A Relational Model of Object Collaborations
and Its Use in Reasoning About Relationships*

Stephanie Balzer!, Thomas R. Gross', and Patrick Eugster?

! Department of Computer Science, ETH Zurich
2 Department of Computer Science, Purdue University

Abstract. Understanding the collaborations that arise between the in-
stances of classes in object-oriented programs is important for the anal-
ysis, optimization, or modification of the program. Relationships have
been proposed as a programming language construct to enable an explicit
representation of these collaborations. This paper introduces a relational
model that allows the specification of systems composed of classes and
relationships. These specifications rely in particular on member interpo-
sition (facilitates the specification of relationship-dependent members of
classes) and on relationship invariants (facilitate the specification of the
consistency constraints imposed on object collaborations). The notion of
a mathematical relation is the basis for the model. Employing relations
as an abstraction of relationships, the specification of a system can be
formalized using discrete mathematics. The relational model allows thus
not only the specification of object collaborations but also provides a
foundation to reason about these collaborations in a rigorous fashion.

1 Introduction

The collaborations between objects are the key to understanding large object-
oriented programs. Software systems do not accomplish their tasks with a single
object in isolation, but only by employing a collection of objects — most likely
instances of different classes — that exchange messages [1]. Unfortunately, class-
based object-oriented programming languages do not provide sufficient means to
explicitly specify these collaborations. Today’s languages allow the description of
objects through the programming language abstraction of a class, yet they lack
a peer abstraction for object collaborations. Programmers must resort to the use
of references to indicate collaborations and thereby often hide the intent and,
at the same time, further complicate any analysis of a program since references
are a powerful, all encompassing programming construct.

Conceptual modeling languages, such as the Unified Modeling Language
(UML) [2] and the Entity-Relationship (ER) model [3], allow explicit representa-
tion of object collaborations through associations and relationships, respectively.

* This work was partially supported by the National Competence Center in Research
on Mobile Information and Communication Systems (NCCR-MICS), a center sup-
ported by the Swiss National Science Foundation under grant number 5005-67322.

E. Ernst (Ed.): ECOOP 2007, LNCS 4609, pp. 323 2007.
© Springer-Verlag Berlin Heidelberg 2007

324 S. Balzer, T.R. Gross, and P. Eugster

The benefits of explicit representation of object collaborations also at the level of
the programming language have been gaining increasing acceptance [AEIGITIS].
Languages devised in this spirit provide, in addition to classes, the program-
ming language abstraction of a relationship. As classes allow the description of
a collection of individual objects, relationships allow the description of a collec-
tion of groups of interacting objects. In both cases, the description involves the
declaration of attributes and methods. Relationships furthermore indicate the
classes of which the interacting objects are instances to delimit the scope of the
collaboration.

The benefits of explicit representation of object collaborations through re-
lationships at the level of the programming language are diverse [ABIGITS].
Relationship-based implementations allow a declarative description of object col-
laborations. Class-based object-oriented implementations employ an imperative
style since they represent object collaborations through references. The scope of
a collaboration, for example, is explicitly declared in a relationship-based imple-
mentation. In a class-based object-oriented implementation, programmers must
analyze the reference structure of the program to deduce the scope of the collab-
oration. Relationships are furthermore intrinsically bilateral, as both collabora-
tors are known to the relationship. A class-based object-oriented implementation
must deliberately introduce this bilateralism by providing a reference at each site
of the collaboration. Relationship-based languages also allow the declaration of
multiplicities (consistency constraints). In class-based object-oriented implemen-
tations, such multiplicities must be hand-coded by implementing the appropriate
checks to enforce the constraints. These checks are most likely distributed among
the classes participating in the collaboration, and this distribution carries the
risk of introducing inconsistencies when the classes are updated. Relationships
furthermore support the declaration of collaboration members. In class-based
object-oriented implementations, such members must be taken care of manu-
ally. It appears overall that, as nicely put by Rumbaugh [5], “class-based object-
oriented implementations of object collaborations hide the semantic information
of collaborations but ezpose their implementation details” (emphasis added).

