
Lecture 15:
Toolkit support for Gestural Input Techniques, 
Handwriting Recognition

05-431/631 Software Structures for User Interfaces (SSUI)
Fall, 2021

© 2021 - Brad Myers 1



Logistics
 Thanks for those who filled out survey
 Still available: https://www.surveymonkey.com/r/SSUI2021midterm
 Slides are available in pdf format
 Will try a different microphone for recordings
 Please let us know about what else we can do to be helpful

© 2021 - Brad Myers 2

https://www.surveymonkey.com/r/SSUI2021midterm


What is a “Gesture”
 In HCI, an input to a computer where the path or 

other properties of the input is important to its 
recognition, not just the end points
 Regular drag-and-drop just cares about where starts and 

finishes, so generally does not count as a “gesture”
 A recognizer is needed to interpret the path – so it 

may be interpreted incorrectly
 Can be done with a mouse, a stylus or finger on 

touchscreen, or hands in the air in front of a camera
 Can be one or multiple fingers; one or multiple 

strokes
 On Smartphones, call “tap” a “gesture” to distinguish 

between tap, long-press, flick, drag, etc.
 Depends on properties of the action or of the other actions

 Location, but also speed, timing, etc.
3

© 2021 - Brad Myers



Advantages of Gesture Recognition
 Very fast to enter
 Single gesture can give both parameters and command
 E.g., cross out gesture tells both what to do and to what

 Large space of potential gestures
 Can be “natural”
 Can fit in easily with event-based programming
 Assuming gestures simply invoke a command

 Can be integrated with the toolkit
 E.g., get events when a gesture starts / finished

© 2021 - Brad Myers 4



Disadvantages
 No affordance – user has to know they can be done
 No in-place information on what they look like
 User may find it hard to remember which gesture does what operation 

(especially if lots)
 System may recognize them incorrectly
 Often cannot be entered correctly by users with disabilities, etc.
 Can be unnatural if designed poorly
 Hard to provide feedback of what is happening, especially if continuous
 Implementation challenge: creating a good recognizer
 Designer must decide if

rotation and size invariant

© 2021 - Brad Myers 5



Gestures  Character 
Handwriting recognition
 Text entry using hand-printing

and hand-writing
 Rand tablet (1964)
 PARC Tab QuickWriting (1989)
 Go PenPoint (1991)
 Apple Newton (1993)
 Palm Graffiti (1996)
 Windows TabletPC

(2002)
 EdgeWrite (2003)

© 2021 - Brad Myers 6



Gestures in 3D
 Gestures for 3D manipulation
 Mainly pose and path of fingers with datagloves
 Also elaborate gestures in Teddy
 May depend on path and timing
 Wii controller gestures
 Kinect Body poses

© 2021 - Brad Myers 7



Gestures for Proofreading
 Well-known proofreading symbols on paper
 Many investigated using these gestures
 COLEMAN, M. L. Text editing on a graphic 

display device using hand-drawn proofreader's 
symbols. In Pertinent Concepts in Computer 
Graphics, Proceedings of the Second 
University of Illinois Conference on Computer 
Graphics, M. Faiman and j. Nievergelt, Eds. 
University of Illinois Press, Urbana, Chicago, 
London, 1969, pp. 283-290.

 RHYNE, J. R., AND WOLF, C. G. Gestural 
interfaces for information processing 
applications. Tech. Rep. RC12179, IBM T.J. 
Watson Research Center, Sept. 1986.

© 2021 - Brad Myers 8



Trainable Gesture Recognizer
 Applicon (circa 1970). An interactive trainable computer 

aided circuit design system using hand-drawn shapes to enter 
data and commands. Applicon. 16 mm film. Video (2:25 min 
excerpt)
 From Bill Buxton Lincoln Labs page. See the Wikipedia entry

© 2021 - Brad Myers 9

http://youtu.be/12BfpFOq6W4
http://www.billbuxton.com/Lincoln.html
https://en.wikipedia.org/wiki/Applicon


Early Gesture Recognition
 Buxton, W., Sniderman, R., Reeves, W., Patel, S. & 

Baecker, R. (1979). The Evolution of the SSSP Score 
Editing Tools. Computer Music Journal 3(4), 14-25. 
[PDF] [video]

