
Verifying Multi-object Invariants with

Relationships

Stephanie Balzer and Thomas R. Gross

ETH Zurich

Abstract. Relationships capture the interplay between classes in
object-oriented programs, and various extensions of object-oriented
programming languages allow the programmer to explicitly express re-
lationships. This paper discusses how relationships facilitate the verifi-
cation of multi-object invariants. We develop a visible states verification
technique for Rumer, a relationship-based programming language, and
demonstrate our technique on the Composite pattern. The verification
technique leverages the “Matryoshka Principle” embodied in the Rumer
language: relationships impose a stratification of classes and relationships
(with corresponding restrictions on writes to fields, the expression of in-
variants, and method invocations). The Matryoshka Principle guarantees
the absence of transitive call-backs and restores a visible states semantics
for multi-object invariants. As a consequence, the modular verification
of multi-object invariants is possible.

1 Introduction

Invariants provide a foundation for verifying programs [1], and various object-
oriented programming and specification languages [2–4] have adopted invariants
for objects. An object invariant captures the properties of an object that the
object exhibits in its consistent states. Object invariants are central to a wealth
of object-oriented verification techniques [5–12]. A key issue for any practical
verification technique for an object-oriented language is the ability to modularly
verify a program so that modules (i.e., classes) can be verified independently
from each other.

Modular verification is straightforward as long as an object invariant con-
strains only the state of the current object and provided that an object’s fields
can be written to only by the object’s own methods. Unfortunately, single-object
invariants rarely express the constraints of real-world software, which typically
asks for multi-object invariants. A multi-object invariant relates several objects
and constrains not only the state of the current object but also the state(s) of
the object(s) it refers to. The reasoning about a multi-object invariant, however,
is no longer modular. For instance, if there are aliases to the referenced objects,
the referenced objects may be altered in ways compromising the invariant.

Multi-object invariants compromise also the adoption of a visible states se-
mantics for invariants. A visible states verification technique [9] requires an ob-
ject to meet its invariant in the initial and final states of method executions

M. Mezini (Ed.): ECOOP 2011, LNCS 6813, pp. 358–382, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Verifying Multi-object Invariants with Relationships 359

(i.e., the visible states) but allows an object to temporarily break its invariant
during the execution of a method. A visible states semantics for invariants fa-
cilitates data type induction [1, 13, 14] as a proof technique: each method may
assume that the invariant holds in the method’s initial state, provided that each
method ensures that the invariant holds in the method’s final state. To facilitate
data type induction, a verification technique needs to guard re-entrant method
invocations (call-backs). A call-back occurs if a method, executing on an ob-
ject o, invokes a method n() either directly or transitively (by further method
invocations) on the original object o. Since n() is invoked in a state when o’s
invariant may be temporarily broken, n() should not be allowed to assume o’s
invariant in its initial state. Data type induction can be restored by imposing
additional obligations on the caller of a method. Namely, a calling method m() is
required to re-establish the invariants of those objects O that are vulnerable to
m()’s execution, provided that the objects O are possible receivers of the direct
or transitive method invocation n(). This obligation can be easily implemented
for single-object invariants by requiring a method to re-establish its receiver’s
invariant before invoking a method. However, imposing the same obligation for
multi-object invariants is (i) generally infeasible since the transitive receivers
of method invocations are statically unknown, and also (ii) too limiting since
a method of an invariant-declaring class may need to invoke methods on the
objects related by the invariant to re-establish the invariant.

Existing techniques [5–12] for verifying multi-object invariants differ in how
they address the challenges mentioned above as well as in the range of verification
problems they can handle. Given the challenges that real-world, object-oriented
programs pose for invariant-based verification, it has been questioned whether
the object invariant is the correct foundation for verifying object-oriented
programs [15]. In this paper, we demonstrate that an object-oriented program-
ming language with explicit support for relationships enjoys properties that facil-
itate the verification of real-world programs with invariants. Relationship-based
programming languages [16–24] complement object-oriented programming lan-
guages with the programming language abstraction of a relationship to capture
the interplay between objects. We introduce a visible states verification tech-
nique for Rumer, a simple relationship-based programming language developed
to explore relationships [20]. The verification technique leverages the partic-
ular modularization properties of the Rumer language that we summarize as
the “Matryoshka Principle”. The principle relies on a stratification of classes
and relationships and stipulates restrictions on writes to fields, the expres-
sion of invariants, and method invocations. It translates into a stratification of
invariants and guarantees the absence of transitive call-backs and, as a conse-
quence, restores a visible states semantics for invariants. To facilitate modu-
lar reasoning about shared state, the verification technique leverages member
interposition [20, 25] and extent ownership, two orthogonal language fea-
tures supported in Rumer. We demonstrate our verification technique on the
Composite pattern.

360 S. Balzer and T.R. Gross

2 Running Example

The Composite pattern has been suggested recently as a verification chal-
lenge [12, 26] and served as the “Challenge Problem” for the 7th Interna-
tional Workshop on Specification and Verification of Component-Based Systems
(SAVCBS). Figure 1(a) shows the class diagram of the Composite pattern. As in-
dicated by the UML aggregation, the pattern “composes objects into tree struc-
tures to represent part-whole hierarchies and lets clients treat leaf objects and
composite objects uniformly” [27]. Figure 1(b) shows a slightly modified version
of the Composite pattern implementation presented in [26]. In accordance with
the UML class diagram, the implementation distinguishes the classes Component
and Composite and represents the UML aggregation by means of a parent ref-
erence and a children collection in Component and Composite, respectively.
The implementation further establishes a field total (line 3 in Fig. 1(b)) which
indicates the total number of children components that can be reached from a
component.

operation()

Component

operation()

Leaf

operation()
add(Component)
remove(Component)

Composite

(a)

1 class Component {
2 protected Composite parent;
3 protected int total = 0;
4 }
5

6 class Composite extends Component {
7 private Collection<Component> children;
8

9 public Composite() {
10 children = new Vector<Component>();
11 }
12

13 public void addComponent(Component c) {
14 children.add(c);
15 c.parent = this;
16 addToTotal(c.total + 1);
17 }
18

19 private void addToTotal(int incr) {
20 total = total + incr;
21 if (parent != null) {
22 parent.addToTotal(incr);
23 }
24 }
25 }

(b)

Fig. 1. Object-oriented implementation of the Composite pattern. (a) UML class di-
agram of the Composite pattern. (b) Implementation of the Composite pattern in a
Java-like language as suggested in [26].

The Composite pattern gives raise to a number of interesting invariants. The
SAVCBS 2008 challenge problem, in particular, stipulates the invariant that
the value of a component object’s total field must be equal to the number of
children components contained within the sub-tree rooted at the component ob-
ject. This invariant is an instance of a multi-object invariant since it is violated

Verifying Multi-object Invariants with Relationships 361

by any addition or removal of a component to or from a composite’s sub-tree.
Method addComponent() accounts for this violation and triggers a bottom-up
traversal of the composite tree to update the total field of a composite and of all
its parent composites. The actual update is achieved by the recursive method
addToTotal(). Once this method terminates, the invariant of the composite on
which addComponent() is invoked as well as the invariants of all its transitive
parent composites will be re-established. However, for the duration of the re-
cursive invocations of addToTotal(), those invariants are broken. Since these
invocations (re-)enter inconsistent objects, method addToTotal() cannot as-
sume that the invariant of its current receiver object holds in the initial state of
the method.

