
Journal of Visual Languages and Computing (1990) 1, 97-123

Taxonomies of Visual Programming
and Program Visualization*

B ~ D A. MYrRs-t"

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213-3890, U.S.A.

There has been great interest recently in systems that use graphics to aid in the
programming, debugging, and understanding of computer systems. The terms 'Visual
Programming' and 'Program Visualization' have been applied to these systems. This
paper attempts to provide more meaning to these terms by giving precise definitions,
and then surveys a number of systems that can be classified as providing Visual
Programming or Program Visualization. These systems are organized by classifying
them into three different taxonomies.

1. Introduction

IT IS WELL-KNOWN THAT conventional programming languages are difficult to learn and
use, requiring skills that many people do not have [1]. However , there are significant
advantages to supplying programming capabilities in the user interfaces of a wide
variety of programs. For example, the success of spreadsheets can be partially
attributed to the ability of users to write programs (as collections of 'formulas').

As the distribution of personal computers grows, the majority of computer users
now do not know how to program. They buy computers with packaged software and
are not able to modify the software even to make small changes. In order to allow the
end-user to reconfigure and modify the system, the software may provide various
options, but these often make the system more complex and still may not address the
'users' problems. Easy to use software, such as 'Direct Manipulation' systems [2]
actually make the user-programmer gap worse since more people will be able to use
the software (since it is easy to use), but the internal program code is now much more
complicated (due to the extra code to handle the user interface).

Therefore, we must find ways to make the programming task more accessible to
users. One approach to this problem is to investigate the use of graphics as the
programming language. This has been called 'Visual Programming' or 'Graphical
Programming.' Some Visual Programming systems have successfully demonstrated
that nonprogrammers can create fairly complex programs with little training [3].

* The research described in this paper was partially funded by the National Science and Engineering
Research Council (NSERC) of Canada while I was at the Computer Systems Research Institute, University
of Tronoto, and partially by the Defense Advanced Research Projects Agency (DOD), ARPA Order No.
4976 under contract F33615-87-C-1499 and ~nonitored by the Avionics Laboratory, Air Force Wright
Aeronautical Laboratories, Aeronautical Systems Division (AFSC), Wright-Patterson AFB, OH 45433-
6543. The views and conclusions contained in this document are those of the author and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency of the US Government.
t Part of the work for this article was performed while the author was at the University of Toronto in
Toronto, Ontario, Canada.

1045-926X/90/010097 + 27 $03.00/0 (~) 1990 Academic Press Limited

98 B.A. MYERS

Another class of systems try to make programs more understandable by using
graphics to illustrate the programs after they have been created. These are called
'Program Visualization' systems and are usually used during debugging or when
teaching students how to program.

This paper, which is updated and revised from references [4] and [5], attempts to
provide a more formal definition of these terms, and discusses why graphical
techniques are appropriate for use with programming. Then, the various approaches
to Visual Programming and Program Visualization are illustrated through a survey of
relevant systems. This survey is organized around three taxonomies. Finally, some
general problems and areas for further research are addressed.

2. Definitions

2.1. Programming

In this paper, a computer 'program' is defined as 'a set of statements that can be
submitted as a unit to a computer system and used to direct the behaviour of that
system' [6]. While the ability to compute 'everything' is not required, the system
must include the ability to handle variables, conditionals and iteration, at least
implicitly.

2.2. Interpretive vs . Compiled

Any programming language system may either be 'interpretive' or 'compiled'. A
compiled system has a large processing delay before statements can be run while they
are converted into a lower-level representation in a batch fashion. An interpretive
system allows statements to be executed when they are entered. This characterization
is actually more of a continuum rather than a dichotomy since even interpretive
languages like Lisp typically require groups of statements (such as an entire
procedure) to be specified before they are executed.

2.3. Visual Programming

'Visual Programming' (VP) refers to any system that allows the User to specify a
program in a two-(or more)-dimensional fashion. Although this is a very broad
definition, conventional textual languages are not considered two dimensional since
the compilers or interpreters process them as long, one-dimensional streams. Visual
Programming does n o t include systems that use conventional (linear) programming
languages to define pi&ures, such as, Sketchpad [7], CORE, PHIGS, Postscript [8],
the Macintosh Toolbox [9], or X-11 Window Manager Toolkit [10]. It'also does not
include drawing packages like Apple Macintosh MacDraw, since these do not create
'programs' as defined above.

2.4. Program Visualization

'Program Visualization' (PV) is an entirely different concept from Visual Program-
ming. In Visual Programming, the graphics are used to create the program itself, but
in Program Visualization, the program is specified in a conventional, textual manner,
and the graphics is used to illustrate some aspect of the program or its run-time

VISUAL PROGRAMMING AND PROGRAM VISUALIZATION 99

execution. Unfortunately, in the past, many Program Visualization systems have been
incorrectly labeled Visual Programming (as in [11]). Program Visualization systems
:an be classified using two axes: whether they illustrate the code, data or algorithm
of the program, and whether they are dynamic or static. 'Data Visualization' systems
show pictures of the actual data of the program. Similarly, 'Code Visualization'
illustrates the actual program text, by adding graphical mark's to it or by converting it
to a graphical form (such as a flowchart). Systems that illustrate the 'algorithm' use
graphics of show abstractly how the program operates. This is different from data and
code visualization, since with algorithm visualization the pictures may not correspond
directly to data in the program and changes in the pictures might not correspond to
specific pieces of the code. For example, an algorithm animation of a sort routine
might show the data as lines of different heights, and swaps of two items might be
shown as a smooth animation of the lines moving. The 'swap' operation may not be
explicitly in the code, however.

'Dynamic' visualizations refers to systems that can show an animation of the
program running, whereas 'static' systems are limited to snapshots of the program at
certain points.

If a program created using Visual Programming is to be displayed or debugged,
clearly this should be done in a graphical manner, which might be considered a form
of Program Visualization. However, it is more accurate to use the term Visual
Programming for systems that allow the program to be created using graphics, and
Program Visualization for systems that use graphics only for illustrating programs
after they have been created.

2.5. Visual Languages

'Visual Languages' refer to all systems that uses graphics, including Visual Program-
ming and Program Visualization systems. Although all these terms are somewhat
similar and confusing, it is important to have different names for the different kinds of
systems, and these are the names that are conventionally used in the literature.

2.6. Example-Based Programming

A number of Visual Programming systems also use 'Example-Based Programming'.
Example-Based Programming refers to systems that allow the programmer to use
examples of input and output data during the programming process. There are two
types of Example-Based Programming: 'Programming by Example' and
'Programming With Example'. Programming by Example refers to systems that try to
guess or infer the program from examples of input and output or sample traces of
execution. This is often called 'automatic programming' and has generally been an
area of Artificial Intelligence research. Programming With Example systems, however,
require the programmer to specify everything about the program (there is no
inferencing involved), but the programmer can work out the program on a specific
example. The system executes the programmer's commands normally, but remembers
them for later reuse. Halbert [3] characterizes PrOgramming With Examples as 'Do
What I Did' whereas inferential Programming by Example might be 'Do What I
Mean'.

Of course, whenever code is executed in any system, test data must be entered to

100 B.A. MYERS

run if on. The distinction between normal testing and Example-Based Programming is
that in the latter the system requires or encourages the user to provide the examples
before programming begins, and then applies the program to the examples as it
develops.

3. Advantages of Using Graphics
Visual Programming and Program Visualization are very appealing ideas for a number
of reasons. The human visual system and human visual information processing are
clearly optimized for multi-dimensional data. Computer programs, however, are
conventionally presented in a one-dimensional textual form, not utilizing the full
power of the brain. Two-dimensional displays for prograins, such as flowcharts and

(i , r
even the indenting of block structured prograrrts, have long been known to be helpful

A number of Program Vlsuahzauon systems aids in program understanding [12].) -- " " "
[13-16] have demonstrated that two-dimensional pictorial displays for data
structures, such as those drawn by hand on a blackboard, are very helpful. Clarisse
[17] claims that graphical programming uses information in a format that is closer to
the user's mental representations of problems, and will allow data to be processed in a
format closer to the way objects are manipulated in the real world. It seems clear that
a more visual style of programming could be easier to understand and generate for
humans, especially for nonprogrammers or novice programmers.