 Can draw gestures for the desired notes to enter music
 Start location determines pitch

© 2021 - Brad Myers 10

http://www.billbuxton.com/SSSP.html
http://www.billbuxton.com/evolutionSSSP.pdf
http://www.youtube.com/watch?v=5mDgsQtmKJA


Early Graphical 
Editing Gestures

 Buxton, W., Fiume, E., Hill, R., Lee, A. and 
Woo, C. Continuous Hand-Gesture Driven 
Input. Proceedings of Graphics Interface 
'83, Edmonton, May 1983, 191-195. 
http://billbuxton.com/gesture83.html [video]

 Gestures for move and copy
 Copy is same except make a 

“C” gesture along the path after 
circling and before moving

© 2021 - Brad Myers 11

http://billbuxton.com/gesture83.html
http://www.youtube.com/watch?v=0GabiAtIYwo


Go Corp’s “PenPoint” OS
 Founded 1987, released in 1991
 Many gestures for editing, navigation, etc.
 Flick to scroll and turn pages, circle, insert 

space, cross-out, insert word, get help,  …
 Press and hold to start moving or selecting

 Special-purpose recognizer for the built-in gestures
 http://research.microsoft.com/en-us/um/people/bibuxton/buxtoncollection/a/pdf/

Go%20PenPoint%20Getting%20Started.pdf

© 2021 - Brad Myers 12

http://research.microsoft.com/en-us/um/people/bibuxton/buxtoncollection/a/pdf/Go%20PenPoint%20Getting%20Started.pdf


Dean Rubine’s System
 Dean Rubine at CMU (PhD CSD, 1991) created novel gesture 

interaction techniques
 Also, a novel “open-source” flexible algorithm, which 

researchers used for 16 years.
 Paper: Dean Rubine. 1991. Specifying gestures by example. 

In Proceedings of the 18th annual conference on Computer 
graphics and interactive techniques (SIGGRAPH '91). ACM, 
329-337. http://doi.acm.org/10.1145/122718.122753

 Video: Dean Rubine. 1992. Combining gestures and direct 
manipulation. In Proceedings of the SIGCHI Conference on 
Human Factors in Computing Systems (CHI '92), ACM, actual 
video (10:20) or
(ACM Ref for description)

 Powerful and influential system for single-stroke gesture 
recognition

© 2021 - Brad Myers 13

1991

today

http://doi.acm.org/10.1145/122718.122753
http://www.open-video.org/details.php?videoid=8116
http://doi.acm.org/10.1145/142750.143072


Rubine’s Gesture Innovations
 “Eager recognition” – can recognize a gesture while 

mouse button is still down as soon as it is unambiguous
 Either wait for mouse pause, or immediately when 

unambiguous
 Allows user to continue with direct manipulation
 E.g., “L” gesture for rectangle,

continue to drag for size
 “C” gesture for copy, “curlicue” for rotate and scale

 Multi-finger gestures also 
supported
 Two finger drag and resize

 local video, up through 6:00, 7:00-end
© 2021 - Brad Myers 14

http://youtube.com/v/RdMUt0VHlP8


Rubine: Gesture recognition algorithm

© 2021 - Brad Myers 15

 Trained with a small number of examples (e.g., 15)
 Since done by a person, won’t be identical
 Examples should vary in whatever ways they will for the user

 E.g., different sizes? Different orientations?
 Automatically looks for features of all gestures, that

differentiates them
 Uses a Machine Learning algorithm

 Statistical Single-Stroke Gesture Recognition
 Computes matrix inversions, discriminant 

values, and Mahalanobis distances
 Experimentally picked a set of 13 

features that seemed to work well
 E.g, “cosine and the sine of the initial angle of the gesture, 

the length and the angle of the bounding box diagonal, …”
 Implemented in a system called GRANDMA
 local video, 6:00 through 7:00



Uses of Rubine’s algorithm
 Many subsequent projects re-implemented and built 

on his algorithm
 We implemented it twice, both called “AGATE”: A Gesture-

recognizer And Trainer by Example
 Integrated with the standard “interactor” event handling model
 James A. Landay and Brad A. Myers. "Extending an Existing 

