empty
for each DepVar in v.dep do

Parms += evaluate(DepVar)
v.value = v.eqn(Parms)
return v.value

© 2021 - Scott Hudson and Brad Myers 24

Why is this not a good plan?

© 2021 - Scott Hudson and Brad Myers 25

Exponential Wasted Work

© 2021 - Scott Hudson and Brad Myers

NOTE: These
arrows are in
the dataflow
direction. Not
dependency

26

Exponential Wasted Work

1 3 279 3n

© 2021 - Scott Hudson and Brad Myers 27

Exponential Wasted Work
Breadth first does not fix this

No fixed order works for all graphs
Must respect topological ordering of
graph (do in reverse topsort order)

1 2 84 2n

© 2021 - Scott Hudson and Brad Myers 28

Simple algorithm for one-way
(Embed evaluation in topsort)
After any change:
// reset all the marks

for each variable V do

V.done = false

// make each var up-to-date

for each variable V do

evaluate(V)
© 2021 - Scott Hudson and Brad Myers 29

Simple algorithm for one-way
evaluate(V):
if (!V.done)
V.done = true

Parms = empty

for each DepVar in V.dep do
Parms += evaluate(DepVar)

V.value = V.eqn(Parms)

return V.value

© 2021 - Scott Hudson and Brad Myers 30

Still a lot of wasted work
 Typically only change small part of system,

but this algorithm evaluates all variables
every time

 Also evaluates variables even if nothing they
depend on has changed, or system never
needs value
 e.g., with non-strict functions such as boolean ops

and conditionals

© 2021 - Scott Hudson and Brad Myers 31

An efficient incremental
algorithm
 Add bookkeeping
 For each variable: OODMark
 “Out Of Date mark”
 Indicates variable may be out of date with respect to

its constraint
 For each dependency edge: pending
 Indicates that variable depended upon has changed,

but value has not propagated across the edge

© 2021 - Scott Hudson and Brad Myers 32

Part one (of two)
When variable (or constraint)
changed, call MarkOOD() at point
of change

MarkOOD(v): [x]
if !v.OODMark
v.OODMark = true
for each depV depending upon v do
MarkOOD(depV)

© 2021 - Scott Hudson and Brad Myers 33

Part one (of two)
When variable (or constraint)
changed, call MarkOOD() at point
of change

MarkOOD(v):
if !v.OODMark
v.OODMark = true
for each depV depending upon v do
MarkOOD(depV)

Outgoing
Edges

© 2021 - Scott Hudson and Brad Myers 34

Part 2: only evaluate variables
when value requested (lazy
eval)
Evaluate(v):
if v.OODMark
v.OODMark = false

Parms = empty

for each depVar in V.dep do
Parms += Evaluate(depVar)

UpdateIfPending(v,Parms)

return v.value

© 2021 - Scott Hudson and Brad Myers 35

Part 2: only evaluate variables
when value requested (lazy
eval)
Evaluate(v):
if v.OODMark
v.OODMark = false

Parms = empty

for each depVar in V.dep do
Parms += Evaluate(depVar)

UpdateIfPending(v,Parms)

return v.value

Incoming
Edges

© 2021 - Scott Hudson and Brad Myers 36

UpdateIfPending(v,Parms):
pendingIn = false //any incoming pending?
For each incoming dep edge E do

pendingIn |= E.pending
E.pending = false

if pendingIn
newVal = V.eqn(Parms) [*]
if newval != v.value

v.value = newval
Foreach outgoing dependency edge D do
D.pending = true

Part 2: only evaluate variables
when value requested (lazy
eval)

© 2021 - Scott Hudson and Brad Myers 37

UpdateIfPending(v,Parms):
pendingIn = false //any incoming pending?
For each incoming dep edge E do

pendingIn |= E.pending
E.pending = false

if pendingIn
newVal = V.eqn(Parms) [*]
if newval != v.value

v.value = newval
Foreach outgoing dependency edge D do
D.pending = true

Part 2: only evaluate variables
when value requested (lazy
eval)

Can do lazy evaluation
here

© 2021 - Scott Hudson and Brad Myers 38

Example

© 2021 - Scott Hudson and Brad Myers 39

Example

Change Here © 2021 - Scott Hudson and Brad Myers 40

Example
Mark out of date

© 2021 - Scott Hudson and Brad Myers 41

Example
Eval this

© 2021 - Scott Hudson and Brad Myers 42

Example

© 2021 - Scott Hudson and Brad Myers 43

Example

© 2021 - Scott Hudson and Brad Myers 44

Example

Don’t need to
eval any of these! (Not out-of-date)© 2021 - Scott Hudson and Brad Myers 45

Example

© 2021 - Scott Hudson and Brad Myers 46

Example

© 2021 - Scott Hudson and Brad Myers 47

Example

(Trivial) eval
© 2021 - Scott Hudson and Brad Myers 48

Example

Eval

© 2021 - Scott Hudson and Brad Myers 49

Example

Eval

© 2021 - Scott Hudson and Brad Myers 50

Example
Eval

© 2021 - Scott Hudson and Brad Myers 51

Example Done

© 2021 - Scott Hudson and Brad Myers 52

Example

Notice we can do that
1000 times and these
never get evaluated
because they aren’t needed

© 2021 - Scott Hudson and Brad Myers 53

Rewind

Suppose this value didn’t change
© 2021 - Scott Hudson and Brad Myers 54

Example 2

No pending marks placed here
© 2021 - Scott Hudson and Brad Myers 55

Example 2
Skip eval
(and no outgoing
pending marks)