Another motivation for using graphics is that it tends to be a higher-level
description of the desired actions (often deemphasizing issues of syntax and providing
a higher level of abstraction) and may therefore make the programming task easier
even for;professional programmers. This may be especially true during debugging,
where graphics can be used to present much more information about the program
state (such as current variables and data structures) than is possible with purely textual
displays. Also, some types of complex programs, such as those that use concurrent
processes'or deal with real-time systems, are difficult to describe with textual
languages so graphical specifications may be more appropriate.

The popularity of "direct manipulation' interfaces [2], where there are items On the
computer screen that can be pointed to and operated on using a mouse, also
contributes to the desire for Visual Languages. Since many Visual Languages use icons
and other graphical objects, editors for these languages usually have a direct
manipulation user interface. The user has the impression of more directly constructing
a program rather than having to abstractly design it.

Smith [12] discusses at length many psychological motivations for using visual
displays for programs and data.

4. Taxonomies of Visual Languages

This paper presents three taxonomies. The first, discussed in Section 5, is for systems
that support programmihg, and classifies them as tO whether they use Visual
Programming and Example-Based Programming. The second, discussed in Section 6,
lists the various ways that Visual Programming systems have represented the program.
The third taxonomy, discussed in Section 7, is for Program Visualization systems, and
showswhether the systems illustrate the code, data or algorithm of programs.

VISUAL PROGRAMMING AND PROGRAM VISUALIZATION 101

Of course, a single system may have features that fit into various categories and
some systems may be hard to classify, so these taxonomies attempt to characterize the
systems by their most prominent features. Also, the systems discussed here are only
representative; there are many systems that have not been included (additional
systems are described in references [18-22]). Since there are so many visual language
systems, it would be impossible to survey them all in a single article, but hopefully
the 50 or so discussed here will give the reader an overview of the work that has been
done.

5. T a x o n o m y of P r o g r a m m i n g Sys tems

Table 1 shows a taxonomy of some programming systems divided into eight
categories using the orthogonal criteria of:

�9 Visual Programming or not;
�9 Example-Based Programming or not; and
�9 Interpretive or Compiled.

5.1. No t EBP, Not VP, Compiled and Interpretive

These are the conventional textual, linear programming languages that are familiar to
all programmers, such as Pascal, Fortran, and Ada for compiled and LISP and APL
for interpretive.

5.2. Not EBP, VP, Compiled

One of the earliest 'visuaP representations for programs was the flowchart. Grail [23]
could generate programs directly from computerized flowcharts, but the contents of
boxes were ordinary machine language statements. Since then, there have been many
flowchart languages. For example, FPL (First Programming Language) is reported to
be 'particularly well suited to ' helping novices learn programming' because it
eliminates syntactic errors [36]. Other flowchart languages are IBGE [38] for the
Macintosh, and OPAL [46] whicl~ allows doctors tO enter knowledge about cancer
treatments into an expert system (see Figure 1). OPAL handles iterations, conditionals
and concurrency in an easy-to-understand manner. The GAL system [33] uses a
flowchart-variant called Nassi-Shneiderman flowcharts [67] and is compiled into
Pascal.

An early effort that was not based on flowcharts was the AMBIT/G [25] and
AMBIT/L [26] graphical languages. They supported symbolic manipulation pro-
gramming using pictures. Both the programs and data were represented diagramati-
cally as directed graphs, and the programming operated by pattern matching. Fairly
complicated algorithms, such as garbage collection, could be described graphically as
local transformations on graphs.

A new variant on graphs is called 'HiGraphs' [46], which allows the nodes to
contain other nodes, and allows the arrows to split and join (see Figure 2). HiGraphs
can also be restricted to certain forms to creat specific visual programming languages.
For example, Miro [48] is a HiGraphs language for defining Security constraints in
operating systems (for determining which users can access which files). Another
application is the programming of computer user interfaces in StateMaster [50].

102 B.A. MYERS

Table 1. Classification of programming systems by whether they are visual or not,
whether they have Example-Based Programming or not, and whether they are
compiled or interpretive. Starred systems (*) have inferencing (Programming by
Example), and non-starred Example-Based Programming systems use Programming
~vith Example. The systems are listed in approximate chronological order.

V.P. Status Compiled Interpretive

(a) Not Example-Based Programming:

"All Conventional Languages:
Not VP Pascal, Fortran, etc.

Grail [23]
AMBIT/G/L [25, 26]
Query by Example [27, 28]
FORMAL [31]
GAL [33]
FPL [36]

VP IBGE [38]
MOPS-2 [40]
OPAL [42]
Proc-BLOX [44]
HiGraphs [46]
Miro [48]
StateMaster [50]

MPL [51]

(b) Example-Based Programming:

Not VP { 1/O pairs* [52]

Traces* [55]

VP

LISP, APL, etc.

Graphical Program Editor [24]
Spreadsheets
PIGS [29, 30]
Pict [32]
PROGRAPH [34, 35]
State Transition UIMS [37]
PLAY [39]
Action Graphics [41]
Forms [43]
VERDI [45]
LahVIEW [47]
SIL-ICON [49]

Tinker [53]
Editing by Example* [54]

Pygmalion [12]
Smallstar [3, 56]
Rehersal World [57, 58]
Graphical Thinglab [59]
Music System [60]
HI-VISUAL [61]
ALEX* [62]
Peridot* [63, 64]
InterCONS [65]
Fabrik [66]

Figure 1. An OPAL program for defining a single cycle of VAM chemotherapy followed by cycles of
POCC chemotherapy until the parameter CR (complete response) becomes true [42]

VISUAL PROGRAMMING AND PROGRAM VISUALIZATION 103

b t - i ~ dead . ~ bt-rmlclh

rm'ain ~

displays bt-wk
o

b-up
alarm-st _ychime-st - - - .. .

d [in(alarm)] c nab d LIn(chlme)J

Figure 2. A HiGraphs program describing the operation of a digital watch [46]

You might think that a system called 'Query by Example' would be a 'Program-
ming by Example' system, but in fact, according to this classification, it is not. Query
by Example [27] allows users to specify queries on a relational database using
two-dimensional tables (or forms), so it is classified as a Visual Programming system.
The examples in QBE are what Zloof called variables. They are called examples
because the user is supposed to give them names that refer to what the system might
fill into that field, but they have no more meaning than variable names in most
conventional languages. The.ideas in QBE have been extended to mail and other
nondatabase areas of office automation in 'Office by Example' (OBE) [28]. A related

/,~ THEN'~

Ngure 3. A Proc-BLOX display for some Pascal-like program constructs [44]. The jigsaw puzzle pieces
will only fit together in ways that form legal programs

104 B.A. MYERS

forms-based database language is FORMAL [31] which explicitly represents hier-
archical structures.

The MOPS-2 system [40] uses 'coloured Petri nets' to allow parallel systems to be
constructed and stimulated in a visual manner. Petri nets may help when program-
ming real-time software, as described in [68]. Berztiss [69] discusses how to lay out
Petri nets automatically.

Another interesting way to present program constructs is using tiles that look like
jigsaw pieces, and will only fit together in ways that form legal programs. One version
of this is Proc-BLOX [44] shown in Figure 3.

The MPL system [51] allows graphical representations of matrices to be combined
with conventional Prolog programs. The program is entered with a modified text
editor that allows symbolic representations of the matrices to be drawn graphically,
and then the resulting file is compiled and run. This is a good example of combining
the use of graphics with text.

5.3. Not EBP, VP, Interpretive

Probably the first Visual Programming system was William Sutherland's Graphical
Program Editor [24] which represented programs somewhat like hardware logic
diagrams that could be executed interpretively. Some systems for programming with
flowcharts have been interpretive. Pict [32] uses conventional flowcharts, but is
differentiated by its use of colour pictures (icons) rather than text inside the flowchart
boxes. PIGS [29] uses Nassi-Shneiderman flowcharts and has been extended to
handle multi-processing in Pigsty/I-PIGS [30]. Another variant of flowcharts is used
by the PLAY system [39], which allows children to create animations by using a
'comic strip' representation of the actions to be performed. The VERDI system [45]
uses a form of Petri nets to specify distributed systems. With VERDI, the user can see
an animation of the program running by watching tokens move around the network.