User Interface Toolkit to Support Gesture 
Recognition," Adjunct Proceedings of  INTERCHI'93. 
Amsterdam, The Netherlands, April 24-29, 1993.  pp. 91-92. 
(Garnet)

 Brad A. Myers, Richard G. McDaniel, Robert C. Miller, Alan 
Ferrency, Ellen Borison, Andrew Faulring, Andy Mickish, 
Patrick Doane, and Alex Klimovitski, The Amulet User 
Interface Development Environment. 8 minute video. 
Technical Video Program of the CHI‘1997 conference. ACM, 
YouTube (local copy) 8:27 total, gestures at 6:00-6:30

© 2021 - Brad Myers 16

https://youtu.be/J3MRifpaCOI


Improving the Gestures
 Allan Christian Long Jr., Quill: a gesture design tool for pen-based 

user interfaces, PhD thesis, UC Berkeley, 2001, (307 pages), pdf
 How to know if the gestures are too similar?
 Chris Long took the Rubine recognizer and analyzes if gestures 

are too “confusable”
 “Quill” tool
 Similarity in recognition space

not necessarily the same as in
human perceptual visual space
 Now would be called “explainable AI”

© 2021 - Brad Myers 17

http://cumincad.architexturez.net/system/files/pdf/diss_long.content.08605.pdf


User Designed Gestures

© 2021 - Brad Myers 18

 Jacob O. Wobbrock, Htet Htet Aung, Brandon Rothrock and Brad A. Myers. "Maximizing the Guessability of 
Symbolic Input" (Short Talk). Extended Abstracts CHI'2005: Human Factors in Computing Systems. 
Portland, OR, April 2-7, 2005. pp. 1869-1872. pdf. http://doi.acm.org/10.1145/1056808.1057043

 When creating the EdgeWrite gestures,
Jake Wobbrock wanted to know what
users thought the gestures should be:
 “Guessability of the EdgeWrite

unistroke alphabet was improved
by users from 51.0% to 80.1%”

 Multiple phases
 Participants told the constraints
 Participants propose a set of gestures –

tricky not to bias answers with prompts
 Get participants to resolve conflicts 

 since likely to create indistinguishable gestures

http://faculty.washington.edu/wobbrock/pubs/chi-05.pdf
http://doi.acm.org/10.1145/1056808.1057043


Wobbrock’s new recognizers
 Jacob O. Wobbrock, Andrew D. Wilson, and Yang Li. 2007. Gestures without libraries, 

toolkits or training: a $1 recognizer for user interface prototypes. In Proceedings of the 
20th annual ACM symposium on User interface software and technology (UIST '07). 
ACM, pp. 159-168. http://doi.acm.org/10.1145/1294211.1294238 or 
http://faculty.washington.edu/wobbrock/pubs/uist-07.1.pdf

 More efficient and simpler than Rubine’s
 Became the new standard that others use for research
 Unistroke and multi-stroke versions
 Match candidate points to remembered

templates
 Default: rotation, size

and speed invariant

© 2021 - Brad Myers 19

http://doi.acm.org/10.1145/1294211.1294238
http://faculty.washington.edu/wobbrock/pubs/uist-07.1.pdf


20

Design criteria
 Be resilient to variations in sampling due to movement speed or sensing;

 Support optional rotation, scale, and position invariance;

 Require no advanced mathematical techniques (e.g., matrix inversions, 
derivatives, integrals);

 Be easily written in few lines of code; Thanks to Jake 
Wobbrock for 
these slides!

© 2021 - Brad Myers



21

Design criteria (cont.)
 Be fast enough for interactive purposes;

 Allow developers and application end-users to “teach” it new gestures with 
only one example;

 Return an N-best list with [0..1] scores that are independent of the number of 
input points;

 Be conceptually straightforward for easy comprehension, inspection, 
modification, extension, debugging, etc.