Unfortunately, the concepts supported by current relationship-based
languages are not sufficient to specify object collaborations satisfactorily. Based
on the example of an information system of a university (variations of this ex-
ample can be found in several related publications [AI7U8[9]), we show which
requirements of the system cannot be accommodated. Figure [Tl shows the com-
plete list of requirements for the university information system. Figure 2] depicts
the corresponding UML class diagram of the system, and Fig. Bl sketches its im-
plementation in a relationship-based language. There are several requirements
that call for concepts not supported by current relationship-based languages. For
example, the constraints that faculty members can neither substitute themselves
nor each other (R7) and that students cannot assist courses they attend (R4)
cannot be expressed through multiplicities. Also the restriction of the possible
values attributes may assume, such as the year of study (R2), cannot be spec-
ified declaratively. The existence of entity properties that only apply when the

A Relational Model of Object Collaborations 325

R1 The entities of the system are students, courses, and faculty members.

R2 For every student the name, a unique registration number, and the current year
of study must be retained. The year of study cannot exceed 10. Courses must
indicate their titles. Faculty members must list their names.

R3 Enrolled students must attend courses. When attending a course students can get
a mark between 1 and 6.

R4 Students can assist courses as teaching assistants. Students cannot assist courses
they are attending themselves. For every teaching assistant the language of in-
struction must be recorded. For every assisted course a maximal group size can
be defined, which restricts the number of students that are assisted by a single
teaching assistant. In case a maximal group size is prescribed for a course, then
it must be guaranteed that the number of students assisted by a single teaching
assistant must not exceed the maximal group size defined for that course.

R5 Students can work for a faculty member as research assistants, provided that they
are at least in their third year. For every research assistant the grant amount paid
can be retained.

R6 Every course must be taught by at least one faculty member.

R7 Every faculty member must name at least one other faculty member as substitute.
No faculty member can be its own substitute, and two distinct faculty members
cannot substitute each other.

Fig. 1. Requirements for the information system of a university

entity fulfills a particular role, such as the language of instruction for students
assisting courses (R4), is a further example of an issue that can only be dealt
with in current relationship-based languages by resorting to the introduction of
auxiliary classes and further levels of indirection.

attends
mark
0..* 1.% substitutes

1..n

Stud B teaches oy

tudent ourse 0 T * aculty

0..* assists 0:.* 0..n
0..* worksFor 0..*

Fig. 2. UML class diagram modeling the simplified version of the information system
of a university. The diagram uses an association class to allow the association attends
to declare its own members.

In this paper, we show how to specify object collaborations in an explicit
and declarative way. Our presentation is based on relationships but extends
current relationship-based languages with concepts appropriate to accommo-
date the typical kinds of requirements imposed on software systems. In partic-
ular, we introduce member interposition, a concept allowing the specification of

326 S. Balzer, T.R. Gross, and P. Eugster

relationship
Attends (0-* Student learner, 1l-x Course lecture) {
int mark;

}
relationship
Assists (0-* Student ta, 0-x Course course) {}

relationship
WorksFor (0-* Student ra, 0-* Faculty supervisor) {}

relationship
Teaches (l-% Faculty lecturer, 0-x Course lecture) {}

relationship
Substitutes (1-%* Faculty substitute, 0-* Faculty substituted) {}

Fig. 3. Implementation of the running example in a language supporting relationships.
The code combines features present in RelJ [4] and/or the Data Structure Manager
(DSM) [5]. Details not relevant to the discussion have been omitted.

relationship-dependent members of classes, and relationship invariants, a con-
cept allowing the specification of the consistency constraints of relationships.
Since we use mathematical relations as the fundamental abstractions to rea-
son about relationships, we can express relationship invariants by means of the
mathematical properties of the relations underlying the relationships. The ab-
straction of a relation furthermore allows a formalization of the concepts we
introduce relying entirely on discrete mathematics.

The remainder of the paper is organized as follows: Sect. Plintroduces relations,
the abstractions underlying the relational model. Sects. [l and @ detail member
interposition and relationship invariants, respectively. Sect. [l discusses further
issues related to the presented concepts. Sect. [dl provides design guidelines for a
programming language accommodating specifications as presented in this paper.
Sect. [0 lists the related work and Sect. [§ concludes the paper.

2 Relations

In this section we introduce relations, the driving forces underlying the concepts
presented in this paper. We also set up our terminology.

2.1 Abstracting Object Collaborations

The existence of an appropriate abstraction to reason about systems composed
of classes and relationships is a prerequisite to their specification. We use the
notion of a mathematical relation as an abstraction of a relationship. Figure @
depicts the relationships Attends and Teaches. As classes describe the common
properties of a collection of individual objects, we abstract them as sets of objects.