© 2021 - Scott Hudson and Brad Myers 56

Example 2
Skip eval

© 2021 - Scott Hudson and Brad Myers 57

Example 2 Done

Didn’t have to eval these

© 2021 - Scott Hudson and Brad Myers 58

Algorithm is “partially optimal”
 Optimal in set of equations evaluated [*]
 Under fairly strong assumptions

 Does non-optimal total work [x]
 “Touches” more things than optimal set during

Mark_OOD phase
 Fortunately simplest / fastest part

 Very close to theoretical lower bound
 No better algorithm known

© 2021 - Scott Hudson and Brad Myers 59

Good asymptotic result, but
also very practical
 Minimal amount of bookkeeping
 Simple and statically allocated
 Only local information

 Operations are simple
 Also has very simple extension to handling

pointers and dynamic dependencies

© 2021 - Scott Hudson and Brad Myers 60

Multi-way implementation
 Use a “planner” algorithm to assign a

direction to each undirected edge of
dependency graph

 Now have a one-way problem

© 2021 - Scott Hudson and Brad Myers 61

The DeltaBlue incremental
planning algorithm
 Assume “constraint hierarchies”
 Strengths of constraints
 Important to allow more control when over or

under constrained
 Force all to be over constrained, then relax weakest

constraints
 Substantially improves predictability

 Restriction: acyclic (undirected) dependency
graphs only

© 2021 - Scott Hudson and Brad Myers 62

A plan is a set of edge
directions
 Assume we have multiple methods for

enforcing a constraint
 One per (output) variable
 Picking method sets edge directions

 Given existing plan and change to
constraints, find a new plan

© 2021 - Scott Hudson and Brad Myers 63

Finding a new plan
 For added constraints
 May need to break a weaker constraint

(somewhere) to enforce new constraint
 For removed constraints
 May have weaker unenforced constraints that can

now be satisfied

© 2021 - Scott Hudson and Brad Myers 64

Finding possible constraints
to break when adding a new
one
 For some variable referenced by new

constraint
 Find an undirected path from var to a variable

constrained by a weaker constraint (if any)
 Turn edges around on that path
 Break the weaker constraint

© 2021 - Scott Hudson and Brad Myers 65

Key to finding path:
“Walkabout Strengths”
 Walkabout strength of variable indicates

weakest constraint “upstream” from that
variable
 Weakest constraint that could be revoked to allow

that variable to be controlled by a different
constraint

© 2021 - Scott Hudson and Brad Myers 66

Walkabout strength
 Walkabout strength of var V currently defined

by method M of constraint C is:
 Min of C.strength and walkabout strengths of

variables providing input to M

© 2021 - Scott Hudson and Brad Myers 67

DeltaBlue planning
 Given WASs of all vars
 (WalkAbout Strength)

 To add a constraint C:
 Find method of C whose output var has weakest

WAS and is weaker than C
 If none, constraint can’t be satisfied

 Revoke constraint currently defining that var
 Attempt to reestablish that constraint recursively
 Will follow weakest WAS

 Update WASs as we recurse

© 2021 - Scott Hudson and Brad Myers 68

DeltaBlue Planning
 To remove a constraint C
 Update all downstream WASs
 Collect all unenforced weaker constraints along

that path
 Attempt to add each of them (in strength order)

© 2021 - Scott Hudson and Brad Myers 69

DeltaBlue Evaluation
 A DeltaBlue plan establishes an evaluation

direction on each undirected dependency
edge

 Based on those directions, can then use a
one-way algorithm for actual evaluation

© 2021 - Scott Hudson and Brad Myers 70

References
 Optimal one-way algorithm

http://doi.acm.org/10.1145/117009.117012
Note: constraint graph formulated differently
 Edges in the other direction
 No nodes for functions (not bipartite graph)

 DeltaBlue
http://doi.acm.org/10.1145/76372.77531

© 2021 - Scott Hudson and Brad Myers 71

http://doi.acm.org/10.1145/117009.117012
http://doi.acm.org/10.1145/76372.77531

	Lecture 18:�Constraints 2: Implementations�(with help from Scott Hudson)
	Logistics
	Form of constraints
	Power of constraints
	Dependency graphs
	Dependency graphs
	Dependency graphs
	Kinds of constraint systems
	One-Way constraints
	One-Way constraints
	Multi-way constraints
	Multi-way constraints
	Multi-way constraints
	Multi-way constraints
	Another important issue
	Over- and under-constrained
	Over- and under-constrained
	Over- and under-constrained
	Over- and under-constrained
	Over- and under-constrained
	Over- and under-constrained
	Implementing constraints
	Implementing constraints
	Naïve algorithm
	Why is this not a good plan?
	Exponential Wasted Work
	Exponential Wasted Work
	Exponential Wasted Work
	Simple algorithm for one-way�(Embed evaluation in topsort)
	Simple algorithm for one-way
	Still a lot of wasted work
	An efficient incremental algorithm
	Part one (of two)
	Part one (of two)
	Part 2: only evaluate variables when value requested (lazy eval)
	Part 2: only evaluate variables when value requested (lazy eval)
	Part 2: only evaluate variables when value requested (lazy eval)
	Part 2: only evaluate variables when value requested (lazy eval)
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Rewind
	Example 2
	Example 2
	Example 2
	Example 2
	Algorithm is “partially optimal”
	Good asymptotic result, but also very practical
	Multi-way implementation
	The DeltaBlue incremental planning algorithm
	A plan is a set of edge directions
	Finding a new plan
	Finding possible constraints to break when adding a new one
	Key to finding path: �“Walkabout Strengths”
	Walkabout strength
	DeltaBlue planning
	DeltaBlue Planning
	DeltaBlue Evaluation
	References