© 2021 - Brad Myers



22

Live demo
 ~100 lines of JavaScript

 http://depts.washington.edu/acelab/proj/dollar/index.html

© 2021 - Brad Myers

http://depts.washington.edu/acelab/proj/dollar/index.html


23

Four easy steps
(on next slides)

1. Resample

2. Rotate once to 0°

3. Scale, translate

4. Compare to templates

© 2021 - Brad Myers



24

Step 1: Resample
 Resample to N equidistant 

points
(Plamondon & Srihari 2000, 
Tappert et al. 1990, Kristensson & Zhai 2004)

 Removes clusters and gaps
 Accommodates different 

sampling rates
 Allows us to compare point C[k] 

to Ti[k]



25

Step 1
 

RESAMPLE(points, n) 
1 I ← PATH-LENGTH(points) / (n – 1) 
2 D ← 0 
3 newPoints ← points0 
4 foreach point pi for i ≥ 1 in points do 
5  d ← DISTANCE(pi-1, pi) 
6  if (D + d) ≥ I then 
7   qx ← pi-1x

 + ((I – D) / d) × (pix
 – pi-1x

) 
8   qy ← pi-1y

 + ((I – D) / d) × (piy
 – pi-1y

) 
9   APPEND(newPoints, q) 
10   INSERT(points, i, q)   // q will be the next pi  
11   D ← 0 
12  else D ← D + d 
13 return newPoints 

PATH-LENGTH(A) 
1 d ← 0 
2 for i from 1 to |A| step 1 do 
3  d ← d + DISTANCE(Ai-1, Ai) 
4 return d 

Step 1. Resample a points path into n evenly spaced points. 

© 2021 - Brad Myers



26

Step 2: Rotate once to 0°
 No closed-form solution for 

finding best angular alignment 
(Kara & Stahovich 2004)

 Find angle from (x,y) to first 
point
 Call it the “indicative angle”

 Rotate this to 0°
 Approximates rotational alignment 

between C and Ti

0°



27

Step 2
 

ROTATE-TO-ZERO(points) 
1 c ← CENTROID(points)   // computes (x̄, ȳ) 
2 θ ← ATAN (cy – points0y

, cx – points0x
)   // for -π ≤ θ ≤ π 

3 newPoints ← ROTATE-BY(points, -θ) 
4 return newPoints 

ROTATE-BY(points, θ) 
1 c ← CENTROID(points) 
2 foreach point p in points do 
3  qx ← (px – cx) COS θ – (py – cy) SIN θ + cx 
4  qy ← (px – cx) SIN θ + (py – cy) COS θ + cy 
5  APPEND(newPoints, q) 
6 return newPoints 

Step 2. Rotate points so that their indicative angle is at 0°. 

© 2021 - Brad Myers



28

Step 3: Scale, translate
 Scale to a square
 Non-uniform
 Aspect-invariant

 Translate centroid to origin



29

Step 3

 
SCALE-TO-SQUARE(points, size) 

1 B ← BOUNDING-BOX(points) 
2 foreach point p in points do 
3  qx ← px × (size / Bwidth) 
4  qy ← py × (size / Bheight) 
5  APPEND(newPoints, q) 
6 return newPoints 

TRANSLATE-TO-ORIGIN(points) 
1 c ← CENTROID(points) 
2 foreach point p in points do 
3  qx ← px – cx 
4  qy ← py – cy 
5  APPEND(newPoints, q) 
6 return newPoints 

Step 3. Scale points so that the resulting bounding box will be of 
size2 dimension; then translate points to the origin. BOUNDING-
BOX returns a rectangle according to (minx, miny), (maxx, maxy). 
For gestures serving as templates, Steps 1-3 should be carried out 
once on the raw input points. For candidates, Steps 1-4 should be 
used just after the candidate is articulated. 

© 2021 - Brad Myers



30

At this point…
 … all templates Ti and any candidate C have been treated 

identically.

 Now we must compare C to each Ti.
 To which Ti is C closest?

© 2021 - Brad Myers



31

Step 4: Compare to templates
 Compute score [0..1] for each 

(C, Ti)
 Score is based on average distance 

between corresponding points
 Score should be for best angular alignment 

for (C, Ti)
 Requires search over angles

© 2021 - Brad Myers



32

“Seed & search”
 Find angle at which avg. point 

distance is minimized

 Could use brute force
 +1° for 360°

 Or use hill climbing CW/CCW
 ±1° for ±180°
 There can be local minima

© 2021 - Brad Myers



Step 4

 
RECOGNIZE(points, templates) 

1 b ← +∞ 
2 foreach template T in templates do 
3  d ← DISTANCE-AT-BEST-ANGLE(points, T, -θ, θ, θ∆) 
4  if d < b then 
5   b ← d 
6   T′ ← T 
7 score ← 1 – b / 0.5√(size2 + size2) 
8 return 〈T′, score〉 

Step 4. Match points against a set of templates. The size variable 
on line 7 of RECOGNIZE refers to the size passed to SCALE-TO-
SQUARE in Step 3. The symbol ϕ equals ½(-1 + √5). We use 
θ=±45° and θ∆=2° on line 3 of RECOGNIZE. Due to using 
RESAMPLE, we can assume that A and B in PATH-DISTANCE 
contain the same number of points, i.e., |A|=|B|. 