A Relational Model of Object Collaborations 327

O Franklin
{ programming Wong

Ramesh
O Narayan

Jennifer
O Wallace

Attends Teaches
Student Course Faculty

Fig. 4. Graphical representation of the Attends and Teaches relationship: classes
(ellipses) are sets of objects (circles) and relationships (arrows in between ellipses) are
sets of object tuples

As relationships describe the common properties of a collection of groups of
collaborating objects, we abstract them as sets of object tuples and consequently
as relations. Figure [thus contains the sets

Student = { Alice, Paul, Susan, John}
Course = { art, programming, math, compiler}
Faculty = { Franklin Wong, Ramesh Narayan, Jennifer Wallace}

and the relations

Attends = { Paul — programming, Paul — math, John— compiler,
Alice — art, Alice — programming, Alice — math,
Susan — art, Susan— compiler}

Teaches = { Jennifer Wallace — programming, Jennifer Wallace — compiler,
Ramesh Narayan — math, Franklin Wong — art}

Thanks to mathematical relations we can model a system composed of classes
and relationships using discrete mathematics. The resulting relational model of
a system then allows us to reason about a system composed of classes and
relationships in a rigorous fashion. From its model, we can derive the specification
of a system. The university information system yields the following initial model:

Attends C Student x Course
Assists C Student x Course
WorksFor C Student x Faculty

Teaches C Faculty x Course
Substitutes C Faculty X Faculty

2.2 Terminology and Restrictions

Before continuing the presentation of the specification of object collaborations
based on relations, we briefly set up the terminology used in this paper. We

328 S. Balzer, T.R. Gross, and P. Eugster

restrict the specification of object collaborations to the non-concurrent case and
— because of space constraints — we do not discuss inheritance either.

Class: We consider classes as types and also as sets. Such a set contains objects
that are instances of the type defined by the class declaration.

Relationship: We consider a relationship to be both a type and a relation.
The relation contains the object tuples that are instances of the type defined
by the relationship declaration.

Participants: The participants of a relationship are the carrier sets (i.e.,
classes) of the relation defining the relationship.

Roles: The participants of a relationship declaration can be named to indicate
the conceptual role the particular class plays in the relationship.

3 Member Interposition

Some properties of objects only apply when the object is fulfilling a particular
role [I0]. The attributes instructionLanguage (see Fig. [[R4) and
grantAmount (R5) are examples of such properties since these properties are
required only for teaching and research assistants, respectively, but not for all
students. Thus, the selection of properties that are required for an object depends
on the relationship(s) the object takes part in.

3.1 Problem Description and Solution

Member interposition accommodates relationship-dependent properties of ob-
jects. Member interposition allows us to define properties as part of the role
a particular class fulfills in a relationship. Figure [gives an example. Both
the attributes instructionLanguage and grantAmount are declared in the re-
lationships on which these attributes depend and as part of the roles played
by the classes to which these attributes apply (are interposed into). Attribute
instructionLanguage is declared in relationship Assists for the role teach-
ing assistant (ta), attribute grantAmount in relationship worksFor for the role
research assistant (ra).

Without member interposition, we would have to use the role object [1]
and extension object [12] design patterns, respectively. We then would subclass
Student to provide specializations both for teaching and research assistants
and would need to introduce an additional level of indirection to represent the
possible roles students can play and to allow dynamic casts between these roles.
Member interposition, on the other hand, allows us to accommodate relationship-
dependent properties of classes without resorting to inheritance and role classes.

Relationships can declare both interposed members and non-interposed mem-
bers. Attribute mark in relationship Attends is an instance of a member that is
not interposed. Whereas an interposed member describes a class that plays a par-
ticular role in a relationship, a non-interposed member describes the

A Relational Model of Object Collaborations 329

relationship Attends
participants (Student learner, Course lecture) {
int mark;
}
relationship Assists
participants (Student ta, Course course) {
// attribute interposed into role ta
String >ta instructionLanguage;
}
relationship WorksFor
participants (Student ra, Faculty supervisor) {
// attribute interposed into role ra
int >ra grantAmount;

}

Fig. 5. Relationship members are declared either at the level of the relationship or,
through member interposition, at the level of a participating role. Interposed members

are declared using the “>” symbol and are depicted underlined.

collaboration that exists between the participants of a relationship. We there-
fore also refer to interposed members as participant-level members and to non-
interposed members as relationship-level members. Intuitively (see Fig. H), we
can imagine an interposed member as being attached to each object (circle) of
the class (ellipse) that is the target of interposition. A non-interposed member,
on the other hand, is attached to each object tuple (arrow) of the relation-
ship. In the current specification, the attribute instructionLanguage records
per teaching assistant the language of instruction. If we interposed attribute
instructionLanguage into the role course instead of the role ta, we could
indicate in what language a particular course must be assisted. A third option
would be to declare attribute instructionLanguage as a non-interposed mem-
ber. In this case, teaching assistants would be allowed to use different languages
for different courses.