A number of visual programming systems use 'dataflow diagrams'. Here, the
operations are typically put in boxes, and the data flows along the wires connecting
them. One example is PROGRAPH [34], which is a structured, functional language
that claims to alleviate the usual problem with functional languages where ' the
conventional representation in the form of a linear script makes it ahnost unreadable'
[35]. Another data flow language is Lab-VIEW [47], which is a commercial product
running on Apple Macintoshes for controlling external instruments. LabVIEW
provides procedural abstraction, control structures, and many useful primitive
components such as knobs, switches, graphs, and arithmetic and transcendental
functions (see Figure 4).

A number of systems for automatically generating user interfaces for programs
(User Interface Management Systems [70]) allow the designer to specify the user
interface in a graphical manner. An example of this is the state transition diagram
editor by Jacob [37]. Most other UIMSs require that designers specify the programs
using some textual representations, so they do not qualify as Visual Programming
systems.

Spreadsheets, such as those in VisiCalc or Lotus 1-2-3, were designed to help
nonprogrammers manage finances. Spreadsheets incorporate programming features
and can be made to do general purpose calculations [71] and therefore qualify as a

VISUAL PROGRAMMING AND PROGRAM VISUALIZATION 105

ConllnuDus
"Oper l t r Wiring SinglE/Step Gol I te r i te SQvt Oale |o ~lsk

* , , , . , , , , , 0 = . , , '* '""'" '0= " " ' ' ' X ~ '0"'1' ~n'"*"*/=~176176

tlss==)ous Figures r s n l l ~ !
Rrtthmetlc operators J G r ~ b e r tab'ellin~l H;tp i t lsseJems I ' l g I r e "

_ - = o.

f o r - ~ ' s o - . -.*o

" ~ 1 7 6 I , : , ,,,.,,, , , _ ; = F ~ I
i0tI~5-q,~ ~ - , - , - , . - , - - * * o * , , , ~b t I n

(a) (b)

Figure 4. A LabVIEW window (a) in which a program to generate a graph has been entered. The resulting
user interface after the program has been hidden is shown in (b)

very-high level Visual Programming language. Some of the reasons that spreadsheets
are so popular are (from [43] and [1]):

1. the graphics on the screen use a familiar, concrete, and visible representation which
directly maps to the user's natural model of the data,

2. they are nonmodal and interpretive and therefore provide immediate feedback,
3. they supply aggregate and high-level operations,.
4. they avoid the notion of variables (all data is visible),
5. the inner world of computation is suppressed,
6. each cell typically has a single value throughout the computation,
7. they are nondeclarative and typeless,

8 . consistency is automatically maintained, and
9. the order of evaluation (flow of control) is entirely derived from the declared cell

dependencies.

The first point differentiates spreadsheets from many other Visual Programming
languages including flowcharts which are graphical representations derived from
textual (linear) languages. With spreadsheets, the original representation is graphical
and there is no natural textual language.

Action Graphics [41] uses ideas from spreadsheets to try to make it easier to
program graphical animations. The 'Forms' system [43] uses more a more
conventional spreadsheet format, but adds sub-sheets (to provide procedural abstrac-
tion) which can have an unbounded size (to handle arbitrary parameters).

A different style of system is SIL-ICON [49], which~.allows the user to construct
'iconic sentences' consisting of graphics arranged in a-meaningful two-dimensional
fashion, as shown in Figure 5. The 5IL-ICON interpreter then parses the picture to
determine what it means. The interpreter itself is generated from a description of the
legal pictures, in the same way that conventional compilers can be generated from
BNF descriptions of the grammar.

106 B.A. MYERS

I D

I !

DDE]

Figure 5. Five different 'iconic sentences' that S IL- ICON can interpret. They mean: insert a line, insert a
string, delete a string, move a string to a new place, and replace a string. The user constructs these pictures

from primitives such as rectangles, lines and arrows [49]

5.4. EBP, Not V1 a, Compiled

Some systems have attempted to infer the entire program from one or more examples
of what output is produced for a particular input. One program [52] inferred simple
recursive LISP programs from a single I / O pair, such as (A B C D) ~
(D D C C B B A A). This system was limited to simple list processing programs, and it
is clear that systems such as this one cannot generate all programs, or even be likely to
generate the correct program [72].

5.5. EBP, Not VP, Interpretive

Tinker [53] is a 'pictorial' system that is not classified as VP. The user chooses a
concrete example, and the system executes Lisp statements on this example as the
code is typed in. Although Tinker uses windows, menus, and other graphics in its
user interface, it is not a VP system since the user presents all of the code to the
system in the conventional, linear, textual manner. For conditionals, Tinker requires
the user to give two examples: one that will travel down each branch. Tinker notices
that two contradictory paths have been specified and prompts the user to type in a
test of distinguish when each branch is desired.

The Editing by Example (EBE) system [54] is based on ideas from input/output
pairs. Here, the system generates a small program that describes a sequence of editing
operations. This program can then be run on any piece of text. The system compares
two or more examples of the editing operations in order to deduce what are variables
and what are constants. The correct programs usually can be generated given only two
or three examples, and there are heuristics to generate programs from single examples.
EBE creates the programs from the results of the editing operations (the input and
output), rather than traces of the execution, to allow the user more flexibility and the
ability to correct small errors (typos) while giving the examples. EBE seems to be
relatively successful, chiefly because it limits the domain in which it performs
inferencing.

5.6. EBP, VP, Compiled

Some inferencing system s that attempt to cover a wider class of programs than those
that can be generated from I / O pairs have required the use to specify the data

VISUAL PROGRAMMING AND PROGRAM VISUALIZATION 107

structures and algorithms and then run through a computation on a number of
examples. The systems attempt to infer where loops and conditionals should go to
produce the shortest and most general program that will work for all of the examples.
One such system is by Bauer [55], which also decides which values in the program
should be constants and which should be variables. It is visual since the user can
specify the program execution using graphical traces. Unfortunately, these systems
tended to create incorrect programs, and it was difficult to check what the system had
done without studying the generated code.

5.7. EBP, VP, Interpretive

Pygmalion [12] was one of the seminal VP and EBP systems. It provides an 'iconic'
and 'analogical' method for programming: concrete display images for data and
programs, called icons, are manipulated to create programs2 The emphasis is on
'doing' pictorially, rather than 'telling'. Thinglab [73, 74] was designed to allow the
user to describe and run complex simulations easily. A VP interface to Thinglab is
described in [59]. Here the user can define new constraints among objects by
specifying them graphically. Also, if a class of objects can be created by combining
already existing objects, then it can be programmed by example in Thinglab.

Smallstar [3, 56] uses EBP to allow the end user to program a prototype version of
the Star office workstation [75]. When programming, the user simply goes into
program mode, performs the operations that are to be remembered, and then leaves
program mode. The operations are executed in the actual user interface of the system,
which the user already knows. Since the system does not use inferencing, the user
must differentiate constants from variables and explicitly add control structures (loops
and conditionals). This is done on a'textual representation of the program created
while the user is giving the example. Halbert reports that Star users were able to create
procedures for performing their office tasks with his system.

The goal of Rehersal World [57, 58] is to allow teachers who do not know how to
program to create computerized lessons easily. Interactive graphics are heavily used to
provide a 'collaborative, evolutionary and exploratory' environment where program-
ming is 'quick, easy and fun'. The metaphor presented to the user is a theatre, where
the screen is the stage and there are predefined performers that the user can direct to
create a play. The teacher developing the program sees at every point exactly what the
student-user of the play well see. In addition, the teacher can have additional
performers in the wings (so the student will not see them) that provide auxiliary
functions such as flow control. Everything is made visible to the teachers, however,
which allows their thinking to be concrete, rather than abstract as in conventional
programming environments. When a new performer is needed, often its code can be
created using examples, but when this is not possible, some Smalltalk code must be
written. The static representation for all performers is Smalltalk code, which can
be edited by those who know ho~.

* Pygmalion is also credited with inventing the use of icons in computer interfaces. Icons were later used by
Smith and others in commercial products such as the Xerox Star and Apple Lisa and Macintosh.