DISTANCE-AT-BEST-ANGLE(points, T, θa, θb, θ∆) 
1 x1 ← ϕθa + (1 – ϕ)θb 
2 f1 ← DISTANCE-AT-ANGLE(points, T, x1) 
3 x2 ← (1 – ϕ)θa + ϕθb 
4 f2 ← DISTANCE-AT-ANGLE(points, T, x2) 
5 while |θb – θa| > θ∆ do 
6  if f1 < f2 then 
7   θb ← x2 
8   x2 ← x1 
9   f2 ← f1 
10   x1 ← ϕθa + (1 – ϕ)θb 
11   f1 ← DISTANCE-AT-ANGLE(points, T, x1) 
12  else 
13   θa ← x1 
14   x1 ← x2 
15   f1 ← f2 
16   x2 ← (1 – ϕ)θa + ϕθb 
17   f2 ← DISTANCE-AT-ANGLE(points, T, x2) 
18 return MIN(f1, f2) 

PATH-DISTANCE(A, B) 
1 d ← 0 
2 for i from 0 to |A| step 1 do 
3  d ← d + DISTANCE(Ai, Bi) 
4 return d / |A| 

DISTANCE-AT-ANGLE(points, T, θ) 
1 newPoints ← ROTATE-BY(points, θ) 
2 d ← PATH-DISTANCE(newPoints, Tpoints) 
3 return d 

© 2021 - Brad Myers



Limitations of $1
 Depends on 2-D pairwise point comparisons
 Resilient to differences in sampling, rotation, scale, position, aspect, and 

velocity/acceleration
 But no ovals vs. circles, rectangles vs. squares

(This can be added on a per-gesture basis)
 No differentiation based on speed

 1-D gestures (lines) should not be scaled in 2-D

 No features are used
 Gesture “classes” require different templates with the same name

34 © 2021 - Brad Myers



35

arrow “class”

© 2021 - Brad Myers



36

Evaluation

© 2021 - Brad Myers



37

Method
 Tested $1, Rubine, DTW
 10 subjects
 16 gestures

 10 × (slow, med, fast)
 4800 gestures total
 1-5 (disliked, liked)

 Train on E=1-9, test on one random 
from 10-E. Repeat 100× for error 
rate.

 1,248,000 total tests
 3-factor within-subjects design 

(recognizer, speed, num. train)

© 2021 - Brad Myers



38

Recognition errors
 $1 0.98% errors 

(1.21% without searching over angles)
 DTW 0.85%
 Rubine 7.17%

 With 1 template:
 $1:       2.73%
 DTW:   2.14%

 With 9 templates:
 $1:       0.45%
 DTW:   0.54%

 DTW: 80× slower than $1
 Speedup possible, but complex

 Rubine with 9 train: 4.70%
 (Rubine reported ~6.5%.)

Number of Templates / Training Examples

Effect of Training on Recognition Errors

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

1 2 3 4 5 6 7 8 9

Rubine DTW$1

χ2
(2,N=780)=867.33, p<.0001 (overall)

χ2
(2,N=780)=668.43, p<.0001 (vs. Rubine)

χ2
(2,N=780)=0.13, n.s. ($1 vs. DTW)

© 2021 - Brad Myers



Wobbrock’s subsequent gesture work
 AGATe: AGreement Analysis Toolkit - for calculating agreement in gesture-elicitation 

studies (CHI’2015)
 GHoST: Gesture HeatmapS Toolkit - for visualizing variation in gesture articulation (ICMI 

’2014)
 GREAT: Gesture RElative Accuracy Toolkit - for measuring variation in gesture 

articulation (ICMI’2013)
 GECKo: GEsture Clustering toolKit - for clustering gestures and calculating agreement 