The verification of the Composite pattern is challenging since it features a
multi-object invariant and disallows an naive adoption of a visible states se-
mantics. This restriction rules out, for instance, the Classical Technique [9] for
verifying the Composite pattern since it can neither accommodate multi-object
invariants nor re-entrant method invocations. A number of proposals to ad-
dress the challenges of verifying the Composite pattern have been suggested.
Verification techniques based on ownership [5, 7, 9] allow the specification and
verification of the Composite pattern by leveraging the heap topology enforced
by ownership types. However, an ownership-based specification of the Compos-
ite pattern prevents direct modifications of a composite’s components. Other
proposals typically employ a relaxed visible states semantics for invariants. Sum-
mers and Drossopoulou [12], for instance, introduce Considerate Reasoning, a
verification technique that is based on a visible states semantics for invariants
but allows distinguished invariants to be broken in the initial states of method
executions provided that the methods re-establish the invariant in the final state.
In addition, techniques have been presented that do not employ a visible states
semantics for invariants. Bierhoff and Aldrich [28], for instance, leverage type-
state-based permissions to verify a simpler invariant for binary Composite tree
structures and Jacobs et al. [29] leverage separation logic to verify the SAVCBS
invariant also for binary Composite tree structures.

In this paper, we show how first-class relationships allow for a precise specifi-
cation of the Composite pattern. Our specification captures not only the SAVCBS
invariant regarding a composite’s total field but also gives a precise definition
of a composite’s tree properties. Using higher-level programming language ab-
stractions and their stratification, we can encapsulate the multi-object invariant
of the Composite pattern in a relationship and restore a visible state semantics
for invariants.

3 First-Class Relationships

This section introduces the specification of the Composite pattern in Rumer
and discusses the language features that are important for modular program
verification. Rumer is a relationship-based programming language with Design-
by-Contract-style [2] assertions. To gain practical experience with first-class re-
lationships, we designed and implemented a prototype compiler that supports

362 S. Balzer and T.R. Gross

the features shown in this paper and offers run-time checking of Design-by-
Contract-style assertions. The Rumer compiler has been the basis for various
student projects at ETH Zurich.

3.1 Language Principles

This section provides an overview of Rumer’s basic language features. In the
subsequent sections, we introduce each language feature in turn, based on the
Rumer implementation of the Composite pattern shown in Fig. 2. The assertion
language of Rumer is covered in Sect. 3.2.

Programmer-Definable Types. Figure 2 shows the implementation of the
Composite pattern in Rumer. The program consists of three type declarations:
the entity declaration Component and the relationship declarations Parent and
Composite. An entity abstracts the state and behavior that a number of ob-
jects have in common. A relationship abstracts the state and behavior that a
number of related objects have in common. Both language abstractions can be
instantiated; we use the terms entity instance or object to denote instances of
type entity and the term relationship instance to denote instances of type re-
lationship. An entity resembles a class in a pure object-oriented language as it
can define fields and methods. The existence of first-class relationships, however,
fundamentally changes the position an entity takes in a relationship-based pro-
gramming language. Using the abstraction of a relationship, a programmer can
factor out the description of how objects relate into a relationship, rendering the
need to establish references in an entity unnecessary. In Rumer, we build on this
observation and prohibit the declaration of references in entities, requiring the
declaration of how abstractions and their instances relate to happen exclusively
in relationships. This language requirement results in a stratification of entities
and relationships as only relationships know about their participating entities,
but not vice versa. In Sect. 4 we discuss the benefits of the resulting stratification
for program verification.

Simple Relationship Declaration. Relationships declare the types of in-
stances they relate in their participants clause. For example, relationship
Parent relates entity instances of type Component (line 3 in Fig. 2). Rumer al-
lows programmers to associate an identifier with each type declaration in a par-
ticipants clause to denote the role an instance of the type plays in the relationship.
In case of relationship Parent, we use the role names child and parent to rep-
resent the hierarchical structure of the Composite pattern. Figure 3(a) provides a
graphical illustration of a snapshot of a Rumer program heap comprising Parent

relationship instances. The figure represents entity instances as dark gray circles
and relationship instances as light gray ellipses. The heap snapshot consists of six
Component entity instances and five Parent relationship instances. Each Parent

relationship instance has a Component entity instance as child participant and a
Component entity instance as parent participant. As indicated by the arrows in
the figure, the role identifiers child and parent denote references from a Parent
relationship instance to its participating Component objects.

Verifying Multi-object Invariants with Relationships 363

1 entity Component {...}
2

3 relationship Parent participants (Component child, Component parent) {
4 int >parent total; // interposed instance f ie ld
5

6 extent void append(Component c, Component p) {
7 these.add(new Parent(c, p));
8 foreach (x isElementOf these.transitiveClosure().select(c_p:
9 c_p.child == c).parent)

10 { x.total = x.total + 1; }
11 }}
12

13 // A Composite relationship instance owns i ts tree Parent extent
14 relationship Composite participants (Component root, owned Extent<Parent>tree) {
15

16 extent void createComposite(Component c)
17 { these.add(new Composite(c, new owned Extent<Parent>())); }
18

19 void appendComponent(Component c, Component p)
20 { this.tree.append(c, p);}
21

22 void appendSubComposite(query Set<Parent> c, Component p) {
23 foreach (c_p isElementOf c.select(x: x.parent == p)) {
24 this.appendComponent(c_p.child, c_p.parent);
25 this.appendSubComposite(c.select(x: x.child isElementOf
26 c.transitiveClosure().select(y: y.parent == c_p.child).child),
27 c_p.child);
28 }}
29

30 void appendComposite(Composite c, Component p) {
31 this.appendComponent(c.root, p);
32 this.appendSubComposite(c.tree, c.root);
33 }}

Fig. 2. Relationship-based implementation of the Composite pattern in Rumer

Member Interposition. Relationships (like entities) can declare instance
members (i.e., instance fields and instance methods). For example, relationship
Parent declares an instance field total (line 4 in Fig. 2). Unlike entity in-
stance members, relationship instance members can either be associated with
the relationship instance or with one of the relationship’s participant instances.
The latter is achieved using the Rumer language mechanism member interposi-
tion [20, 25]. Member interposition allows a participant instance of a relation-
ship instance to be “decorated” with additional fields and methods. Interposed
relationship members are declared using the ’>’ sign, which precedes the role
identifier of the participant into which the member is interposed. In the exam-
ple, the field total is interposed into the Component entity instance that acts
as a parent in a Parent relationship instance. The field total is conceptually
equivalent to the total field of the SAVCBS 2008 challenge problem (line 3 in
Fig. 1(b)) as it allows a parent component to store the number of all children
components it is directly or indirectly related to. In Fig. 3(a), the interposed re-
lationship instance field total is displayed in the light gray arc that is attached
to the Component entity instance to which the relationship instance refers by
the parent reference. A non-interposed relationship instance field, on the other
hand, would be displayed in the light gray ellipse representing the relationship
instance. Like non-interposed relationship instance fields, interposed relationship

364 S. Balzer and T.R. Gross

child

parentparent

child

Parent Parent

Com-
ponent

Parent Parent
Parent

Com-
ponent

Com-
ponent

parent parent
parent

child child child

Com-
ponent

(a)

Legend:

entity instance
(i.e., object)

relationship instance
with references to
participant instances

interposed relationship
instance member
(used in Fig. 4)

entity or relationship
extent (used in Fig. 4)

entity instance “shadow”
(for illustration purposes
only, used in Fig. 4)

(b)

Com-
ponent

total: 3

Com-
ponent

total: 5

Fig. 3. (a) Schematic illustration of the Rumer program heap for the Parent relation-
ship declared in Fig. 2. (b) Legend for Fig. 3(a) and Fig. 4.

instance fields are fully encapsulated in the relationship that declares the field.
As a result, interposed relationship instance fields are only accessible from in-
stances of the declaring relationship but not from the participant instances into
which the fields are interposed.