108 B.A. MYERS

l

D
Figure 6. A HI-VISUAL program for performing image processing [61]

HI-VISUAL [61] allows the user to construct data flow programs out of iconic
pictures (see Figure 6). It is classified as EBP because the user supplies sample data
before programming starts, and the system executes the program on the data as each
icon is added to the program.

A related system uses direct manipulation to configure icons and circuit diagrams
to define sound processing systems [60]. This system is classified as Programming
With Example because the resulting sound is continuously played while the circuit is
being constructed.

The ALEX system [62] allows matrix manipulation algorithms to be specified by
example. The user points to a typical element, row, or column in graphical
presentation of a sample matrix, and then specifies how to process it. The system then
generalizes this operation to operate on the entire array.

Peridot [63, 64] is a tool for creating user interfaces by demonstration without
programming. The user d[aws a picture of the desired interface and the system
generalizes this picture to produce a parameterized procedure (see Figure 7). The user
gives example values for any parameters so the system can display a concrete instance
of the user interface. Peridot allows a nonprogrammer to create menus, scroll-bars,
buttons, sliders, etc., and it can create most of the interaction techniques in the Apple
Macintosh Toolbox.

Two data flow systems support Programming with Example. InterCONS [65] and
Fabrik [66] both were developed in Smalltalk and allow the user to wire together
low-level primitives like arithmetic operators and higher-level user interface elements
like scroll bars and buttons. These systems allow the user to input sample data as the
program input, and they continually adjust the output data based on the input and the
program constructed thus far. Fabrik also handles undefined values on wires by

VISUAL PROGRAMMING AND PROGRAM VISUALIZATION 109

C h : ~ r - . I r = F ~ l r = 5 ~) 3 6 '

'~herelr, F11e ~ 3 5 2 1 .

I I I I I I I I I I I

N I L T i ' l I L

:,:,-.:
.:,:.:,

: i : i : i : '
. . . . -
.:.:.:.

. :< . : .
: , : , : . :

.

, . , , , . .
> : . : . :
.:,:.:.
:::::::
: , :+:

~;i;ii!
.

i ii!i
,:.:.::

:.:.:.:

(d)
J

(a) (b) (c) (e) (0
Figure 7. Creating a scroll bar using Peridot. In (a), the background graphics have been created. The grey
bar will represent percent of file visible in the window. The two extemes of the full file (b) and none of the
file (c) are demonstrated. This will depend on the active value ScrollPercent which ranges from 100 to 0 (d).
Next, the two extremes of seeing the end of the file (d) and the beginning of the file (e) are demonstrated.
The active value WhereInFile (which varies from the value of the paramter CharsInFile down to one)
controls this (f). The designer then demonstrates (f) that the bar should follow the mouse when the middle

button is down using the 'simulated mouse' [63]

Input
display

loop

Numeric keypad Function keypad

Figure 8. A desk calculator program in InterCONS [65]

110 B.A. MYERS

drawing them with dotted lines. Figure 8 shows an example of an InterCONS
program for a calculator.

6. Classif ication by Specification Techn ique

Another way to classify programming systems is by what kind of representation they
use for the code. Table 2 lists the systems discussed here by what specification
technique they use. As new Visual Programming systems are designed, this list is
likely to grow, since new forms for the specification can be invented.

6.1. Discussion

Many of the categories listed in Table 2 should be clear, but some need additional
explanation.

The 'Textual Language' specification style is clearly used by all conventional
programming languages. It is also used by Tinker since it is not a Visual Programming
Language. Smallstar is a example-based-programming system and the system
generates the appropriate code while the user is demonstrating the program. Smallstar
uses a textual language (augmented with a few decorative icons) to record the user's
program. Many of the other example-based-programming systems are listed in the
figure as having 'no' textual language. T h i s is because they generate code in a
conventional computer language (e.g. Lisp for I / O Pairs and Peridot) which is not
shown to the users.

The 'Iconic Sentences' are a separate category because here the positions of the
picture are meaningful, and not just how they are connected with arrows as with
flowcharts and graphs.

Table 2. Classification of programming systems by specification style. Classifications
marked with a star (*) primarily show the data of the program, rather than the code.
References for these systems are shown in Table I.

Specification Technique: Systems:

Textual Languages

Flowcharts
Flowchart derivatives
Petri nets

Data flow graphs

Directed graphs
Graph derivatives
Matrices
Jigsaw puzzle pieces
Forms
Iconic Sentences
Spreadsheets*
Demonstrational*
None*

Pascal, Ada, Fortran, Lisp, Ada, etc.
Tinker, Smallstar
Grail, Pict, FPL, IBGE, OPAL
GAL, PIGS, SchemaCode, PLAY
MOPS-2, VERDI
iraphical Program Editor, PROGRAPH,

raphical Thinglab, Music System, HI-VISUAL,
abVIEW, Fabrik, InterCONS

AMBIT/G/.L, State Transition UIMS, Bauer's Traces
HiGraphs, Miro, StateMaster
ALEX, MPL
Proc-BLOX
Query by Example, FORMAL
SIL-ICON
VisiCalc, Lotus I-2-3, Action graphics, "Forms"
Pygmalion, Rehersal World, Peridot
I /O Pairs, Editing by Example

VISUAL PROGRAMMING AND PROGRAM VISUALIZATION 111

In 'Demonstrational' systems, the program is defined by graphics that change in
time. The meaning and behavior of the icons is demonstrated temporally, and the
system remembers what the user has done. For example, in Pygmalion, to
demonstrate that 3 should be added to the value in a variable, the user would drag
the icon for the variable into one of the input slots of the adder icon; and a '3' to the
other input slot. There is no visible representation of the actions.

The systems classified as using Demonstrational, Spreadsheets, and no language
('None') actually show the data of the program, rather than the code. The current
values of the data is visible on the screen, and the code that caused the data to get to
be that way is hidden. Sometimes, but not often, there is a way to discover previous
states of the data. This is in contrast to most other systems (including data flow
diagrams), where the code of the program is represented and the data is implicit. The
AMBIT languages are somewhat unique however, because here both the code and
data is shown in a pictorial manner.

7. T a x o n o m y of Program Visual izat ion Systems

The systems discussed in this section are not programming systems since code is
created in theconventional manner. Therefore, none of the systems discussed below
appears in the previous sections. Graphics is used here to illustrate some aspect of the
program after it is written. Table 3 shows some Program Visualization systems
classified by whether they attempt to illustrate the code, data or algorithm of a
program, and whether the displays are static or dynamic. Some systems fit into
multiple categories, because they illustrate multiple aspects or have different modes.

7.1. Static Code Visualization

The earliest example of a visualization is undoubtably the flowchart. As early as 1959,
there were programs that automatically created graphical flowcharts from Fortran or
assembly language programs [76]. An entirely different approach is taken by SEE [77]

Table 3. Classification of Program Visualization Systems by whether they illustrate the
code, data or algorithm, and whether they are static or dynamic.

Static Dynamic

Code

Data

Algorithm

Flowcharts [76]
SEE Visual Compiler [77]
PegaSys [79]

TPM [82]

TX2 Display Files [83]
Incense [14, 85]

Stills [87]

BALSA [16] -
PV Prototype [78]
MacGnome [80]
Object-Oriented Diagrams [81]
TPM [82]

Linked Lists [84]
MacGnome [13]

Two Systems [86]
Sorting out Sorting [15]
BALSA [16, 88]
Animation Kit [89]
PV Prototype [78]
ALADDIN [90]
Animation by Demonstration [91]
TANGO [92]

112 ~. A. MYERS

desperate(~ h~

esperate~)

) [~u~

="Y"~..,,*" i~knows((;harles, fred } L ~ f a m o u s (c a es)

Figure 9. A Prolog program visualized by TPM [82]

which attempts to make conventional program text easier to read by adding multiple
fonts, nice formatting, and other graphics.

In PegaSys [79], pictures are formal documentation of programs and are drawn by
the user and checked by the system to ensure that they are syntactically meaningful
and, to some extent, whether they agree with the program. The program itself,
however, must still be entered in a conventional language (Ada).

