
Lecture 17:
Constraints and Data Bindings, 1

05-431/631 Software Structures for User
Interfaces (SSUI)
Fall, 2021

© 2021 Brad Myers 1

Happy Halloween!

 Take 2 candies!
2© 2021 Brad Myers

Logistics
 Last lecture audio didn’t work at all  – sorry!
 Let me know if you need it fixed.

 Try narrow format for slides, so don’t have to
worry about the video window

© 2021 Brad Myers 3

Constraints
 Relationships defined once and maintained by the

system
 Useful for keeping parts of the graphics together.
 Also for passing values around
 Typically expressed as arithmetic or code

relationships among variables.
 Variables are often the properties of objects (left, color)

 Types:
 "Dataflow" constraints; Choices:

 Single-Output vs. Multi-output
 Types: One-way, Multi-way, Simultaneous equations, Incremental,

Special purpose
 Cycles: supported or not

 Others: AI systems, scheduling systems, etc.

4© 2021 Brad Myers

Historical Note: “Active Values”
 Old Lisp systems had active values
 Attach procedures to be called when changed

 Similar to today’s “Listeners” or “Observer
pattern”

 Like the “inverse” of constraints
 Procedures are attached to values which change

instead of values where needed
 Push vs. Pull

 Inefficient because all downstream values are
re-evaluated, possibly many times
 E.g., when x and y values change

5© 2021 Brad Myers

Important Historical
Constraint Systems
 Alan Borning’s ThingLab (1979)
 Spreadsheets (~1979)
 Peridot (1987) (Myers)
 Garnet & Amulet (1989, 1994) (Myers)
 Graphics and “data bindings”

 DeltaBlue (1990) (Freemen-Benson)
 SkyBlue (1994) (Michael Sannella)

 subarctic (Hudson) (1991)
 Gleicher’s (1993)
 …

© 2021 Brad Myers 6

Some Constraint Systems Today
 Apple constraints for “Auto Layout”
 Toolkit and windows “layout managers”/”geometry

managers” (lecture 10)
 “data bindings”
 Adobe Flex, AngularJS

 Google’s AngularJS (before v2)
 Most AutoDesk (CAD) products, e.g., Fusion 360 for

2D & geometric
 Ember. http://emberjs.com/
 MVC, “Computed Values” of properties

 KnockoutJS. http://knockoutjs.com/
 “Declarative Bindings”, “Dependency Tracking”

 Research: Stephen Oney’s ConstraintJS
http://cjs.from.so/ (2012)

© 2021 Brad Myers 7

http://emberjs.com/
https://guides.emberjs.com/release/components/component-state-and-actions/
http://knockoutjs.com/
http://cjs.from.so/

Angular Data Bindings
 Tie DOM properties to other values
 Can be one-way or two-way
 Use [] to bind from source to view.
 Use () to bind from view to source.
 Use [()] to bind

in a two way
sequence of
view to source
to view.

© 2021 Brad Myers 8

https://angular.io
/guide/binding-
syntax

https://angular.io/guide/architecture-
components#data-binding

https://angular.io/guide/binding-syntax
https://angular.io/guide/architecture-components#data-binding

One Way Constraints
 Simplest form of constraints
 D = F(I1, I2, ... In)
 Often called formulas since like spreadsheets
 Can be other dependencies on D

CurrentSliderVal = mouse.X - scrollbar.left
scrollbar.left = window.left + 200
scrollbar.visible = window.has_focus

9© 2021 Brad Myers

Data flow graph
 Nodes for variables (values) grouped into

objects
 Lines for data flow for the constraints
 Reverse direction of lines for “dependencies”
 E.g., A = B+5
 B’s value flows to A

 A’s value depends on B

 Often need back-pointers too to clean up
when change

© 2021 Brad Myers 10

A = 15 B = 10

A = 15 B = 10

One Way Constraints
CurrentSliderVal = mouse.X - scrollbar.left
scrollbar.left = window.left + 200
scrollbar.visible = window.has_focus