Nested Relationship Declaration and Extent Ownership. The decla-
ration of the relationship Composite illustrates that relationships can have
other relationships as participants. A Composite relationship instance relates
a Component entity instance to an extent of the Parent relationship. Every
Rumer entity or relationship declaration T has a corresponding extent type
Extent〈T〉. An instance of an entity or relationship extent comprises a set of
entity or relationship instances, respectively. Extents are explicitly instanti-
ated as well as populated and depopulated with instances by the programmer.
For example, a Parent extent is instantiated on line 17 in Fig. 2 (new owned

Extent<Parent>()) and populated by invoking the built-in add() method on
lines 7 and 17 in Fig. 2. The keyword owned in the participants clause estab-
lishes ownership of a Composite instance of the participating Parent extent. The
ownership declaration requires the Parent extent to be instantiated and popu-
lated within the relationship and not to escape the relationship. As a result, the
Composite instance becomes the unique owner of its associated Parent extent.

Figure 4 shows an extended version of the Rumer heap snapshot shown in
Fig. 3 and displays all instances of the types declared in Fig. 2. The fig-
ure represents extents by rectangular boxes. The heap snapshot consists of
one Composite extent, two Parent extents, and one Component extent. Each

Verifying Multi-object Invariants with Relationships 365

extent comprises a number of instances. For example, the Composite extent
comprises two Composite relationship instances, and the Component extent
comprises four Component entity instances. Component instances can partici-
pate in the Composite relationship as well as in the Parent relationship. To keep
the graphical layout well-arranged, Fig. 4 uses “shadow” instances. A shadow
instance is depicted by a dotted circle and is a graphical copy of an actual in-
stance to which it is connected by a dotted line. Each Composite relationship
instance relates a Component entity instance to a Parent extent. The former is
referred to by the role identifier root and the latter by the role identifier tree.
In a relationship-based implementation a Composite is thus represented by a
tuple that consists of a root component and a set of hierarchically structured
components that represent the tree rooted at the root component. The tree

of a composite may denote the empty set (if the composite only consists of one
(leaf) component). The dotted line between a composite’s root component and
the component at the top of the composite’s tree Parent extent indicate that
the two components are indeed the same. The two dotted lines converging in
the third Component instance in the Component extent illustrate that Parent

instances of different extents can share Component instances. The sharing of
Component instances among different Parent extents does not compromise the
ownership declared for Composite. The ownership only encompasses a Parent

extent but not the participating Component entity instances. This property
distinguishes extent ownership from “traditional” ownership established by own-
ership types [30, 31] and Universe Types [5, 32] and distinguishes the Rumer Com-
posite implementation from one based on the ownership technique [5, 9].

Instance and Extent Members. To populate and depopulate their extents,
entities and relationships declare extent methods. An extent method has an
implicit target, which denotes the extent on which the method is called. The
keyword these refers to the implicit target extent. Extent methods are dis-
tinguished by the extent keyword, which precedes the method’s return type
declaration. The Composite pattern implementation in Fig. 2 declares the re-
lationship extent methods append() and createComposite(). The methods
appendComponent(), appendSubComposite(), and appendComposite() are
non-interposed relationship instance methods. In addition to extent methods,
Rumer supports the declaration of extent fields (not used in Fig. 2). An extent
field denotes the state of a whole extent, as opposed to an instance field, which
denotes the state of an individual entity or relationship instance comprised in
an extent.

Queries. Rumer provides query expressions (similar to LINQ heap queries [33])
to allow access to the instances contained in an extent. For example, method
append() declares a query expression on line 8 (see Fig. 2) that makes use of
the built-in query operators transitiveClosure() and select(). A query ex-
pression evaluates to a set that is constructed by invoking a query operator on a
target extent or set. Whereas extents are explicitly instantiated and populated by
programmers, sets can only be generated by querying extents or sets. In the ex-
ample, the transitiveClosure() operator is invoked on the receiver extent of

366 S. Balzer and T.R. Gross

root tree

child

parentparent

child

Parent Parent

Com-
ponent

total: 2

Com-
ponent

Com-
ponent

Com-
ponent

root tree

parent

child

Parent

Com-
ponent

total: 1

Parent extent

Com-
ponent

Com-
ponent

Parent extent

Composite Composite

Composite extent

Com-
ponent

Com-
ponent

Com-
ponent

Com-
ponent

Component extent

Fig. 4. Schematic illustration of the Rumer program heap for the implementation of
the Composite pattern in Fig. 2 (see legend in Fig. 3(b))

the method append() and the select() operator is invoked on the set returned
by the transitiveClosure() operator. The keyword these refers to the cur-
rent receiver extent of an extent method invocation. The transitiveClosure()
operator returns the transitive closure of its target set and the select() opera-
tor returns the subset of its target set that contains all the elements that satisfy
the specified selection criterion. Like LINQ queries, the select() operator lever-
ages lambda expressions to specify its selection criterion (i.e., c p: c p.child

== c). As opposed to LINQ queries, Rumer queries are side-effect free. Side-effect
freedom guarantees that the target sets of query operators are not altered in
the course of the query evaluation and that query expressions become predicates
over their target sets.

Implementation Details. Next we provide a brief overview of the individual
method declarations in Fig. 2. These explanations are helpful to understand the
details of the Composite pattern implementation in Rumer, however, are not a
prerequisite to understanding the remainder of this paper. The impatient reader
may continue with Sect. 3.2 and refer to this section as needed.

The extent method append() of relationship Parent appends the argument
component c as child of the argument component p. To this end, the method
instantiates a new Parent relationship instance with references to the compo-
nents c and p and adds the new instance to the receiver extent of the method
(line 7). The method add() is a language built-in method that adds the argu-
ment instance to the extent on which the method is invoked. The loop on line 8
increments the total field of all transitive parent components of the child com-
ponent c. The loop header declaration uses built-in query operators, as discussed
in the previous section.

Verifying Multi-object Invariants with Relationships 367

The extent method createComposite() of relationship Composite instanti-
ates a new Composite relationship instance and adds it to the current receiver
extent of the method. The new instance has the component c as a root partic-
ipant and an empty Parent extent as a tree participant.

The instance method appendComponent() of relationship Composite invokes
the extent method append() with the argument components c and p on the
current receiver relationship instance’s tree extent. As a result, the component
c is appended as a child of the component p in the composite’s tree extent.

The instance method appendSubComposite() of relationship Composite ap-
pends the sub-composite denoted by the query expression c to the target compos-
ite as a child of component p. The method is implemented recursively to append
the sub-composite in a depth-first traversal fashion. In each recursive invocation,
one child component of the sub-composite is appended to its corresponding par-
ent component in the target composite’s tree extent. Recursion stops whenever
the sub-composite c denotes the empty set. This is the case whenever a leaf
component has been inserted in the preceding recursive invocation.

The instance method appendComposite() of relationship Composite ap-
pends the composite c to the target composite as a child of component p. The
method first appends the root component of composite c to the target compos-
ite as a child of p and then invokes the method appendSubComposite() on the
target composite to append the sub-composite rooted at c’s root component as
a child of the previously inserted root component.

3.2 Assertion Language

The Rumer assertion language includes method preconditions and postconditions,
assert statements, and invariants. Assertions can range over all abstractions
available in the Rumer programming language. Invariants, in particular, can be
declared both for type instances and type extents, giving rise to the following
four invariant categories1:

– Entity instance invariant: Property that must hold for each entity in-
stance of the entity that declares the invariant.

– Entity extent invariant: Property that must hold for each extent instance
of the entity that declares the invariant.

– Relationship instance invariant: Property that must hold for each rela-
tionship instance of the relationship that declares the invariant.

– Relationship extent invariant: Property that must hold for each extent
instance of the relationship that declares the invariant.

