Lecture 17:
Constraints and Data Bindings, 1

 \
05-431/631 Software Structures for User
Interfaces (SSUI)

Fall, 2021

© 2021 Brad Myers

e [ake 2 candies!

© 2021 Brad Myers 2

|\
Human- Computer Interaction Institute N

Logistics

e Last lecture audio didn’t work at all ® — sorry!
e Let me know if you need it fixed.

e Try narrow format for slides, so don't have to
worry about the video window

© 2021 Brad Myers 3

Constraints

e Relationships defined once and maintained by the
system

e Useful for keeping parts of the graphics together.
e Also for passing values around
e Typically expressed as arithmetic or code
relationships among variables.
e Variables are often the properties of objects (left, color)
e [ypes:

e "Dataflow" constraints: Choices:
Single-Output vs. Multi-output

Types: One-way, Multi-way, Simultaneous equations, Incremental,
Special purpose
Cycles: supported or not

e Others: Al systems, scheduling systems, etc.

© 2021 Brad Myers 4

|\
Human-Computer Interaction Institute w

Historical Note: “Active Values”

e Old Lisp systems had active values
e Attach procedures to be called when changed

e Similar to today’s “Listeners” or "Observer
pattern”
e Like the “inverse” of constraints

e Procedures are attached to values which change
instead of values where needed

e Push vs. Pull

e Inefficient because_ all downst_ream values are
re-evaluated, possibly many times

e E.g., when x and y values change

© 2021 Brad Myers 5

Important Historical]

Constraint Systems

e Alan Borning’s ThingLab (1979)
e Spreadsheets (~1979)
e Peridot (1987) (Myers)

e Garnet & Amulet (1989, 1994) (Myers)
e Graphics and “data bindings”

e DeltaBlue (1990) (Freemen-Benson)
e SkyBlue (1994) (Michael Sannella)

e subarctic (Hudson) (1991)
e Gleicher’'s (1993)

© 2021 Brad Myers 6

4
Human-Computer Interaction Institute w

Some Constraint Systems Today

e Apple constraints for “Auto Layout”

Toolkit and windows “layout managers”/"geometry
managers” (lecture 10)

“data bindings”
e Adobe Flex, AngulardS
Google’s AngulardS (before v2)

Most AutoDesk (CAD) products, e.g., Fusion 360 for
2D & geometric

Ember. hitp://emberjs.com/
o MVC, “Computed Values” of properties

KnockoutJS. http://knockoutjs.com/
e “Declarative Bindings”, “Dependency Tracking”

Research: Stephen Oney’s ConstraintJS
http://cjs.from.so/ (2012)

© 2021 Brad Myers 7

http://emberjs.com/
https://guides.emberjs.com/release/components/component-state-and-actions/
http://knockoutjs.com/
http://cjs.from.so/

Angular Data Bindings

e Tie DOM properties to other values

e Can be one-way or two-way

e Use [] to bind from source to view.
e Use () to bind from view to source.

e Use [()] to bind
In a two way
sequence of
view to source
to view.

https://anqular.io

/quide/binding-
syntax

N

Type

Interpolation
Property
Attribute
Class

Style

Event

Two-way

Syntax

{{expression}

¥

DOM

[target]="expression”
pression”

bind-target="ex

(target)="sta

teme
temen

on-target="sta

nt"

£

LNANOAWID

https://anqular.io/quide/architecture-

components#data-binding

Category

One-way
from data source

to view target

One-way
from view target
to data source

Two-way

https://angular.io/guide/binding-syntax
https://angular.io/guide/architecture-components#data-binding

|\
Human-Computer Interaction Institute w

One Way Constraints

e Simplest form of constraints

e D=F(I1,12, ... In)

e Often called formulas since like spreadsheets
e Can be other dependencies on D

CurrentSliderVal = mouse.X - scrollbar.left
scrollbar.left = window.left + 200
scrollbar.visible = window.has focus