Like non-interposed members, interposed members are part of the interfacd]
of their defining relationships (and not part of the interface of the classes they
are interposed into). This treatment has two consequences. First, the names of
interposed members must be unique only within their defining relationship. An
interposed member can therefore be named the same as a member of the class
that is the target of interposition or the same as an interposed member of a
different relationship that has the same target of interposition. In both cases,
separate copies of these members are maintained. Second, operations to access
interposed members must be called on the relationship and are not allowed to be
called directly on the targeted class. According to Snyder [I4], encapsulation in
class-based object-oriented programming languages aims to minimize the mod-
ule interdependences through the application of strict external interfaces. Since

! We use the term interface as introduced by Parnas [T3].

330 S. Balzer, T.R. Gross, and P. Eugster

member interposition leaves the interfaces of the classes being the target of in-
terposition unchanged, the encapsulation of these classes remains unaffected.

3.2 Formalization

Using the abstraction of a relation and the means provided by discrete mathe-
matics we can formalize the interposed and non-interposed attributes of Fig.
as follows:

Attends mark € Attends + [1 .. 6] (3.1)
Assists instructionLanguage € dom(Assists) — String (3.2
WorksFor grantAmount € dom(WorksFor) + N (3.3)

As illustrated by (BJ), we can model a relationship-level attribute as a relation
from a relation to the set of possible values the attribute may assume (see Table[I]
for an explanation of the notation used). In the example, the relationship-level
attribute mark is a partial function from the relation Attends to the set of integer
numbers ranging from 1 to 6. Note that we restrict the range of the function
to [1..6] as imposed by R3 in Fig. [[I Participant-level attributes (32)) and
B3), on the other hand, are relations from the domain or range of a relation
to the set of possible values the attribute may assume. The interposed attribute
instructionLanguage (32), for example, is a relation that has the domain of
the relation Assists — which is a subset of the set Student — as its domain, and
a set of strings as its range. Note that we use a total function for the relation
since we need to retain the language of instruction for every student assisting a
course (R4).

Table 1. Mathematical notation as defined in [15]

Symbol Description
— Pair constructing operator
S < T Set of binary relations from S to T
S «» T Set of surjective relations from S to T
S« T Set of total relations from S to T
S + T Set of partial functions from S to T
S — T Set of total functions from S to T
S ;T Forward composition of relations S and T
St Inverse of relation S
dom(.S) Domain of relation S
ran(S) Range of relation S
Sim] Image of the set m under the relation S
card(m) Number of elements of set m

id(m) Identity relation built on set m

A Relational Model of Object Collaborations 331

Since member interposition targets at the role of a participant rather than at
the class as a whole, it is possible to selectively add properties to objects that
are instances of the same class, but play different roles in the same relationship
(relationship substitutes, for example). In such a case, we formalize the rela-
tion defining the relationship as a relation from one subset of the participant to
another subset of the participant, with each subset containing the objects that
play a particular role in the relationship.

4 Relationship Invariants

Current relationship-based languages do not provide the appropriate means to
declare consistency constraints other than multiplicities. As demonstrated by
the running example of this paper, the existence of more elaborate constraints,
such as the restriction that students cannot assist courses they are attending
(Fig. 0 R4), are an important trait of object collaborations. We introduce the
concept of relationship invariants to express consistency constraints required for
the specification of object collaborations.

Invariants proved viable for the specification of consistency constraints in a
number of class-based object-oriented programming and specification languages,
such as the Eiffel programming language [T6J17], the Spec# programming sys-
tem [I8], and the behavioral interface specification language for Java, JML (Java
Modeling Language), and its verification tools [T9/20]. Whereas invariants of
class-based object-oriented programming languages are imposed on individual
objects (object invariants) or on the class as a whole (static class invariants) [21],
we allow invariants to range over several classes by imposing them on one or
several relationships. As we maintain a set-oriented view of classes and relation-
ships, invariants implicitly quantify over the objects or object tuples contained in
the set the invariants are imposed on. Classical invariants of class-based object-
oriented programming and specification languages are different: such invariants
are restricted to individual objects and classes, respectively. The restricted scope
of classical invariants makes the verification of invariants particularly challenging
in case an invariant involves references [22123].