Figure 5 lists the invariant declarations for the Composite pattern implemen-
tation in Fig. 2. The declaration consists of a relationship extent invariant for
relationship Parent (line 3) and a relationship instance invariant for relationship
Composite (line 12). Extent invariants are distinguished from instance invari-
ants by the keyword extent. All invariant declarations in Fig. 5 adhere to the
admissibility criteria defined in Sect. 4.2.
1 These invariant categories refine the categories introduced in earlier work [20]

368 S. Balzer and T.R. Gross

1 relationship Parent participants (Component child, Component parent) {
2 ... // See Fig . 2
3 extent invariant
4 these.isPartialFunction() &&
5 these.transitiveClosure().isIrreflexive() &&
6 forAll(p isElementOf these.parent: p.total ==
7 these.transitiveClosure().select(c_p: c_p.parent == p).count());
8 }
9

10 relationship Composite participants (Component root, owned Extent<Parent>tree) {
11 ... // See Fig . 2
12 invariant
13 !(this.root isElementOf this.tree.child) &&
14 (!this.tree.isEmpty() => this.root isElementOf this.tree.parent) &&
15 this.tree.child == this.tree.transitiveClosure().select(c_p: c_p.parent ==
16 this.root).child;
17 }

Fig. 5. Invariant declarations for the Composite program in Fig. 2. See method pre-
conditions and postconditions in Appendix A.

The extent invariant of relationship Parent leverages Rumer queries (see
Sect. 3.1) and guarantees the following properties: (i) that every child com-
ponent is related to at most one parent component (line 4), (ii) that the graph
described by the Parent relationship is acyclic (line 5), and (iii) that the value of
a parent component’s total field is equal to the number of children components
to which the parent component is transitively related (line 6). Property (iii)
satisfies the invariant of the SAVCBS 2008 challenge problem regarding a com-
posite’s total field. Properties (i) and (ii) guarantee that the graph described
by a Parent extent forms a forest of trees.

The instance invariant of relationship Composite restricts a composite’s
Parent extent from a forest of trees to a tree by enforcing the following proper-
ties: (i) that a composite’s root component never appears as a child component
in the graph described by the Parent extent (line 13), (ii) that a composite’s
root component appears as a parent component in the graph described by the
Parent extent unless the graph is empty (line 14), and (iii) that a compos-
ite’s root component is the parent component of all children components of the
graph described by the Parent extent (line 15). These properties guarantee that
a composite has a unique root and that a composite’s root component is the
same as the one at the top of a composite’s tree. The heap snapshot shown in
Fig. 4 represents a valid instantiation of the Composite pattern specification of
Fig. 2 and Fig. 5. The shown Composite instances have unique roots and form
trees. Note that the fact that different composites may share components (as
indicated by the third shadow component in the Component extent) does not
compromise the extent invariant of Parent. An extent invariant must hold for
each extent instance but not for the union of all extent instances.

To guarantee the invariants declared in Fig. 5, the methods of the Compos-
ite pattern implementation (see Fig. 2) define preconditions and postconditions.
The complete list of preconditions and postconditions for all methods is given
in Appendix A. In the following, we highlight those preconditions and postcon-
ditions that are particularly interesting.

Verifying Multi-object Invariants with Relationships 369

By appending the argument component c as child of the argument component
p, method append() of relationship Parent may compromise the extent invari-
ant of Parent. To prevent introducing cycles and relating a child component to
several parent components, the method establishes the following precondition:
c != p && !(c isElementOf these.child union these.parent)

Furthermore, the method updates the total field of all transitive parent com-
ponents of the child component c and thus ensures the following postcondition:
forAll(x isElementOf these.transitiveClosure().select(c_p: c_p.child == c).parent:

x.total == old(x.total) + 1)

Method appendComposite() of relationship Composite appends the argument
composite c to the target composite as a child of the argument component
p. To prevent introducing cycles in the altered target composite, the method
establishes the following precondition:
p != c.root && !(p isElementOf c.tree.child union c.tree.parent) &&
(this.tree.isEmpty() => p == this.root) &&
(!this.tree.isEmpty() => p isElementOf this.tree.child union this.tree.parent) &&
!(c.root isElementOf this.tree.child union this.tree.parent) &&
((this.tree.child union this.tree.parent) intersection
(c.tree.child union c.tree.parent)).isEmpty();

The above precondition would prevent us from appending the left compos-
ite instance of Fig. 4 to the right composite instance, or vice versa, since the
last conjunct of the precondition could not be satisfied. The instance method
appendComposite() invokes the instance method appendSubComposite() of
relationship Composite for the actual insertion of the sub-tree rooted at c’s root
component. To guarantee that the sub-tree c passed as argument indeed forms
a tree with the root component p, method appendSubComposite() establishes
the following precondition:
!(p isElementOf c.child) &&
(!c.isEmpty() => p isElementOf c.parent) &&
(c.child == c.transitiveClosure().select(c_p: c_p.parent == p).child) &&

The above precondition is equivalent to a composite’s invariant. The postcondi-
tion of appendSubComposite()
this.tree == old(this.tree) union c;

precisely captures the “invariant” of the recursive implementation of the method
that inserts the sub-tree c in a depth-first traversal fashion.

4 The Matryoshka Principle

The modularization discipline embodied in the Rumer programming language fol-
lows the “Matryoshka Principle”. We use the metaphor of the Russian nesting
dolls to refer to the inherent stratification of programming language abstractions
in Rumer. Based on this stratification, the principle defines admissibility crite-
ria that stipulate restrictions on writes to locations, invariant declarations, and
method invocations. We first introduce the stratification of the programming
language abstractions. Then, we discuss the admissibility criteria.

370 S. Balzer and T.R. Gross

4.1 Stratification

Figure 6 provides a schematic illustration of how programming language abstrac-
tions are stratified in Rumer. The figure shows an extended version of the Com-
posite heap snapshot shown in Fig. 4 and depicts each programmer-defined type
of the Composite program in addition to the extents and entity and relationship
instances shown in Fig. 4. The stratification of the Rumer language abstractions
is determined by the participants clauses of relationship declarations. Since
only relationships can refer to their participants, but the participants not to
their relationship, the participants clauses give rise to a strict partial order
between relationships and participants. Figure 6 represents the resulting ordering
of relationships and participants by placing relationships (relatively) above their
participants. As indicated by the vertical arrows, the ordering makes a relation-
ship become an upper layer of its participants, and conversely, the participants
become a lower layer of their relationships.

Composite

Parent

Component

root tree

childparent

root tree root tree

parent
child child

parent child

lower

upper

lower

upper

Fig. 6. Schematic illustration of the stratification of Rumer language abstractions
(based on Fig. 4)

4.2 Admissibility Criteria

The admissibility criteria rely on the stratification of language abstractions
shown in Fig. 6. The criteria stipulate restrictions that define (i) which meth-
ods are allowed to write to which locations, (ii) which invariants are allowed to
depend on which locations, and (iii) on which instances a currently executing
method can invoke another method.

In Rumer, a location can be an instance field, an extent field, or a whole
extent. Table 1 lists all possible Rumer locations and indicates for each location
by what program statement it can be written to. The admissibility criteria are
formulated relative to the set of locations that can be reached by an instance.
This set of locations is determined by the participants clauses of relationship

Verifying Multi-object Invariants with Relationships 371

declarations which indicate which other instances a particular instance may
reach. The general direction of “reachability” between instances conforms to
the ordering of relationships and participants indicated by the arrows in Fig. 6.
This ordering allows a relationship extent to reach itself and any of its partic-
ipating extents and allows a relationship instance to reach itself and any of its
participating instances. Orthogonal to the direction of reachability determined
by participants clauses, an extent can reach any of the instances it comprises
by formulating an appropriate query expression.

Table 1. Rumer locations and program statements that can write to them

Location Write

Entity

instance field Assignment to field.

extent field Assignment to field.

extent Invocation of add() or remove() on extent.

Relationship

interposed instance field Assignment to field.

non-interposed
instance field Assignment to field.

extent field Assignment to field.

extent Invocation of add() or remove() on extent.