The Prolog logic-programming language has a quite different execution model than
conventional languages. In order to try to make it more understandable, TPM (the
Transparent Prolog Machine) [82] generates pictures of the execution of Prolog
programs. TPM will produce nicely formatted pictures after a program has completed
(so it is classified as 'static'), but it will also show an animation of the code executing
on less well-formatted pictures (so it is also listed as 'dynamic'). Figure 9 shows a
sample of a TPM picture.

7.2. Dynamic Code Visualization

Most systems in this class do not actually animate the code itself, but rather
dynamically show what parts of the code are being executed as the program is run
using some sort of highlighting. Examples are BALSA [16], PV Prototype [78] and
MacGnome [80]. Figure 10 shows the BALSA highlighting the execution of a
recursive procedure.

The Object-Oriented Diagraming system [81] has a somewhat different focus. It is
aimed at illuminating the message-passing structure in object-orientated programs.
The system displays objects as boxes (see Figure 11), and arrows show whether the
message is handled by the object class, or by one of its super-classes.

VISUAL PROGRAMMING AND PROGRAM VISUALIZATION 113

L BALSA
- " ~ ; ~ ' ~ ' . ' I r , , ~ ~ - - - o - - = l r [

.... TT(~ ~ ~ i::iii:.:::.i:.i::iiiii::::i::ii::i::i::~!~!~:2 ~ ~ ... f?:::i::!iii::
p r o c e d u r e e x p r e s s l o n ; : : : : : : : : : : : : : : ::::::::::::::::::::::

. . . . or., iiiii iii;;iiil l!!',',' i!iiiiii

) ~ iii;iiiii!i iii;ili

j : = i + l ;

express~'n~hen j:=j+l e[

Figure 10. On the left is a code visualization from BALSA showing the highlight bar that follows the
execution and the recursive nesting of procedures. On the right is the algorithm animation [161

Figure 11. Display of message passing from [81]. Each rounded box is one object instance, and
super-classes are shown below sub-classes. The arrows show whether the message was handled by the
object class itself (e.g. add: which calls at:put: of its parent class) or whether it is handled by the super-class

(e.g. addAll:)

7.3. Static Data Visualization

A very early system for the TX-2 computer could produce static pictures of the
display file to aid in debugging [83]. Incense [14, 85] automatically generated static
pictorial displays for data structures. The pictures included curved lines with
arrowheads for pointers and stacked boxes for arrays and records, as well as
user-defined displays (see Figure 12). The goal was to making debugging easier by
presenting data structures to programmers in the way that they would draw them by
hand on paper.

7.4. Dynamic Data Visualization

One of the earliest data visualization systems was the L6 movie of list manipulations
[84]. This system actually falls between dynamic and static since the software created
frames that were filmed. The hardware was not fast enough to animate the structures
changing. The MacGnome system, however, shows the pictures changing as the data

114 B.A. MYERS

data:3
less:
greater:

/•data 2]
l e s s : / I

Ig rearer:

Figure 12. A display produced automatically by Incense of three records containing pointers [85]

Figure 13. A data visualization automatically produced by MacGnome [13] of a queue of characters
implemented as a linked list of records

is modified [13]. It runs on the Macintosh, and is similar to Incense in that it
automatically produces displays for data structures from the types of the variables; no
"extra code is needed to generate the pictures. The user simply points to a variable with
the mouse, and a picture of its data is automatically displayed (see Figure 13).

7.5. Static Algorithm Visualization

A visualization system that produces static snapshots of the algorithm is Stills [87].
The User added special commands to the source algorithm, and the system generated
troff output which could be sent to printers.

7.6. Dynamic Algorithm Visualization

Most algorithm visualizations systems are dynamic since they produce animations of
the algorithm in action. The first few systems in this class, like the early data
visualization systems, created movies of the algirhtms (e.g. sorting) and were used for
teaching computer science algorithms [86, 15].

Unlike data visualization systems, all algorithm animation systems require that the
programmer explicitly add information to the code to control the animations. In the
famous BALSA system from Brown University [16], special instructions were added
to the code to signal important events. This system was designed to each students

VISUAL PROGRAMMING AND PROGRAM VISUALIZATION 115

about programming, and produces the illustrations in real time on an Apollo personal
workstation (see Figure 10). An updated version, called BALSA-II, runs on the
Macintosh and allows the user to control the animation using Macintosh-style menus
[88]. The code of the algorithm must still be augmented to tell the system about
important events.

The 'PV Prototype' [78] was designed to aid in debugging and program
understanding, and it supports dynamic displays of data and easier construction of
user-defined displays. Another system, called Animation Kit, has similar goals. It is
written in Smalltalk and features smooth transitions from one state to another [89].

A recognized problem with these systems is that it is difficult to specify what the
data animations should look like. ALADDIN [90] attempts to alleviate this problem
by allowing a declarative specification of the desired views using a catalog of
pre-defined graphical and animation primitives. A different approach was used by
Duisberg [91] in the Animation by Demonstration system, which allows the desired
animations to be specified by demonstration. The user draws a sample picture and
then demonstrates an example of the animation to be performed. This animation can
then be triggered when a message is sent to an object in the underlying Smalltalk
environment. The system uses gestures and a music-like score editor to control the
timing of the animations. T A N G O [92] uses a similar approach and allows much of
the animations to be created using a graphical editor instead of by writing code.

8. Eva lua t ion of Visual P r o g r a m m i n g and P r o g r a m Visual iza t ion

Although there is a great deal of excitement about Visual Programming and Program
Visualization, as well as a large number of working systems, there is still a lot of
skepticism about the success and prospects of the field. For example, Frederick
Brooks wrote:

'A favourite subject for PhD dissertations in software engineering is graphical, or
visual, programming--the application of computer graphics to software design
Nothing even convincing, much less exciting, has yet emerged from such efforts. I am
persuaded that nothing will. In the first place the flowchart is a very poor
abstraction of software structure It has proved to be useless as a *design tool
Second, the screens of today are too small, in pixels, to show both the scope and the
resolution of any seriously detailed software diagram More
fundamentally software is very difficult to visualize. Whether one diagrams
control flow, variable-scope nesting, variable cross-references, dataflow, hierarchical
data structures, or whatever, one feels only one dimension of the intricately
interlocked software elephant.' ([93], pp. 15-16, emphasis added)

In a similar vein, referring to the MacGnome system (discussed in Section 7.4),
Edsger Dijkstra wrote:

'I was recently exposed to . . . what.. , pretended to be educational software for an
introductory programming course. With its "visualizations" on the screen, it
was.., an obvious case of curriculum infantilization We must expect from that
system permanent mental damage for most students exposed to it.' [94]

Visual Languages are new paradigms for programming, and clearly the existing
systems have not been completely convincing. The challenge clearly is to demonstrate

116 B. ^. MYERS

that Visual Programming and Program Visualization can help with real-world
problems. The key to this, in my opinion, is to find appropriate domains and new
domains to apply these technologies to. For general-purpose programming by
professional programmers, textual languages are probably more appropriate.
However, we will find new domains and new forms of Visual Language where using
graphics will be beneficial. The systems discussed in this paper show that some
successful areas so far include, for Visual Programming:

�9 helping to teach programming (FPL, Pict, etc.),
�9 allowing non-programmers to enter information in limited domains (OPAL,

spreadsheets),
�9 allowing non-programmers to construct animations (PLAY) and simple com-

puterized lessons for computer-aided instruction (Rehearsal World),
�9 helping with the construction of user interfaces (Peridot, State Transition

UIMS), and
�9 most significantly, financial planning with spreadsheets.

and for Program Visualization:

�9 helping to teach algorithms involving data structures (Sorting out Sorting,
BALSA);

�9 helping to teach program concepts, such as Prolog code execution (TPM), and
�9 helping to debug programs (MacGnome).

9. Genera l Prob lems and Areas for F u t u r e Resea rch

As described in the previous section, the largest area for future research is to prove
that Visual Languages will actually help users. In addition, there are a number of more
technical problems that most of these systems share.

9.1. All Visual Languages

The problems mentioned in this section apply to many Visual Programming and
Program Visualization systems.

Difficulty with Large Programs or Large Data

Almost all visual representations are physically larger than the text they replace, so
there is often a problem that too little will fit on the screen. This problem is alleviated
to some extent by scrolling and various abstraction mechanisms.