We distinguish between intra-relationship and inter-relationship invariants,
and between value-based and structural invariants. The first category denotes
the scope of the invariant. An intra-relationship invariant is imposed on a sin-
gle relationship and thus restricts the collaboration of the participants within
that relationship. An inter-relationship invariant involves several relationships
and thus defines how relationships relate to each other. The second category
distinguishes whether values that relationships or participating classes assume
for their members are taken into account for the invariant specification. A value-
based invariant defines the values or the range of values the elements in the scope
of the invariant declaration are allowed to assume for the specified members. A
structural invariant restricts the possible ways different elements in the scope
of the invariant declaration can be paired up irrespective of the values these
elements assume for their members. The two categories are orthogonal, yielding

332 S. Balzer, T.R. Gross, and P. Eugster

four kinds of invariants. We provide a formalization of each kind of invariant
using the abstraction of a relation for a relationship.

4.1 Structural Invariants

We start the presentation of the different kinds of invariants with structural
invariants as they are similar to multiplicity restrictions. In fact, multiplicity
restrictions are a subset of structural intra-relationship invariants.

Structural Intra-Relationship Invariants. The requirements document of
the university information system (see Fig. [[) lists several structural invariants,
such as the restrictions that enrolled students must attend courses (R3) and that
every faculty member must name at least one other faculty member as substitute
(R7). These restrictions, expressed by multiplicities in current relationship-based
programming languages, define the structural characteristics of a relationship
and can thus be formalized by indicating the structural properties of the rela-
tions defining the relationship. For example, the (0. ., 1..*) multiplicity of the
relationship Attends can be formalized as a total relation, and the (1..%,0..%)
multiplicity of the relationship Substitutes can be formalized as a surjective
relation, as outlined by (I]) and (&3], respectively, in the following:

Attends € Student «— Course (4.1)
Assists € Student — Course (4.2)
WorksFor € Student < Faculty (4.3)
Teaches € Faculty < Course (4.4)
Substitutes € Faculty «» Faculty (4.5)

There are additional structural invariants present in the running example, for
example, that no faculty member can be his or her own substitute and that two
distinct faculty members cannot substitute each other (R7). These structural
constraints, not expressible through multiplicities, define the asymmetry (Z0])
and irreflexiveness (1) of the substitutes relationship and can be formalized
as follows:

Substitutes N Substitutes™ ' = & (4.6)
Substitutes N id(Faculty) = @ (4.7)

Based on the example of the substitutes relationship, Fig. [@ illustrates how
structural intra-relationship invariants can be specified as part of relationship
declarations.

Structural Inter-Relationship Invariants. According to the requirements
document of the university information system (see Fig. [Il) students are not al-
lowed to assist courses they are attending themselves (R4). This requirement
also represents a structural invariant, but, in contrast to the invariants dis-
cussed in the previous section, this invariant encompasses several relationships:

A Relational Model of Object Collaborations 333

relationship Substitutes
participants (Faculty substitute, Faculty substituted) {

invariant
surjectiveRelation(Substitutes) &&
asymmetric (Substitutes) &&
irreflexive (Substitutes) ;

Fig. 6. Relationship Substitutes with a structural intra-relationship invariant: the
relation defining the relationship is surjective, asymmetric, and irreflexive

the relationship Assists (“students are not allowed to assist courses...”) and
the relationship Attends (“...they are attending themselves”). To satisfy the
requirement, the two defining relations of the relationships must be disjoint:

Attends N Assists = @ (4.8)

Figure [0 illustrates how the structural inter-relationship invariant (£J) can
be specified as part of a program composed of classes and relationships. Unlike
an intra-relationship invariant, which can be directly listed as part of the re-
lationship declaration, an inter-relationship declaration appears outside of the
scope of the relationship declarations it is imposed on.

invariant (Attends, Assists) attendsAssistsDisjointness:
Attends intersection Assists == emptySet;

Fig. 7. Structural inter-relationship invariant guaranteeing that teaching assistants
cannot attend the courses they are assisting. An inter-relationship invariant can be
named and indicates the relationships it is imposed on in parentheses.

4.2 Value-Based Invariants

Value-based intra- and inter-relationship invariants bear resemblance to tradi-
tional invariants of class-based object-oriented programming languages as tra-
ditional invariants are assertions on the values the fields of an object or a class
may assume. Value-based invariants, however, exceed the scope of traditional
invariants as they range over several classes and relationships.