11© 2021 Brad Myers

Window

…
left = 50

top = 5

scrollbar

…
left = f3() = 250

top = 835

has_focus = truevisible = f2() = true

mouse

X = 267

Y = 840

CurrentSliderVal = f1() =17

One Way Constraints, cont.
 Not just for numbers: mycolor = x.color
 Implementations:

1. Just re-evaluate all required equations every
time a value is requested
 least storage, least overhead
 Equations may be re-evaluated many times when

not changed. (e.g, scrollbar.left when mouse
moves)

 cycles:
file_position = F1(scrollbar.Val)
scrollbar.Val = F2(file_position)

 Objects may jitter – change X and then change Y
 Cannot detect when values change (to optimize

redraw)
2. More efficient algorithms next lecture

12
© 2021 Brad Myers

Garnet / Amulet
Constraint Solving
 Default: one-way, data flow constraints with

variables in the dependencies, support for
cycles, and multiple changes before solving
 Efficient enough for ubiquitous use
 Garnet text button widget contained 43 constraints

internally, and the Lapidary graphical interface builder
contained 16,700 constraints

 Also can bring in alternative solvers
 Brad Vander Zanden’s multi-way solver

[Vander Zanden 1996]
 “Animation Constraints” [Myers 1996]

 Snippets of video for Garnet and Amulet
constraints

© 2021 Brad Myers 13

https://youtu.be/wc8A0woo0X4?t=106
https://youtu.be/J3MRifpaCOI?list=PL3856C8FlIWfr_tX8CMUhOJvl34ylClgb&t=164

Garnet / Amulet Default
Algorithm

 Variables in the dependencies
 Example: D = p^.left + A
 Important innovation in Garnet we

invented, now ubiquitous
 Supports feedback objects

 outlineRect.left = selectedObject^.left …

circle1.object_over = rect34
circle1.left = self.object_over.right + 10

 Supports loops: D = Max(components^)
 Only evaluates needed part of conditionals

width = if otherpart.value > tolerance
then expensive computation
else otherpart.width

 Requires the dependencies be dynamically determined

© 2021 Brad Myers 14

D=f()=? p = obj1

A = 15

obj1

left = 12

top = 5

obj2

left = 22

top = 15

Garnet / Amulet Default
Algorithm

 Variables in the dependencies
 Example: D = p^.left + A
 Important innovation in Garnet we

invented, now ubiquitous
 Supports feedback objects

 outlineRect.left = selectedObject^.left …

circle1.object_over = rect34
circle1.left = self.object_over.right + 10

 Supports loops: D = Max(components^)
 Only evaluates needed part of conditionals

width = if otherpart.value > tolerance
then expensive computation
else otherpart.width

 Requires the dependencies be dynamically determined

© 2021 Brad Myers 15

D=f()=27 p = obj1

A = 15

obj1

left = 12

top = 5

obj2

left = 22

top = 15

Garnet / Amulet Default
Algorithm

 Variables in the dependencies
 Example: D = p^.left + A
 Important innovation in Garnet we

invented, now ubiquitous
 Supports feedback objects

 outlineRect.left = selectedObject^.left …

circle1.object_over = rect34
circle1.left = self.object_over.right + 10

 Supports loops: D = Max(components^)
 Only evaluates needed part of conditionals

width = if otherpart.value > tolerance
then expensive computation
else otherpart.width

 Requires the dependencies be dynamically determined

© 2021 Brad Myers 16

D=f()=37 p = obj2

A = 15

obj1

left = 12

top = 5

obj2

left = 22

top = 15

Examples of Expressing Constraints
 Garnet:
(create-instance NIL opal:line

(:points '(340 318 365 358))
(:grow-p T)
(:x1 (o-formula (first (gvl :points))))
(:y1 (o-formula (second (gvl :points))))
(:x2 (o-formula (third (gvl :points))))
(:y2 (o-formula (fourth (gvl :points)))))