© 2021 Brad Myers 9

Data flow graph

e Nodes for variables (values) grouped into
objects
e Lines for data flow for the constraints

e Reverse direction of lines for “"dependencies’
e E.g,A=B+5)) X
B’s value flows to A G]' el
A’s value depends on B (AT 19 — B=10 |

e Often need back-pointers too to clean up
when change

© 2021 Brad Myers 10

One Way Constraints

CurrentSliderVal = mouse.X - scrollbar.left
scrollbar.left = window.left + 200
scrollbar.visible = window.has focus

© 2021 Brad Myers

|\
Human-Computer Interaction Institute w

One Way Constraints, cont.

e Not just for numbers: mycolor = x.color

e Implementations:

1. Just re-evaluate all required equations every
time a value is requested

least storage, least overhead

Equations may be re-evaluated many times when
not changed. (e.g, scrollbar.left when mouse
moves)

cycles:
file_position = F1(scrollbar.Val)
scrollbar.Val = F2(file_position)

Objects may jitter — change X and then change Y
Cannot detect when values change (to optimize
redraw)

2. More efficient algorithms next lecture

© 2021 Brad Myers

12

Garnet / Amulet e @)

Constraint Solving

e Default: one-way, data flow constraints with
variables in the dependencies, support for
cycles, and multiple changes before solving
e Efficient enough for ubiquitous use

e Garnet text button widget contained 43 constraints
internally, and the Lapidary graphical interface builder
contained 16,700 constraints

e Also can bring in alternative solvers

e Brad Vander Zanden’s multi-way solver
[Vander Zanden 1996]

e “Animation Constraints” [Myers 1996]

e Snippets of video for Garnet and Amulet
constraints

© 2021 Brad Myers 13

https://youtu.be/wc8A0woo0X4?t=106
https://youtu.be/J3MRifpaCOI?list=PL3856C8FlIWfr_tX8CMUhOJvl34ylClgb&t=164

Garnet / Amulet Default -~~~ @

e Variables in the dependencies -
N O

Example: D = p/left + A
Important innovation in Garnet we fobj1 obj2)

invented, now ubiquitous -

Supports feedback objects
N ~/

o outlineRect.left = selectedObject”.left ... -
N ~/

circle1.object_over = rect34
circle1.left = self.object_over.right + 10

Supports loops: D = Max(components”)

Only evaluates needed part of conditionals
width = if otherpart.value > tolerance

then expensive computation

else otherpart.width

Requires the dependencies be dynamically determined

© 2021 Brad Myers 14

Garnet / Amulet Default === @
Algorithm

e Variables in the dependencies
e Example: D = p/left + A

e Important innovation in Garnet we
invented, now ubiquitous

e Supports feedback objects
o outlineRect.left = selectedObject”.left ...

circle1.object_over = rect34
circle1.left = self.object_over.right + 10

e Supports loops: D = Max(components?)

e Only evaluates needed part of conditionals
width = if otherpart.value > tolerance
then expensive computation
else otherpart.width

e Requires the dependencies be dynamically determined

© 2021 Brad Myers 15

Garnet / Amulet Default === @
Algorithm

e Variables in the dependencies
e Example: D = p/left + A

e Important innovation in Garnet we fobj1 Q
invented, now ubiquitous

e Supports feedback objects

o outlineRect.left = selectedObject”.left ... -
N ~/

circle1.object_over = rect34
circle1.left = self.object_over.right + 10

e Supports loops: D = Max(components?)

e Only evaluates needed part of conditionals
width = if otherpart.value > tolerance
then expensive computation
else otherpart.width

e Requires the dependencies be dynamically determined

© 2021 Brad Myers 16

.
4
Human-Computer Interaction Institute

Examples of Expressing Constraints
e Garnet:

(create-instance NIL opal:line
(:points ' (340 318 365 358))
:grow-p T)

:x1 (o-formula (first (gvl :points)

o~ o~ o~ o~ o~

()))
:yl (o-formula (second (gvl :points))))
:x2 (o-formula (third (gvl :points))))
:y2 (o-formula (fourth (gvl :points)))))
e Amulet:
Am Define Formula (int, height of layout) ({
int h = (int)Am Height Of Parts(self) + 2 *