Admissible Writes. To allow for modular verification, the Matryoshka Prin-
ciple requires that a method writes only to a location that is reachable from
the current receiver and that is declared by the same type as the method. This
requirement guarantees that all Rumer locations are encapsulated in the types
that declare the locations.

The assignment to the interposed instance field total of relationship Parent

on line 10 in Fig. 2, for example, is admissible since x refers to a parent compo-
nent of a Parent relationship instance residing in these and since the assignment
occurs in a method declared by the same relationship (i.e., Parent) as the field
total. The admissibility of the assignment also relies on the fact that interposed
instance fields are treated as fields of the relationship instance even though they
describe properties of relationship participants. In previous work [25], we have
shown how member interposition facilitates modular reasoning over shared state
at the example of the Observer pattern. The invocations of the built-in method
add() on line 7 and line 17 in Fig. 2 represent admissible writes as well since
they write to the current receiver extent and since they occur in extent methods
of the types that declare the current receiver extent.

Admissible Invariants. To allow for modular verification, the Matryoshka
Principle requires that an invariant depends only on those locations (a) that are
encapsulated in the type that declares the invariant, or alternatively, on those
locations (b) that are declared by a type that is owned by the type that declares
the invariant.

Both invariant declarations in Fig. 5 are admissible. The relationship extent
invariant of Parent depends on the current receiver Parent extent as well as
on Parent’s interposed relationship instance field total. These locations are

372 S. Balzer and T.R. Gross

encapsulated by the relationship Parent. The relationship instance invariant of
Composite is admissible due to a Composite’s instance ownership of its Parent
extent.

Admissible Method Invocations. To allow for a visible states semantics
and inductive reasoning, a verification technique must either be guaranteed that
call-backs do not occur or be in the position to statically identify those invo-
cations that may result in a call-back. Prohibiting call-backs in general is not
feasible since it would also prevent direct call-backs. A direct call-back occurs
if an executing method invokes a method on the same receiver instance as the
one of the executing method. Recursive method invocations are special instances
of direct call-backs. Prohibiting recursive method invocations would be too lim-
iting a restriction. Moreover, direct call-backs can be statically identified and
guarded with the proof obligation to re-establish the invariant of the current
receiver instance before the call. Transitive call-backs, on the other hand, can-
not be statically determined but can only be over-approximated. A transitive
call-back occurs if an executing method invokes a method on a different receiver
instance as the one of the executing method and if the invoked method or any of
the methods it transitively invokes calls back into the original receiver instance.
In a pure object-oriented setting, call-backs are essential for re-establishing a
multi-object invariant. In a relationship-based language, however, multi-object
invariants can be expressed at the right level of abstraction, relieving the need
of a call-back to re-establish a multi-object invariant.

To guarantee a visible states semantics for invariants, the Matryoshka Princi-
ple requires that a currently executing method can only invoke a method (a) on
the same receiver instance as the currently executing method or (b) on a receiver
instance that is of a lower type than the declaring type of the currently execut-
ing method. These requirements guarantee that method invocations are either
recursive, propagate downwards, or are dispatched over an instance contained
in an extent. As a result, transitive call-backs are prevented and a visible state
semantics for invariants can be maintained.

All method invocations occurring in the Composite pattern implementation in
Fig. 2 are admissible since they either constitute direct call-backs or invocations
on a receiver instance that resides in a lower stratification layer or in the extent
of the calling method.

5 Verification Technique

This section introduces the visible states verification technique for Rumer. Sec-
tion 5.1 briefly introduces the unified framework for visible states verification
techniques [34], which we use for presenting our technique. Section 5.2 details
the proof obligations of our technique. We proved our verification technique to
be sound in [35].

Verifying Multi-object Invariants with Relationships 373

5.1 Background

To describe our verification technique, we use the unified framework2 for vis-
ible states verification techniques introduced by Drossopoulou et al. [34]. The
framework captures a verification technique in terms of seven parameters. These
parameters are:

X invariants expected to hold in initial and final states of a method execution
(i.e., visible states).

V invariants vulnerable to a method execution, i.e., which may be broken while
the method executes.

B invariants that must be proven to hold before a method call.

E invariants that must be proven to hold in the final state (i.e., at the end) of
a method execution.

U permitted receivers of field updates.

D invariants that may depend on a given heap location (and indirectly locations
on which an invariant may depend).

C permitted receivers of method calls.

Figure 7 illustrates the meaning of the framework parameters for the method
appendComponent() on line 19 in Fig. 2. As demonstrated by the figure, X can
be assumed to hold in the initial and final states of method appendComponent().
In between these visible states only X \V can be assumed to hold since some in-
variants may be temporarily broken by the execution of the method. For field up-
dates and method calls, the receiver instances must be checked to be in U and C,
respectively. For example, before the invocation of method append() on the re-
ceiver this.tree it must be checked that the instance referred to by this.tree

is in C. In the pre-state of a method call (i.e., append()), B must be proven, and
in the final state of the method execution (i.e., appendComponent()), E must
be proven. For assignments (not shown in Fig. 7), lastly, it must be checked that
at most the invariants in D are influenced.

void appendComponent(Component c,Component p) {

 this.tree.append(c, p);

}

assume X

X \ V
holds

check this.tree in C
prove B

prove E
assume X

Fig. 7. Illustration of the verification technique framework parameters (based on [34])

2 The framework has been introduced to capture visible states verification techniques
for object invariants and to prove their soundness. Like Summers et al. [36], we use
the framework for illustration purposes only.

374 S. Balzer and T.R. Gross

5.2 Proof Obligations

Our verification technique for Rumer is a visible states verification technique [9].
It supports the complete assertion language discussed in Sect. 3.2. The technique
is modular and allows entities and relationships to be verified independently from
each other.

In this section, we describe our verification technique in terms of the seven
parameters of the unified framework introduced previously. Since the parameters
U, D, and C are defined by the admissibility criteria introduced in Sect. 4.2, this
section defines only the remaining parameters X, V, B, and E. We refer to the
parameters X, V, B, and E as the invariant parameters since they specify sets
of invariants, and to the parameters U, D, and C as the admissibility parameters
since they are captured by the admissibility criteria of the Matryoshka Princi-
ple. The verification technique determines the invariant parameters for all kinds
of programmer-definable methods (i.e., entity instance method, entity extent
method, interposed relationship instance method, non-interposed relationship
instance method, and relationship extent method) as well as for constructors
and the non-pure built-in methods add() and remove() (see Sect. 3.1). Built-in
query operators (see Sect. 3.1) do not need to be considered by the verification
technique since they are side-effect free.

Table 2 and Table 3 specify the invariant parameters for programmer-
definable methods. Although there are variations between the invariant
parameters for the different kinds of methods, there is a general schema that
can be observed: The invariant parameters V and X are determined by the
admissibility parameters U (“Admissible Writes”) and D (“Admissible Invari-
ants”) and by the stratification of the programming language abstractions,
respectively. The admissibility parameter U guarantees that only the locations
of the current receiver of a method can be written to. This admissibility
parameter guarantees in turn that, while a method executes, at most the
locations to which the method is allowed to write can change. The set of
“vulnerable” locations indirectly determines the set of invariants V that are
vulnerable to a method: it is the set of invariants that may depend on those
locations that may change during the execution of a method. The set of
locations that an invariant may depend on is determined by the admissibility
parameter D. This set of locations is different for an invariant that is based on
ownership compared to an invariant that is not based on ownership. In case of
an ownership-based invariant, the set of locations that an invariant is allowed to
depend on includes the locations of those lower-level types for which ownership
is declared. In case of an invariant that is not based on ownership, the set of
locations that an invariant is allowed to depend on includes only the locations
of the invariant declaring type. The set of invariants X that are expected to
hold in the visible states of a method, on the other hand, is determined by
the parameter V and the stratification of the Rumer programming language.
Irrespective of whether ownership is declared, a method can always expect
all invariants of lower-level types to hold in its visible states. If the declaring type

Verifying Multi-object Invariants with Relationships 375

Table 2. Invariant parameters X, V, B, and E for entity instance method, entity extent
methods, interposed relationship instance methods, and relationship extent methods

Method Parameter

Entity instance X : Entity instance invariant of current receiver. Invariants of all types for
which the entity is not a transitive participant.