 Amulet:
Am_Define_Formula (int, height_of_layout) {
int h = (int)Am_Height_Of_Parts(self) + 2 *

((int)self.Get(Am_TOP_OFFSET));
return h < 75 ? 75 : h;

}

am_empty_dialog = Am_Window.Create("empty_dialog_window")
.Set (Am_LEFT_OFFSET, 5) // used in width_of_layout
.Set (Am_TOP_OFFSET, 5) // used in height_of_layout
.Set (Am_WIDTH, width_of_layout)
.Set (Am_HEIGHT, height_of_layout)

...

17© 2021 Brad Myers

Other One-Way Variations
 Multiple outputs
 (D1, D2, ... Dm) = F(I1, I2, ... In)

 Side-effects in the formulas
 useful for creating objects
 when happen?
 what if create new objects with new constraints
 cycles cannot be detected

 Constant formula elimination
 To decrease the size used by constraints

© 2021 Brad Myers 18

Two-Way (Multi-way) Constraints
 From ThingLab (~1979)

 Alan Borning. “Defining Constraints Graphically,” Human Factors in Computing
Systems. Boston, MA, Apr, 1986. pp. 137-143. Proceedings SIGCHI'86.

 Constraints are expressions with multiple variables
 Any may be modified to get the right values
 Example: A.right = A.left + A.width - 1
 Often requires programmer

to provide methods for
solving the constraint in
each direction:
A.left = A.right - A.width + 1
A.width = A.right - A.left + 1

 Useful if mouse expressed
as a constraint

19© 2021 Brad Myers

Two-Way implementations
 Requires a planning step to decide which way to solve

 Many systems compute plans and save them around since usually
change same variable repeatedly

 In general, have a graph of dependencies, find a path
through the graph

 How control which direction is solved?
CurrentSliderVal = mouseX - scrollbar.left
 "Constraint hierarchies" = priorities

 constants, interaction use "stay" constraints with high priority
 Dynamically add and remove constraints

 Brad Vander Zanden's "QuickPlan" solver
 Handles multi-output, multi-way cyclic constraints in O(n2) time

instead of exponential like previous algorithms

20© 2021 Brad Myers

Simultaneous Equations
 Required for parallel, perpendicular lines;

tangency, etc.
 Also for aggregate's size
 Numerical (relaxation)

or symbolic techniques
 Thinglab bridge (1979)

(cite)

21© 2021 Brad Myers

https://constraints.cs.washington.edu/ui/thinglab-tr.pdf

Incremental
 Michael Gleicher's PhD thesis, 1994
 Only express forward computations
 Tries to get reverse by incrementally

changing the forward computation in the right
direction using
derivatives.

 Supports interactions
otherwise not possible

 Produces smooth
animations

22© 2021 Brad Myers

Animation Constraints in
Amulet
 Implemented using Amulet's constraint

mechanism
 When slot set with a new value, restores old

value, and animates from old to new value
 Usually, linear interpolation
 For colors, through either HSV or RGB space
 For visibility, various special effects between

TRUE and FALSE
 Demo

23© 2021 Brad Myers

	Lecture 17:�Constraints and Data Bindings, 1
	Happy Halloween!
	Logistics
	Constraints
	Historical Note: “Active Values”
	Important Historical�Constraint Systems
	Some Constraint Systems Today
	Angular Data Bindings
	One Way Constraints
	Data flow graph
	One Way Constraints
	One Way Constraints, cont.
	Garnet / Amulet�Constraint Solving
	Garnet / Amulet Default Algorithm
	Garnet / Amulet Default Algorithm
	Garnet / Amulet Default Algorithm
	Examples of Expressing Constraints
	Other One-Way Variations
	Two-Way (Multi-way) Constraints
	Two-Way implementations
	Simultaneous Equations
	Incremental
	Animation Constraints in Amulet