Need for Automatic Layout

When the program or data gets to be large, it can be very tedious for the user to have
to place each component, so the system should lay out the picture automatically.
Unfortunately, for many graphical representations, generating an attractive layout can
be difficult, and generating a perfect layout may be intractable. For example,
generating an optimal layout of graphs and trees is NP-Complete [95]. More research
is needed, therefore, on fast layout algorithms for graphs that have good user interface
characteristics, such as avoiding large scale changes to the display after a small edit.

VISUAL PROGRAMMING AND PROGRAM VISUALIZATION 117

Lack of Formal Spedfication

Currently, there is not formal way to describe a Visual Language. Something
equivalent to the BNFs used for textual languages is needed. This would provide the
field with a 'hard science" foundation, and may allow tools to be created that will
make the construction of editors and compilers for Visual Languages easier. Chang
[49, 96], Glinert [97] and Selker [98] have made attempts in this direction, but much
more work is needed.

Tremendous Difficulty in Building Editors and Environments

Most Visual Languages require a specialized editor, compiler, and debugger to be
created to allow the user to use the language. With textual languages, conventional,
existing text editors can be used and only a compiler.and possibly a debugger needs to
be written. Currently, each graphical language requires its own editor and environ-
ment, since there are no general purpose Visual Language editors. These editors are
hard to create because there are no 'editor-compilers' or other similar tools to help.
The 'compiler-compiler' tools used to build compilers for textual languages are also
rarely useful for building compilers and interpreters for Visual Languages. In
addition, the language designer must create a system to display the pictures from the
language, which usually requires low-level graphics programming. Other tools that
traditionally exist for textual languages must also be created, including pretty-printers,
hard-copy facilities, program checkers, indexers, cross-referencers, pattern matching
and searching (e.g. 'grep' in Unix), etc. These problems are made worse by the
historical lack of portability of most graphics programs.

Lack of Evidence of Their Worth

There are not many Visual Languages that would be generally agreed are 'successful',
and there is little in the way of formal experiments or informal experience that shows
that Visual Languages are good. It would be interesting to see experimental results
that demonstrated that visual programming techniques or iconic languages were better
than good textual methods for performing the same tasks. Metrics might include
learning time, execution speed, retention, etc. Fortunately, preliminary results are
appearing for the advantages of using graphics for teaching students how to program
[36].

Poor Representations

Many visual representations are simply not very good. Programs are hard to
understand once created and difficult to debug and edit. This is especially true once
the programs get to be a non-trivial size.

Lack of Portability of Programs

A program written in a textual language can be sent through electronic mail, and used,
read and edited by anybody. Graphical languages require special software to view and
edit; otherwise they can only be viewed on hard-copy.

118 B.A. MYERS

9.2. Specific Problems for Visual Programming

A primary problem for many Visual Programming languages is that they are
'unstructured' in the software engineering sense. This is because many of them:

�9 use gotos and explicit transfer of control (often through wires),
�9 only have global variables,
�9 have no procedural abstraction,
�9 if they have procedural abstraction, they may not have parameters for the

procedures, and
�9 have no place for comments.

Another problem is that many Visual Programs do not integrate with programs
created in different languages, such as text. A Visual Program might be appropriate for
some aspects of the programming task but not others. An exception is MPL (Section
5.2) which uses a Visual Language for matrices and a textual language for everything
else. Another approach is for the compiler for the Visual Programming Language to
generate conventional computer programs (e.g. in C), so they can be combined with
other programs.

9.3. Specific Problems for Program Visualization

Difficulty in Specifying the Display

Newer Program Visualization systems are beginning to ease the task of specifying the
display, but it can still be very difficult to design and program the desired graphics.
Some systems, such as BALSA-II make it easy to choose from a pre-defined set of
displays, but creating other displays can still be very difficult because it involves
making low-level calls to the graphics primitives.

Problem of Controlling Timing

�9 For dynamic data visualization,�9 is difficult to specify when the displays should be
updated. Issues of aesthetics in timing are very important to produce useful
animations.

10. Conc lu s ions

Visual Programming and Program Visualization are interesting areas that show
promise for improving the programming process, especially for non-programmers, but
more work needs to be done. The success of spreadsheets demonstrates that if we find
the appropriate paradigms, graphical techniques can revolutionize the way people
interact with computers.

Acknowledgements

For help and support of this article, I would like to thank Bernita Myers. I would also
like to thank the British Computer Society Displays Group for making it possible for
me to attend the Symposium on Visual Programming and Program Visualisation in
London where an earlier version of this paper was presented.

VISUAL PROGRAMMING AND PROGRAM VISUALIZATION 119

References

1. C. Lewis & G. M. Olson (1987). Can principles of cognition lower the barriers tO
programming? In: Empirical Studies of Programmers Vol. 2, Ablex.

2. B. Shneiderman (1983) Direct manipulation: A step beyond programming languages. IEEE
Computer. 16, 57-69.

3. D. C. Halbert (1984) Programming by Example. PhD thesis, University of California,
Berkeley, 83pp.

4. B. A. Myers (1986) Visual Programming, Programming by Example, and Program
Visualization; A Taxonomy. In: Proceedings SIGCHI '86: Human Factors in Computing
Systems ACM Press, Boston, MA., pp. 59-66.

5. B. A. Myers (1988) The State of the Art in Visual Programming and Program
Visualization Carnegie Mellon University Computer Science Department Technical Report
No. CMU-CS-88-114.

6. Dictionary of Computing Oxford: Oxford University Press, 1983.
7. I. E. Sutherland (1963) SketchPad: A man-machine graphical communication system.

AFIPS Spring Joint Computer Conference 23, 329-346.
8. Adobe Systems, Inc. Postscript Language Reference Manual Addison-Wesley, Menlo, 1985,

321pp.
9. Apple Computer, Inc. Inside Macintosh. Addison-Wesley, Menlo, CA. 1985.

10. J. McCormack and Paul Asente. (1988) An Overview of the X Toolkit. In: Proceedings of
the ACM SIGGRAPH Symposium on User Interface Software, Banff, Alberta, Canada.
Oct, 17-19, ACM Press, 1988. pp 46-55.

11. R. B. Grafton & T. Ichikawa, eds. IEEE Computer, Special Issue on Visual Programming.
18, 1985. pp. 6-94

12. D. C. Smith (1977) Pygmalion: A Computer Program to Model and Stimulate Creative
Thought. Birkhauser: Basel, Stuttgart, 187 pp.

13. B. A. Myers, R. Chandhok & A. Sareen (1988)Automatic Data Visualization for Novice
Pascal Programmers, 1988 IEEE Workshop on Visual LangUages, October I0-12, 1988,
Pittsburgh, PA. Computer Society Order Number 876, IEEE Computer Society Press,
Terminal Annex, P.O. Box 4699, Los Angeles, CA, pp. 192-198.

14. B. A. Myers (1983) Incense: A System for Displaying Data Structures: Computer
Graphics: SIGGRAPH '83 Conference Proceedings, 17, 115-125.

15. R. Baecker (1981) Sorting out Sorting. 16mm color, sound film, 25 minutes. Dynamics
Graphics Project, Computer Systems Research Institute, University of Toronto, Toronto,
Ontario, Canada. Presented at ACM SIGGRAPH '81. Dallas, TX. Aug. 1981.

16. M. H. Brown & R. Sedgewick (1984) A System for Algorithm Animation. Computer
Graphics: SIGGRAPH '84 Conference Proceedings, 18, 177-186.

17. O. Clarisse & S.-K. Chang (1986) VICON: A Visual Icon Manager. In: Visual Languages
Plenum Press, New York, pp. 151-190.

18. S.-K. Chang, T. Ichikawa & P. A. Ligomenides (eds) (1986) Visual Languages Plenum
Press, New York.

19. R. R. Korfhage (ed.) 1986 IEEE Workshop on Visual Languages. June 25-27, 1986. Dallas,
Texas. Computer Society Order Number 722, IEEE Computer Society Press, Terminal
Annex, P.O. Box 4699, Los Angeles, CA, 179 pages.