V : Entity instance invariant of current receiver. Entity extent invariant
of current receiver’s extent. Ownership-based invariants of upper-level
types.

B : Entity instance invariant of current receiver if direct call-back.

E : Entity instance invariant of current receiver. Preservation of entity extent
invariant of current receiver’s extent.

Entity extent X : All instance and extent invariants of the entity. Invariants of all types for
which the entity is not a transitive participant.

V : Entity instance invariants of all instances in current receiver extent. En-
tity extent invariant of current receiver extent. Ownership-based invari-
ants of upper-level types.

B : Entity instance invariants of all instances in current receiver extent and
entity extent invariant of current receiver extent if direct call-back. Entity
instance invariant of callee if entity instance method is called.

E : Entity instance invariants of all instances in current receiver extent. En-
tity extent invariant of current receiver extent.

Interposed rela-
tionship instance

X : Invariants of all types for which the relationship is not a transitive par-
ticipant.

V : Relationship instance invariants of all relationship instances that have
current receiver as participant. Relationship extent invariant of current
receiver’s extent. Ownership-based invariants of upper-level types.

B : -

E : Preservation of relationship instance invariants of all relationship in-
stances that have current receiver as participant. Preservation of rela-
tionship extent invariant of current receiver’s extent.

Relationship
extent

X : All instance and extent invariants of the relationship. Invariants of all
types for which the relationship is not a transitive participant.

V : Relationship instance invariants of all instances in current receiver extent.
Relationship extent invariant of current receiver extent. Ownership-based
invariants of upper-level types.

B : Relationship instance invariants of all instances in current receiver ex-
tent and relationship extent invariant of current receiver extent if direct
call-back. Relationship instance invariant of callee if relationship instance
method is called.

E : Relationship instance invariants of all instances in current receiver extent.
Relationship extent invariant of current receiver extent.

of a method is owned by an upper-level type, the execution of the method may
compromise any ownership-based invariant of the owning type. However, if the
declaring type of a method is not owned by an upper-level type, the execution
of the method can only compromise invariants of its declaring type.

We illustrate the verification technique based on the Rumer implementation of
the Composite pattern (see Fig. 2 and Fig. 5). Method append() of relationship
Parent is a relationship extent method. According to Table 2, the parameter V

for a relationship extent method comprises the relationship instance invariants of
all relationship instances in the current receiver extent as well as the relationship
extent invariant of the current receiver extent. Since relationship Parent only
declares an extent invariant, the parameter V for method append() comprises
the relationship extent invariant declared on line 3 in Fig. 5. This is also the
invariant that the method must prove to hold in the final state of the method

376 S. Balzer and T.R. Gross

Table 3. Invariant parameters X, V, B, and E for non-interposed relationship instance
methods

Invariant Parameter

Benign X : Relationship instance invariant of current receiver. Invariants of all types for which
the relationship is not a transitive participant.

V : Relationship instance invariant of current receiver. Relationship extent invariant of
current receiver’s extent. Ownership-based invariants of upper-level types.

B : Relationship instance invariant of current receiver if direct call-back.

E : Relationship instance invariant of current receiver. Preservation of relationship ex-
tent invariant of current receiver’s extent.

Malign X : Relationship instance invariant of current receiver. Invariants of all types for which
the relationship is not a transitive participant.

V : Relationship instance invariants of all relationship instances that have current re-
ceiver’s participant(s) as participant(s). Relationship extent invariant of current
receiver’s extent. Ownership-based invariants of upper-level types.

B : Relationship instance invariant of current receiver if direct call-back.

E : Relationship instance invariant of current receiver. Preservation of relationship in-
stance invariants of all relationship instances that have current receiver’s partic-
ipant(s) as participant(s). Preservation of relationship extent invariant of current
receiver’s extent.

(parameter E). Given the preconditions of the method (see Appendix A) and
the fact that the method updates the total field appropriately, the method is
able to prove the invariant. To sustain a visible states semantics, Table 2 fur-
ther requires that any method invocations on the current receiver extent are
guarded with the proof obligation to re-establish the relationship extent invari-
ant before the invocation. Method append() invokes the built-in add() method
on line 7. The built-in methods add() and remove() (not shown in Tables 2
and 3) are treated differently than user-defined methods. Since no call-backs can
result from built-in methods, callers do not have to re-establish their invariants
before invoking a built-in method. As a result, method append() can invoke
method add() without re-establishing its relationship extent invariant. As indi-
cated by Table 2, method append() can expect the following invariants to hold
in its visible states (parameter X): all instance invariants and extent invariants
of Component instances and Component extents, respectively, as well as all in-
stance invariants and extent invariants of Parent instances and Parent extents,
respectively. However, append() cannot expect the invariants of its upper-level
type Composite to hold in its visible states.

Relationship Composite declares an extent method as well as non-interposed
instance methods. The reasoning regarding the verification of the extent method
is analogous to the one employed for method append() of relationship Parent.
We highlight the important aspects of verifying non-interposed relationship in-
stance methods. The invariant parameters for non-interposed relationship in-
stance methods are defined in Table 3. The table distinguishes two kinds of
non-interposed relationship instance methods: malign versus bening. The differ-
entiation is due to the occurrence of interposed relationship instance fields in a
relationship instance invariant declaration. A relationship instance invariant may
relate interposed fields to non-interposed fields or relate interposed fields of dif-
ferent participants (category “malign” in Table 3). Alternatively, a relationship

Verifying Multi-object Invariants with Relationships 377

instance invariant may only depend on non-interposed fields (category “benign”
in Table 3). The relationship instance invariant of relationship Composite is
a benign invariant since there are no interposed fields declared by the rela-
tionship. The set of vulnerable invariants V for an non-interposed relationship
instance method of Composite consists only of Composite’ instance invariant.
If Composite declared an extent invariant, that invariant would be vulnerable
as well as the invariant may depend on instance fields. In its final state, a non-
interposed relationship instance method must prove that the instance invariant
of its current receiver holds and that it preserves the relationship extent invariant
of its current receiver’s extent. The proof obligation of “invariant preservation”
has been introduced in the context of object and class invariants in [11] and
[36], respectively. It represents a weaker proof obligation as it does not require a
method to assert that an invariant holds but to show that it does not break the
invariant (provided that it held initially). Both for entity instance methods and
relationship instance methods our verification technique requires the method to
prove preservation of the extent invariant. This proof obligation accounts for the
fact that an instance method may break an extent invariant, but may not be in
the position to re-establish that invariant. If an instance method cannot show
to preserve an extent invariant, its corresponding code must be captured in an
extent method.

The invariant parameters for malign non-interposed relationship instance
methods account for the fact that modifications of interposed relationship in-
stance fields may compromise not only the invariant of the current receiver
instance but also the invariants of all those relationship instances that have
participants in common with the current receiver instance. This can be the case
whenever an invariant relates an interposed relationship instance field with an
interposed relationship instance field of another participant or relates an inter-
posed relationship instance field with a non-interposed relationship instance field.
The invariant parameters for such malign invariants are slightly different. Most
importantly, their set of vulnerable invariants V contains also the invariants of
all the relationship instances that have participants in common with the current
receiver instance. These invariants are also the ones that must be shown to be
preserved in the final state of the non-interposed relationship instance method.