((int) self.Get (Am_TOP OFFSET)) ;
return h < 75 ? 75 : h;
}

am_empty dialog = Am Window.Create ("empty dialog window")
.Set (Am_LEFT OFFSET, 5) // used in width of layout

.Set (Am _TOP OFFSET, 5) // used in height of layout

.Set (Am WIDTH, width of layout)

.Set (Am HEIGHT, height of layout)

© 2021 Brad Myers 17

Other One-Way Variations

e Multiple outputs
e (D1,D2,...Dm)=F(I1, 12, ... In)
e Side-effects in the formulas
e useful for creating objects
e when happen?
e what if create new objects with new constraints
e cycles cannot be detected
e Constant formula elimination
e To decrease the size used by constraints

© 2021 Brad Myers 18

Two-Way (Multi-way) Constraints

From ThingLab (~1979)

e Alan Borning. “Defining Constraints Graphically,” Human Factors in Computing
Systems. Boston, MA, Apr, 1986. pp. 137-143. Proceedings SIGCHI'86.

Constraints are expressions with multiple variables
Any may be modified to get the right values
Example: A.right = A.left + A.width - 1

Often requires programmer [Thingtab BrowserEC

m‘ TR W

to provide methods for N e ﬁ?fﬁﬁ?ﬁﬂi
solving the constraint in Pointonting | valves | constrain [BRI
each direction: Rectangle Wi Quadrilatera
A.left = A.right - A.width + 1

A.width = A.right - A.left + 1

Useful if mouse expressed
as a constraint

© 2021 Brad My

|\
Human-Computer Interaction Institute w

Two-Way implementations

Requires a planning step to decide which way to solve

e Many systems compute plans and save them around since usually
change same variable repeatedly

In general, have a graph of dependencies, find a path
through the graph

How control which direction is solved?
CurrentSliderVal = mouseX - scrollbar.left

e "Constraint hierarchies" = priorities
constants, interaction use "stay" constraints with high priority

e Dynamically add and remove constraints

Brad Vander Zanden's "QuickPlan" solver

e Handles multi-output, multi-way cyclic constraints in O(n?) time
instead of exponential like previous algorithms

© 2021 Brad Myers 20

Simultaneous Equations

e Required for parallel, perpendicular lines;
tangency, etc.

e Also for aggregate's size

e Numerical (relaxation) coinnalone e~ fancer
J Mm onstrodn Load

15 save file fmerge Poune

or symbolic techniques E“M“WM

e Thinglab bridge (1979)
(cite) AN S A

2.46 246

“2.58 160 1.88 T2.58
VALV AV
26! 2.61
4.93

A

© 2021 Brad Myers Figure 2.31 - A bridge under load

https://constraints.cs.washington.edu/ui/thinglab-tr.pdf

|\
Human-Computer Interaction Institute w

Incremental

e Michael Gleicher's PhD thesis, 1994
e Only express forward computations

e Tries to get reverse by incrementally
changing the forward computation in the right

direction using
derivatives. O

e Supports interactions | Q. E#F
otherwise not possible

e Produces smooth
animations

Animation Constraints in =g
Amulet

e Implemented using Amulet's constraint
mechanism

e \When slot set with a new value, restores old
value, and animates from old to new value

e Usually, linear interpolation
e For colors, through either HSV or RGB space

e For visibility, various special effects between
TRUE and FALSE

e Demo

© 2021 Brad Myers 23

	Lecture 17:�Constraints and Data Bindings, 1
	Happy Halloween!
	Logistics
	Constraints
	Historical Note: “Active Values”
	Important Historical�Constraint Systems
	Some Constraint Systems Today
	Angular Data Bindings
	One Way Constraints
	Data flow graph
	One Way Constraints
	One Way Constraints, cont.
	Garnet / Amulet�Constraint Solving
	Garnet / Amulet Default Algorithm
	Garnet / Amulet Default Algorithm
	Garnet / Amulet Default Algorithm
	Examples of Expressing Constraints
	Other One-Way Variations
	Two-Way (Multi-way) Constraints
	Two-Way implementations
	Simultaneous Equations
	Incremental
	Animation Constraints in Amulet