20. E. Jungert, ed. 1987 Workshop on Visual Languages. August 19-21, 1987. Linkoping,
Sweden. IEEE Computer Society.

21. N.-C. Shu (1988) Visual Programming. New York: Van Nostrand Reinhold Company.
22. A. S. Berztiss, ed. 1988 IEEE Workshop on Visual Languages. October 10-12, 1988.

Pittsburgh, PA. Computer Society Order Number 876, IEEE Computer Society Press,
Terminal Annex, P.O. Box 4699, Los Angeles, CA 90051.

23. T. O. Ellis, J. F. Heafner & W: L. Sibley (1969) The Grail Project: An Experiment in
Man-Machine Communication. Rand Report RM-5999-Arpa.

24. W. R. Sutherland (1966) On-line Graphical Specification of Computer Procedures. MIT
PhD thesis. Lincoln Labs Report TR-405.

25. C. Christensen (1968) An Example of the Manipulation of Directed Graphs in the
AMBIT/G Programming Language. In: Interactive Systems for Experimental Applied

120 B.A. MYERS

Mathematics (Melvin Klerer and Juris Reinfelds, eds) New York: Academic Press, pp.
423-435.

26. C. Christensen (1971) An Introduction to AMBIT/L, A Diagramatic Language for List
Processing, Proceedings of the 2nd Symposium on Symbolic and Algebraic Manipulation.
Los Angeles, CA. Mar. 23-25, 1971. pp. 248-260.

27. M. M. Zloof & S. Peter de Jong (1977) The System for Business Automation (SBA):
Programming Language, CACM 20(6), June, pp. 385-396.

28. M. M. Zloof (1981) QBE/OBE: A Language for Office and Business Automation, IEEE
Computer. 14(5), May, pp. 13-22.

29. M. C. Pong & N. Ng (1983) Pigs--A System for Programming with Interactive Graphical
Support. Software--Practice and Experience. 13, 847-855.

30. M.-C. Pong (1986) A Graphical Language for Concurrent Programming, IEEE Computer
Society Workshop on Visual Languages. IEEE CS Order No. 722. Dallas, Texas. June
25-27, pp. 26-33.

31. N. C. Shu (1985) FORMAL: A Forms-Oriented Visual-Directed Application Develop-
ment System, IEEE Computer, 18, 38-49.

32. E. P. Glinert & L. Tanimoto (1984) Pict: An Interactive Graphical Programming
Environment, IEEE Computer. 17, 7-25.

33. M. B. Albizuri-Romero (1984) GRASE--A Graphical Syntax-Directed Editor for Struct-
ured Programming, SIGPLAN Notices. 19, 28-37.

34. T. Pietrzykowski, S. Matwin & T. Muldner (1983) The Programming Language
PROGRAPH: Yet Another Application of Graphics, Graphics Interface '83, Edmonton,
Alberta. May 9-13, pp. 143-145.

35 T. Pietrzykowski & S. Matwin (1984) PROGRAPH: A Preliminary Report. University of
Ottawa Technical Report TR-84-07. April, 1984. 91 pages.

36. Nancy Cunniff, R. P. Taylor & J. B. Black (1986) Does Programming Language Affect the
Type of Conceptual Bugs in Beginners' Programs? A Comparison of FPL and Pascal,
Proceedings SIGCHI '86: Human Factors in Computing Systems. Boston, MA. April
13-17, 1986. pp. 175-182.

37. R. J. K. Jacob. (1985) A state transition diagram language for visual programming. IEEE
Computer 18, 51-59.

38. T. H. Taylor & R. P. Burton (1986) Anicon-based graphical editor Computer Graphics
World 9, 77-82.

39. S. L. Tanimoto & M. S. Runyan (1986) PLAY: An Iconic Programming Systems for
Children In: Visual Languages New York: Plenum Press, pp. 191-205.

40. T. Ae, M. Yamashita, W. C. Cunha, & H. Matsumoto (1986) Visual User-Interface of A
Programming System: MOPS-2, IEEE Computer Society Workshop on Visual Languages.
IEEE CS Order No. 722. Dallas, Texas. June 25-27, 1986. pp. 44-53.

41. J. M. Moshell, C. E. Hughes, L. W. Lacy & R. L. Lewis. (1987) A Spreadsheet-Based
Visual Language for Freehand Sketching of Complex Motions, 1987 Workshop on Visual
Languages. August 19-21, 1987. Linkoping, Sweden. IEEE Computer Society. pp. 94-104.

42. M. A. Musen, L. M. Fagen & E. H. Shortliffe (1986) Graphical Specification of Procedural
Knowledge for an Expert System, IEEE Computer Society Workshop on Visual
Languages. IEEE CS Order No. 722 Dallas, Texas, June 25-27, 1986. pp. 167-178.

43. A. L. Ambler (1987) Forms: Expanding the Visualness of Sheet Languages, 1987 Workshop
on Visual Languages. August 19-21, 1987. Linkoping, Sweden. IEEE Computer Society.
pp. 105-117.

44. E. P. Glinert (1987) Out of Flatland: Towards 3-D Visual Programming, Proceedings of
FJCC '87--1987 Fall Joint Computer Conference. IEEE Computer Society. Dallas, Texas,
October 25-29, 1987. pp. 292-299.

45. Mike Graf (1987) A Visual. Environment for the Design of Distributed Systems, 1987
Workshop on Visual Languages. August 19-21, 1987. Linkoping, Sweden. IEEE Computer
Society. pp. 330-344.

46. D. Harel (1988) On Visual Formalisms, CACM 31(5), May, pp. 514-530.
47. National Instruments. LabVIEW. 12109 Technology Blvd. Austin, Texas, 78727.

VISUAL PROGRAMMING AND PROGRAM VISUALIZATION 121

48. M. W. Maimone, J. D. Tygar & J. M. Wing (1988) Miro Semantics for Security, 1988 IEEE
Workshop on Visual Languages. October 10-12, 1988. Pittsburgh, PA. Computer Society
Order Number 876, IEEE Computer Society Press, Terminal Annex, P.O. Box 4699, Los
Angeles, CA 90051. pp. 45-51.

49. S. K. Chang, M. Tauber, B. Yu & J. S. Yu (1989) A Visual Language Compiler, IEEE
Transactions on Software Engineering. May, pp. 506-525.

50. P. D. Wellner (1989) Statemaster: A UIMS based on Statecharts for Prototyping and Target
Implementation, Proceedings SIGCHI '89: Human Factors in Computing Systems. Austin,
Tex. April 30 May 4, 1989. pp. 177-182.

51. R. Yeung (1988) MPL--A Graphical Programming Environment for Matrix Processing
Based on Logic and Constraints, 1988 IEEE Workshop on Visual Languages. October
10-12, 1988. Pittsburgh, PA. Computer Society Order Number 876, IEEE Computer
Society Press, Terminal Annex, P.O. Box 4699, Los Angeles, CA 90051. pp. 137-143.

52. D. E. Shaw, W. R. Swartout & C. C. Green (1975) Inferring Lisp Programs from
Examples, Fourth International Joint Conference on Artificial Intelligence. Tbilisi, USSR.
Sept. 3-8, 1975. 1, pp. 260-267.

53. H. Lieberman (1982) Constructing Graphical User Interfaces by Example, Graphics
Interface '82, Toronto, Ont. Mar. 17-21, 1982. pp. 295-302.

54. R. P. Nix. (1985) Editing by example. ACM Transactions on Programming Languages and
Systems. 7, 600-621.

55. M. A. Bauer (1978) A Basis for the Acquisition of Procedures. PhD Thesis, Department of
Computer Science, University of Toronto. 310 pages.

56. D. C. Halbert (1981) An Example of Programming by Example. Masters of Science Thesis.
Computer Science Division, Dept. of EE&CS, University of California, Berkeley and
Xerox Corporation Office Products Division, Palo Alto, CA. June, 55 pages.

57. L. Gould & W. Finzer (1984) Programming by Rehersal. Xerox Palo Alto Research Center
Technical Report SCL-84-1. May, 133 pages.

58. L. Gould & W. Finzer. Programming by rehersal, Byte 9, 187-210.
59. A. Borning (1986) Defining Constraints Graphically, Human Factors in Computing

Systems: Proceedings SIGCHI '86. Boston, MA. Apr. 13-17, 1986.
60. P. Desain (1986) Graphical Programming in Computerl Music, Proceedings of the

International Computer Music Conference. Royal Conservatory, The Hague, Netherlands.
Oct. 20-24, 1986. pp. 161-166.