(GI ‘2013)
 $P: Point-cloud multistroke recognizer - for recognizing multistroke gestures as point-

clouds (ICMI ‘2012)
 $N: Multistroke recognizer - for recognizing multistroke gestures as strokes (GI ‘2012)
 $1: Unistroke recognizer - for recognizing unistroke gestures as strokes (UIST’2007)

© 2021 - Brad Myers 39

http://depts.washington.edu/aimgroup/proj/dollar/agate.html
http://depts.washington.edu/aimgroup/proj/dollar/ghost.html
http://depts.washington.edu/aimgroup/proj/dollar/great.html
http://depts.washington.edu/aimgroup/proj/dollar/gecko.html
http://depts.washington.edu/aimgroup/proj/dollar/pdollar.html
http://depts.washington.edu/aimgroup/proj/dollar/ndollar.html
http://depts.washington.edu/aimgroup/proj/dollar/index.html


iPhone Gestures
 Quick flick down / up / left / right

 New behaviors starting in iOS7 in various apps (no affordance)
 Left and right in Messages, Safari
 Up and down in home screens

 Swipe down from top
 Swipe up from bottom
 Press and hold (long press)
 Press hard (“3D”) – now abandoned (same as long-press)
 Two finger zoom

 Also in photo
 Two finger zoom and rotate 

 Google maps
 Undo – shake
 Tilt up – turn on
 Double click and hold = zoom
 Three finger tap – accessibility
 Shake left-right = undo (sometimes)
 …

© 2021 - Brad Myers 40

http://www.imore.com/top-5-secret-ios-7-gestures-how-get-more-done-faster


Google Glass Gestures
 https://support.google.com/glass/answer/3064184?hl=en

 Small touch pad on right side &
Motion sensor

 Activate Glass: Tap the touchpad to turn the display 
on

 Swipe forward and back: affect content being 
shown

 Select an item: Tap
 Tilt head up / down:

display on / off

© 2021 - Brad Myers 41

https://support.google.com/glass/answer/3064184?hl=en


Android Gesture Builder
 All Smartphones have libraries to support 

programming apps with gestures
 Often provided to the code by “events” like “mouse-down” 
 “swipe-left”

 Android provides nice tool to
define gestures by example
 http://developer.android.com/training/gestures/index.html
 http://android-coding.blogspot.com/2011/09/gestures-

builder-create-your-gestures.html
 http://android-developers.blogspot.com/2009/10/gestures-

on-android-16.html

© 2021 - Brad Myers 42

http://android-coding.blogspot.com/2011/09/gestures-builder-create-your-gestures.html
http://android-coding.blogspot.com/2011/09/gestures-builder-create-your-gestures.html
http://android-developers.blogspot.com/2009/10/gestures-on-android-16.html


Funny
 Tyson R. Henry, Scott E. Hudson, Andrey K. Yeatts, Brad A. 

Myers, and Steven Feiner. "A Nose Gesture Interface 
Device: Extending Virtual Realities," ACM Symposium on 
User Interface Software and Technology, Hilton Head, SC, 
Nov. 11-13, 1991. pp. 65-68. ACM DL or local copy and 
slides.

© 2021 - Brad Myers 43

http://dl.acm.org/citation.cfm?id=120789
http://www.cs.cmu.edu/%7Ehudson/datanose/uist91_henry_datanose.pdf
http://www.cs.cmu.edu/%7Ehudson/teaching/05-631-f00/slides/slides.datanose.ppt


More References
 From Bill Buxton, www.billbuxton.com
 The first gesture-related stuff that I did was the single-stroke shorthand that I developed for entering music to the 

score editor. This was the stepping stone to Unistrokes and that to Grafitti.
 Buxton, W., Sniderman, R., Reeves, W., Patel, S. & Baecker, R. (1979). The Evolution of the SSSP Score Editing 

Tools.Computer Music Journal 3(4), 14-25. [PDF] [video]
 The paper that you referred to as well as the accompanying video can be found here;

 Buxton, W., Fiume, E., Hill, R., Lee, A. & Woo, C. (1983). Continuous Hand-Gesture Driven Input. Proceedings of Graphics 
Interface '83, 9th Conference of the Canadian Man-Computer Communications Society, Edmonton, May 1983, 191-195. [video]