6 Discussion and Related Work

Our work builds on the visible states verification techniques developed for object
invariants [5, 9, 11, 12] and introduces a verification technique for a relationship-
based language that supports invariants for entities and relationships both at the
instance and the extent level. The ownership technique [5, 9] is the visible states
verification technique for object invariants that is most closely related to our
work. Our verification technique resembles the ownership technique in two as-
pects: (i) it leverages heap stratification to prevent transitive call-backs and (ii)
it facilitates modular reasoning about multi-object invariants. However, whereas
the ownership technique is only composed of a single “ingredient” (i.e., Universe

378 S. Balzer and T.R. Gross

Types [5, 32]), our verification technique unifies three orthogonal “ingredients”
that can be combined in multiple ways. This customization of ingredients allows
a programmer to “trade” imposed restrictions and supported guarantees.

The basic ingredient of our verification technique is the Matryoshka Principle.
It enforces a stratification of language abstractions and guarantees the absence
of transitive call-backs. As opposed to the ownership technique, the absence of
transitive call-backs does not come at the price of a single ownership restriction!
In a Rumer program conforming to the Matryoshka Principle, a participant of a
relationship may be a participant of several relationships.

The Matryoshka Principle can be overlaid with member interposition to facil-
itate the modular verification of multi-object invariants. Similarly to the own-
ership technique, member interposition mitigates the adverse affect of aliases to
shared state, but in a less restrictive way. As opposed to the ownership tech-
nique, member interposition does not prevent an instance from participating in
other relationships but only prevents the interposed field from being accessi-
ble outside the relationship. Member interposition entails furthermore a slightly
different semantics in terms of proof obligations than the ownership technique:
Whereas ownership allows the declaration of invariant-compromising methods
in owned objects as long as the owner does not invoke these methods, mem-
ber interposition prevents the declaration of a method in a relationship that
compromises the relationship invariant.

The Matryoshka Principle can also be overlaid with extent ownership to facili-
tate the modular verification of multi-object invariants. Extent ownership allows
an owning type to impose an invariant on the owned extent. Similarly to the
ownership technique, extent ownership enforces single ownership of the owned
extent. However, as opposed to the ownership technique, extent ownership only
encompasses an extent but not any (transitive) participant instances. As a result,
those (transitive) participant instances can be modified by an arbitrary instance,
including the extent owner. Extent ownership is thus more “lightweight” than
“traditional” ownership since it relies on the Matryoshka Principle to prevent
transitive call-backs.

The Matryoshka Principle can finally be overlaid both with member interpo-
sition and extent ownership. This setup was chosen for the Composite pattern. In
the Rumer implementation of the Composite pattern, member interposition facil-
itates the verification of the Parent invariant, which includes the SAVCBS 2008
challenge problem invariant regarding a composite’s total field. The implemen-
tation leverages extent ownership, on the other hand, to verify the Composite

invariant, which imposes a tree structure on a composite’s parent extent.
A number of techniques address the issue of object-oriented program verifi-

cation in the presence of shared mutable state by leveraging heap partitioning.
Parkinson and Bierman [15, 37, 38] introduce the ideas of separation logic [39]
to Java. An alternative expression of separation is used in works on dynamic
frames [40–42] where pure methods or ghost fields denote a set of locations. As-
sertions on the disjointness of such dynamic frames then facilitates heap-local
reasoning. Parkinson’s and Bierman’s abstract predicates bear resemblance with

Verifying Multi-object Invariants with Relationships 379

the invariants of our work. Similarly to a relationship invariant, an abstract
predicate imposes consistency conditions on the object structures in the heap.
However, abstract predicates do not entail an invariant semantics. This offers
some flexibility to the programmer who does not need to adhere to a discipline,
but sacrifices data type induction.

More distantly related is also the work on relationship-based programming
languages [16–24]. For a summary of other approaches to relationship-based pro-
gramming we refer to an earlier paper [20]. However, Rumer differs importantly
from other relationship-based programming languages by its inherent stratifica-
tion and by its support for Design-by-Contract-style assertions and invariants.

7 Conclusions

The verification of object-oriented programs remains a research issue. In this
paper we discuss how relationships facilitate the verification of programs with
multi-object invariants. Relationships impose a stratification of programming
abstractions and consequently allow for local reasoning about multi-object in-
variants so that a modular verification of multi-object invariants is possible. The
key concepts that allow for such local reasoning are (i) “member interposition”
— properties (or fields) of a relationship participant that belong logically to
the participant yet are encapsulated in the relationship instance, (ii) “extent
ownership” — lightweight ownership of a relationship instance of its participant
extent, and (iii) the Matryoshka Principle.

The“Matryoshka Principle” exploits the stratification layers of a program’s
abstractions and defines admissibility criteria for writes to locations, invariant
declarations, and method invocations. Programs that obey this principle can be
verified using the simple approach outlined here. The programming language
Rumer, which we use for illustration in this paper, adheres to this principle by
design. However, the principle is not tied to this particular programming lan-
guage. Programs in other programming languages can incorporate the principle
as well (and could then be verified using this approach), but the responsibility
to make the program obey the principle would fall either upon a programmer or
some program development tool.

This paper reports on the benefits of including relationships in a programming
language for program verification — as interest in tools and techniques to verify
programs increases, we expect the idea of “relationships” as a way to express
the interplay between objects to deserve serious consideration in mainstream
programming languages.

Acknowledgments. We are grateful to: Sophia Drossopoulou for discussions on
relationships and program verification; Gavin Bierman and Matthew Parkinson
for discussions on the “relationship” between relationships and abstract predi-
cates; Alexander J. Summers for exchange on the semantics of invariant preserva-
tion; James Noble for discussions on the “relationship” between extent ownership
and “traditional” ownership; Reto Conconi, Nicholas D. Matsakis, and Albert
Noll for their feedback; and the anonymous reviewers for their valuable comments.

380 S. Balzer and T.R. Gross

References

1. Hoare, C.: Proof of correctness of data representations. Acta Inf. 1(4), 271–281
(1972)

2. Meyer, B.: Object-Oriented Software Construction. Prentice-Hall, Englewood Cliffs
(1997)

3. Barnett, M., M. Leino, K.R., Schulte, W.: The spec# programming system: An
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

4. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral
interface specification language for Java. Technical Report 98-06-rev29, Iowa State
University (2006)

5. Müller, P.: Modular Specification and Verification of Object-Oriented Programs.
LNCS, vol. 2262. Springer, Heidelberg (2002)

6. Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Verification
of object-oriented programs with invariants. Leino, K 3(6), 27–56 (2004)

7. Leino, K.R. M., Müller, P.: Object invariants in dynamic contexts. In: Odersky, M.
(ed.) ECOOP 2004. LNCS, vol. 3086, pp. 491–515. Springer, Heidelberg (2004)

8. Barnett, M., Naumann, J.D.A.: Friends need a bit more: Maintaining invariants
over shared state. In: Kozen, D. (ed.) MPC 2004. LNCS, vol. 3125, pp. 54–84.
Springer, Heidelberg (2004)

9. Müller, P., Poetzsch-He ter, A., Leavens, G.T.: Modular invariants for layered ob-
ject structures. Sci. Comput. Program 62(3), 253–286 (2006)

10. Leino, K.R.M., Schulte, W.: Using history invariants to verify observers. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 80–94. Springer, Heidelberg
(2007)

11. Middelkoop, R., Huizing, C., Kuiper, R., Luit, E.J.: Invariants for non-hierarchical
object structures. Electr. Notes Theor. Comput. Sci. 195, 211–229 (2008)

12. Summers, A.J., Drossopoulou, S.: Considerate Reasoning and the Composite
Design Pattern. In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS,
vol. 5944, pp. 328–344. Springer, Heidelberg (2010)