61. M. Hirakawa, S- Iwata, I. Yoshimoto, M. Tanaka & T. Ichikawa (1987) HI-VISUAL Iconic
Programming, 1987 Workshop on Visual Languages. August 19-21, 1987. Linkoping,
Sweden. IEEE: Computer Society. pp. 305-314.

62. D. Kozen, T. Teitelbaum, W. Chen, J. Field, W. Pugh, B. Vander Zanden (!987)
ALEX-An Alexical Programming Language, 1987 Workshop on Visual Languages.
August 19-21,11987. Linkoping, Swede m IEEE Computer Society. pp. 3!5-329.

63. B. A. Myers (1987) Creating interaction techniques by demonstration. IEEE Computer
Graphics and Applications, 7, 51-60.

64. B. A. Myers (1988) Creating User Interface s by Demonstration. Boston: Academic Press.
65. D. N. Smith (1988) Visual Programming in the Interface Construction Set, 1988 IEEE

Workshop on Visual Languages. Octobei" 10-12, 1988. Pittsburgh, PA. Computer Society
Order Number 876, IEEE Computer SocietyPress, Terminal Annex; P.O. Box 4699, Los
Angeles, CA 90051. pp. 109-120.

66. F. Ludolph, Y.-Y. Chow, D. Ingalls, S. Wallace & K. Doyle (1988) The Fabrik
Programming Environment, 1988 IEEE Workshop on Visual Languages. O.ctober 10-12,
1988. Pittsburgh, PA. Computer Society Order Number;876, IEEE Computer Society
Press, Terminal Annex, P.O. Box 4699, Los Angeles, CA 90051. pp. 222-230.

67. I. Nassi & B. Shneiderman (1973) Flowchart techniques for structured programming.
SIGPLAN Notices. 8, 12-26.

68. T. Ae & R. Aibara (1987) A Rapid Prototyping of Real-Time Software Using Petri Nets,
1987 Workshop on Visual Languages. August 19-21, 1987. Linkoping, Sweden. IEEE
Computer Society. pp. 234-241.

122 B.A. MYERS

69. A. T. Berztiss (1987) Specification of Visual Representations of Petri Nets, 1987 Workshop
on Visual Languages. August 19-21, 1987. Linkoping, Sweden. IEEE Computer Society.
pp. 225-233.

70. B. A. Myers (1989) User interface tools: introduction and survey. IEEE Software 6,
15-23. -

71. A. Kay (1984) Software. Scientfic American. September.
72. A. W. Biermann (1976) Approaches to automatic programming. In: Advances in Computers

(Morris Rubinoff and Marshall C. Yovitz, eds) New York: Academic Press. pp. 1-63.
73. A. Borning (1979) Thinglab--A Constraint-Oriented Simulation Laboratory. Xerox Palo

Alto Research Center Technical Report SSL-79-3. July, 1979. 100 pages.
74. A. Borning (1981) The programming language aspects of thinglab; a constraint-oriented

simulation laboratory. Transactions on Programming Language and Systems, 3, 353-
387.

75. D. C. Smith, C. Irby, R. Kimball, B. Verplank & E. Harslem (1982) Designing the star
user interface. Byte Magazine April. pp. 242-282.

76. L. M. Haibt (1959) A Program to Draw Multi-Level Flow Charts, Proceedings of the
Western Joint Computer Conference. San Francisco, CA. 15, Mar. 3-5, 1959. pp. 131-137.

77. R. Baecker & A. Marcus (1986) Design Principles for the Enhanced Presentation of
Computer Program Source Text, Human Factors in Computing Systems: Proceedings
SIGCHI '86. Boston, MA. Apr. 13-17, 1986.

78. G. P. Brown, R. T. Carling, C. F. Herot, D. A. Kramlich & P. Souza (1985) Program
visualization: graphical support for software development. IEEE Computer 18, 27-35.

�9 79. M. Moriconi & D. F. Hare (1985) Visualizing Program Designs Through PegaSys. IEEE
Computer 18, 72-85.

80. R. Chandhok, et al. (1985) Programming Environments based on structure editing: The
Gnome approach, Proceedings of the National Computer Conference (NCC '85). AFIPS,
1985.

81. W. Cunningham & K. Beck (1986) A Diagram for Object-Oriented Programs,'DOPSLA
'86 Proceedings. September 29-October 2, 1986. Portland, Oregon. SIGPLAN Notices.
21(11), November. pp. 361-367.

82. M. Eisenstadt & M. Brayshaw (1987) The Transparent Prolog Machine: an execution model
and graphical debugger for logic programming, to appear in Journal of Logic Programming.
Human Cognition Research Laboratory Technical Report No. 21a. The Open University.
Milton Keynes, MK7 6AA, England. October, 1987.

83. R. M. Baecker (1968) Experiments in On-Line Graphical Debugging: The Interrogation of
Complex Data Structures, (Summary only). First Hawaii International Conference on the
System Sciences. Jan. pp. 128-129.

84. K. C. Knowlton (1966) L6: Bell Telephone Laboratories Low-Level Linked List Language.
Black and white shoud files, Bell Laboratories, Murray Hill, NJ.

85. B. A. Myers (1980) Displaying Data Structures for Interactive Debugging. Xerox Palo Alto
Research Center Technical Report CSL-80-7. June, 1980. 97pp.

86. R. M. Baecker (1975) Two systems which produce animated animated representations of
the execution of computer programs. SIGCSE Bulletin 7, 158-167.

87. J. L. Bentley & Brian W. Kernighan (1987) A System for Algorithm Animation; Tutorial
and User Manual. AT&T Bell Laboratories Computing Science Technical Report No. 132.
600 Mountain Avenue, Murray Hill, NJ 07974. January, 1987.

88. M. H. Brown (1988) Exploring Algorithms Using Balsa--II, IEEE Computer. 21(5), May,
pp. 14-36.

89. R. L. London & R. A. Druisberg (1985) Animating programs in smalltalk. IEEE
Computer 18, 61-71.

90. A. Hyrskyakari & K.-J. Raiha (1987) Animation of Algorithms Without Programming,
1987 Workshop on Visual Languages. August 19-21, 1987. Linkoping, Sweden. IEEE

�9 Computer Society, pp. 40-45.
91. R. A. Duisberg (1987) Visual Programming of Program Visualizations, 1987 Workshop on

Visual Languages. August 19-21, 1987. Linkoping, Sweden. IEEE Computer Society, pp.
55-56.

VISUAL PROGRAMMING AND PROGRAM VISUALIZATION 123

92. J. T. Stasko (1989) TANGO: A Framework and System for Algorithm Animation. PhD
Dissertation. Brown University, Department of Computer Science, Providence, RI 02912.
Technical Report No. CS-89-30, May, 1989. 257pp.

93. F. P. Brooks, Jr. (1987) No silver bullet: essence and accidents of software engineering.
IEEE Computer 20, 10-19.

94. E. W. Dijkstra (1989) On the Cruelty of Really Teaching Computing Science, The SIGCSE
Award Lecture, CACM 32, 1403-1404.

95. D. S. Johnson (1982) The NP-Comphteness Column: an ongoing guide, Journal of
Algorithms. 3. pp. 89-99.

96. S.-K. Chang, G. Tortora, B. Yu & A. Guercio (1987) Icon Purity--Toward a Formal
Theory of Icons, 1987 Workshop on Visual Languages. August 19-21, 1987. Linkoping,
Sweden. IEEE Computer Society. pp. 3-16.

97. E. P. Glinert &]. Gonczarowski (1987) A (formal) model for (iconic) programming
environments In: Human-Computer Interaction-interact '87. Elsevier Science Publishers
(North Holland). pp. 283-290.

98. T. Selker & L. Koved (1988) Elements of Visual Language, 1988 IEEE Workshop on Visual
Languages. October 10-12, 1988. Pittsburgh, PA. Comput .- Society Order Number 876,
IEEE Computer Society Press, Terminal Annex, P.O. Box 4699, Los Angeles, CA 90051.
pp. 38-43.