 For a review of Marking and Gesture stuff, see the following two draft chapters of the yet-to-be-finished (!) input book:
 http://www.billbuxton.com/inputManuscript.html
 Marking Interfaces
 Gesture Driven Input

 IMHO, the most useful thing that I have written that guides me, at least, in terms of gestures, is:
 Buxton, W. (1986). Chunking and Phrasing and the Design of Human-Computer Dialogues, Proceedings of the IFIP World 

Computer Congress, Dublin, Ireland, 475-480.
 The two things that I always discuss when I speak about gestures are:

 Kreuger’s work & introduction of the pinch gesture, etc.: http://www.youtube.com/watch?v=d4DUIeXSEpk
 Richard Bolt’s work combining gesture and speech: http://www.youtube.com/watch?v=RyBEUyEtxQo

 There is also some nice examples from Lincoln Lab:
 Applicon (circa 1970). An interactive trainable computer aided circuit design system using hand-drawn shapes to enter data and 

commands. Applicon. 16 mm film. 2:25 min excerpt
 The quick story is this – Applicon was a spin-off from Lincoln Labs, and the recognition stuff was born there. Fontaine Richardson, who 

was behind the work, was a key person at the lab. There was little published on this stuff, but it was the offspring of Sketchpad, and – I 
believe – the first commercial system to use these types of gestures – or gestures at all.

 http://www.billbuxton.com/Lincoln.html
 http://www.billbuxton.com/LincolnLab.pdf

 An old summary which still has some relevance:
 Buxton, W. (1995). Touch, Gesture & Marking. Chapter 7 in R.M. Baecker, J. Grudin, W. Buxton and S. Greenberg, S. 

(Eds.)(1995). Readings in Human Computer Interaction: Toward the Year 2000 San Francisco: Morgan Kaufmann Publishers.

© 2021 - Brad Myers 44

http://www.billbuxton.com/
http://www.billbuxton.com/SSSP.html
http://www.billbuxton.com/evolutionSSSP.pdf
http://www.youtube.com/watch?v=5mDgsQtmKJA
http://www.billbuxton.com/gesture83.html
http://www.youtube.com/watch?v=0GabiAtIYwo
http://www.billbuxton.com/inputManuscript.html
http://www.billbuxton.com/input13.markup.pdf
http://www.billbuxton.com/input14.Gesture.pdf
http://www.billbuxton.com/chunking.pdf
http://www.youtube.com/watch?v=d4DUIeXSEpk
http://www.youtube.com/watch?v=RyBEUyEtxQo
http://www.youtube.com/watch?v=12BfpFOq6W4&feature=channel_video_title
http://www.billbuxton.com/Lincoln.html
http://www.billbuxton.com/LincolnLab.pdf
http://www.billbuxton.com/MKhaptic.html
http://www.billbuxton.com/MK1.html

	Lecture 15:�Toolkit support for Gestural Input Techniques, Handwriting Recognition
	Logistics
	What is a “Gesture”
	Advantages of Gesture Recognition
	Disadvantages
	Gestures  Character  �Handwriting recognition
	Gestures in 3D
	Gestures for Proofreading
	Trainable Gesture Recognizer
	Early Gesture Recognition
	Early Graphical Editing Gestures
	Go Corp’s “PenPoint” OS
	Dean Rubine’s System
	Rubine’s Gesture Innovations
	Rubine: Gesture recognition algorithm
	Uses of Rubine’s algorithm
	Improving the Gestures
	User Designed Gestures
	Wobbrock’s new recognizers
	Design criteria
	Design criteria (cont.)
	Live demo
	Four easy steps�(on next slides)
	Step 1: Resample
	Step 1
	Step 2: Rotate once to 0°
	Step 2
	Step 3: Scale, translate
	Step 3
	At this point…
	Step 4: Compare to templates
	“Seed & search”
	Step 4
	Limitations of $1
	arrow “class”
	Slide Number 36
	Method
	Recognition errors
	Wobbrock’s subsequent gesture work
	iPhone Gestures
	Google Glass Gestures
	Android Gesture Builder
	Funny
	More References