13. Spitzen, J.M., Wegbreit, B.: The verification and synthesis of data structures. Acta
Inf. 4(2), 27–144 (1975)

14. Guttag, J.V.: Notes on type abstraction (version 2). IEEE Trans. Software
Eng. 6(1), 13–23 (1980)

15. Parkinson, M.J.: Class invariants: The end of the road? In: IWACO (2007)

16. Rumbaugh, J.: Relations as semantic constructs in an object-oriented language.
In: OOPSLA, vol. 481, pp. 466–481. ACM, New York (1987)

17. Albano, A., Ghelli, G., Orsini, R.: A relationship mechanism for a strongly typed
object-oriented database programming language. In: VLDB, pp. 565–575. Morgan
Kaufmann, San Francisco (1991)

18. Bierman, G.M., Wren, A.: First-class relationships in an object-oriented language.
In: Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 262–286. Springer, Hei-
delberg (2005)

19. Pearce, D.J., Noble, J.: Relationship aspects. In: AOSD, pp. 75–86. ACM, New
York (2006)

20. Balzer, S., Gross, T.R., Eugster, P.T.: A relational model of object collaborations
and its use in reasoning about relationships. In: Ernst, E. (ed.) ECOOP 2007.
LNCS, vol. 4609, pp. 323–346. Springer, Heidelberg (2007)

Verifying Multi-object Invariants with Relationships 381

21. Wren, A.: Relationships for Object-oriented Programming Languages. PhD thesis,
University of Cambridge (November 2007)

22. Østerbye, K.: Design of a class library for association relationships. In: LCSD
(2007)

23. Bodden, E., Shaikh, R., Hendren, L.: Relational aspects as tracematches. In:
AOSD, pp. 84–95. ACM, New York (2008)

24. Nelson, S., Pearce, D.J., Noble, J.: First class relationships for OO languages. In:
MPOOL (2008)

25. Balzer, S., Gross, T.R.: Modular reasoning about invariants over shared state with
interposed data members. In: PLPV, pp. 49–56. ACM, New York (2010)

26. Leavens, G.T., Leino, K.R.M., Müller, P.: Specification and verification challenges
for sequential object-oriented programs. Formal Asp. Comput. 19(2), 159–189
(2007)

27. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading (1995)

28. Bierhoff, K., Aldrich, J.: Permissions to specify the Composite design patterns. In:
SAVCBS, pp. 89–94 (2008)

29. Jacobs, B., Smans, J., Piessens, F.: Verifying the Composite pattern using separa-
tion logic. In: SAVCBS, pp. 83–88 (2008)

30. Noble, J., Vitek, J., Potter, J.: Flexible alias protection. In: Jul, E. (ed.) ECOOP
1998. LNCS, vol. 1445, pp. 158–185. Springer, Heidelberg (1998)

31. Clarke, D.G., Potter, J.M., Noble, J.: Ownership types for exible alias protection.
In: OOPSLA, pp. 48–64. ACM, New York (1998)

32. Dietl, W.: Universe Types Topology, Encapsulation, Genericity, and Tools. PhD
thesis, ETH Zurich, 18522 (2009)

33. Bierman, G.M., Meijer, E., Torgersen, M.: Lost in translation: Formalizing pro-
posed extensions to C#. In: OOPSLA, pp. 479–498. ACM, New York (2007)

34. Drossopoulou, S., Francalanza, A., Müller, P., Summers, A.: A Unified Framework
for Verification Techniques for Object Invariants. In: Vitek, J. (ed.) ECOOP 2008.
LNCS, vol. 5142, pp. 412–437. Springer, Heidelberg (2008)

35. Balzer, S.: A relationship-based programming language and its value for program
verification. Technical report, ETH Zurich (2011)

36. Summers, A.J., Drossopoulou, S., Müller, P.: Universe-type-based verification tech-
niques for mutable static fields and methods. JOT 8(4), 85–125 (2009)

37. Parkinson, M.J.: Local Reasoning for Java. PhD thesis, University of Cambridge
(2005)

38. Parkinson, M.J., Bierman, G.M.: Separation logic and abstraction. In: POPL, pp.
247–258. ACM, New York (2005)

39. O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about programs that
alter data structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS,
vol. 2142, pp. 1–19. Springer, Heidelberg (2001)

40. Kassios, I.T.: Dynamic frames: Support for framing, dependencies and sharing
without restrictions. In: Misra, J., Nipkow, T., Karakostas, G. (eds.) FM 2006.
LNCS, vol. 4085, pp. 268–283. Springer, Heidelberg (2006)

41. Banerjee, A., Naumann, D.A., Rosenberg, S.: Regional logic for local reasoning
about global invariants. In: Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp.
387–411. Springer, Heidelberg (2008)

42. Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames: Combining dynamic
frames and separation logic. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS,
vol. 5653, pp. 148–172. Springer, Heidelberg (2009)

382 S. Balzer and T.R. Gross

A Pre- and Postconditions for Composite Specification

Below table indicates, for every method declared in Fig. 2, its preconditions and
postconditions.

Precondition of Parent.append():

c != null && p != null && c != p &&

!(c isElementOf these.child union these.parent) &&

(!these.isEmpty() => p isElementOf these.child union these.parent);

Postcondition of Parent.append():

these.count() == old(these.count()) + 1 &&

these.select(c_p: c_p.child == c).count() == 1 &&

forAll(x isElementOf these.select(c_p: c_p.child == c): x.parent == p) &&

forAll(x isElementOf these.transitiveClosure().select(c_p: c_p.child == c).parent:

x.total == old(x.total) + 1);

Precondition of Composite.createComposite():

c != null;

Postcondition of Composite.createComposite():

these.count() == old(these.count()) + 1 &&

thereExists(x isElementOf these: x.root == c && x.tree.isEmpty());

Precondition of Composite.appendComponent():

c != null && p != null && c != p &&

(this.tree.isEmpty() => this.root == p) &&

(!this.tree.isEmpty() => p isElementOf this.tree.child union this.tree.parent &&

!(c isElementOf this.tree.child union this.tree.parent));

Postcondition of Composite.appendComponent():

this.tree.count() == old(this.tree.count()) + 1 &&

this.tree.select(c_p: c_p.child == c).count() == 1 &&

forAll(x isElementOf this.tree.select(c_p: c_p.child == c): x.parent == p);

Precondition of Composite.appendSubComposite():

p != null && !(p isElementOf c.child) &&

(!c.isEmpty() => p isElementOf c.parent) &&

(c.child == c.transitiveClosure().select(c_p: c_p.parent == p).child) &&

(this.tree.isEmpty() => this.root == p) &&

(!this.tree.isEmpty() => p isElementOf this.tree.child union this.tree.parent) &&

(c.child intersection (this.tree.child union this.tree.parent)).isEmpty();

Postcondition of Composite.appendSubComposite():

this.tree.count() == old(this.tree.count()) + c.count() &&

this.tree == old(this.tree) union c;

Precondition of Composite.appendComposite():

c != null && p != null &&

p != c.root && !(p isElementOf c.tree.child union c.tree.parent) &&

(this.tree.isEmpty() => p == this.root) &&

(!this.tree.isEmpty() => p isElementOf this.tree.child union this.tree.parent) &&

!(c.root isElementOf this.tree.child union this.tree.parent) &&

(!c.tree.isEmpty() =>

((this.tree.child union this.tree.parent) intersection (c.tree.child union c.tree.parent)).isEmpty();

Postcondition of Composite.appendComposite():

this.tree.count() == old(this.tree.count()) + 1 + c.tree.count() &&

this.tree == old(this.tree) union {(c.root, p)} union c.tree;

	Verifying Multi-object Invariants with Relationships
	Introduction
	Running Example
	First-Class Relationships
	Language Principles
	Assertion Language

	The Metapost
	Stratification
	Admissibility Criteria

	Verification Technique
	Background
	Proof Obligations

	Discussion and Related Work
	Conclusions
	References
	Pre- and Postconditions for Composite Specification

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