Value-Based Intra-Relationship Invariants. The requirements document
of the university information system (see Fig. [[) demands that students must
be at least in their third year to become research assistants (R5). This require-
ment can be expressed through a value-based intra-relationship invariant. As
demonstrated by ([I0) below we can formalize the invariant by requiring that

334 S. Balzer, T.R. Gross, and P. Eugster

relationship WorksFor
participants (Student ra, Faculty supervisor) {
// attribute interposed into role ra
int >ra grantAmount;

invariant
relation (WorksFor) &&
ra.year > 2 &&
partialFunction(grantAmount) in N;

Fig. 8. Relationship invariant consisting of a structural intra-relationships invariant
relation (WorksFor) and two value-based intra-relationship invariants guaranteeing
that research assistants are at least in their third year of study (ra.year > 2) and
that the amount of funding the student receives is optional and a natural number
(partialFunction(grantAmount) in N)

the range of the forward composition WorksFor~—! ; Student year is a subset of
the set of integer numbers ranging from 3 to 10. The forward composition yields
the set of pairs of faculty members and integer numbers, with one pair for each
group of research assistants that are supervised by the same faculty member and
that share the same year of study. The relation Student year ({3]) abstracts the
attribute year of class student.

Student year € Student— [1 .. 10] (4.9)
ran(WorksFor™" ; Student year) C [3 .. 10] (4.10)

Interestingly, the invariant (ZI0) involves a member of a participant and not
a member of a relationship. As the constraint imposed on the member depends
on the relationship — the year of study needs to be considered only for research
assistants but not for students in general — it cannot be declared as a class
invariant (see Sect. [.2) but must be declared as a relationship invariant. In
a mere class-based implementation of the running example with support for
traditional invariants, the definition of the constraint would have to account for
this dependence. To guard the evaluation of the invariant, a resulting object
invariant would most likely introduce an implication of the form supervisor !=
null ==> this.year > 2.

Figure [illustrates how the value-based intra-relationship invariant (@I0)
can be specified as part of the declaration of relationship WorksFor. The figure
furthermore reveals that an invariant declaration can consist of several kinds
of invariants. Besides the value-based intra-relationship invariant imposing the
constraint just discussed, Fig. [lists the structural intra-relationship invari-
ant relation (WorksFor) and a further value-based intra-relationship invari-
ant partialFunction(grantAmount) in N defining the nature of the inter-
posed member grantAmount. The corresponding formalization of the attribute
grantAmount was introduced in Sect.

A Relational Model of Object Collaborations 335

invariant (Attends, Assists) enoughAssistants:
forAll ¢ (isDefined(Assists.select (course==c) .maxGroupSize)
==> numberOf (Attends.lecture.select(c)) <=
numberOf (Assists.course.select (c)) =*
Assists.select (course==c) .maxGroupSize) ;

Fig. 9. Value-based inter-relationship invariant guaranteeing that there are enough
teaching assistants per course. The use of role names as in Attends.lecture allows
the retrieval of the set of objects participating in the relationship and playing the
indicated role. The select operator allows the retrieval of the set of objects (when
applied to a role) or set of object tuples (when applied to the relationship) that match
the condition indicated in parentheses. For further details see Sect.

Value-Based Inter-Relationship Invariants. The requirements document of
the university information system (see Fig.[Il R4) prescribes that the number of
students assisted by a single teaching assistant for a particular course does not ex-
ceed the maximal group size defined for that course, if defined at all. This require-
ment guarantees that enough teaching assistants are recruited for a particular
course. We can formalize this restriction by requiring that, for every course, the
number of students attending the course (card(Attends=*[{c}])) is less than or
equal to the number of assistants assisting the course (card(Assists~[{c}])) mul-
tiplied by the maximal group size for the course (Assists maxGroupSize(c)). As
indicated by the implication in (ZI1]), the inequality is evaluated for a course only
that is currently assisted and for which the attribute maxGroupSize is defined.

Ve- (¢ € dom(Assists maxGroupSize) =
card(Attends ' [{c}]) < (4.11)

card(Assists ' [{c}]) * Assists mazGroupSize(c))
Figure [@ shows the corresponding program specification of the value-based
inter-relationship invariant ([@IT]). In the example, we need to introduce explicit

quantification as the invariant must hold only for selected constituent objects of
the tuples involved.

5 Discussion

The use of relationships together with the concepts introduced in this paper
influences not only the specification of object collaborations but also the devel-
opment of programs composed of classes and relationships in general. In this
section, we discuss some consequences.

5.1 References

The introduction of relationships changes the purpose of references. In class-
based object-oriented programs references allow the implementation of object

336 S. Balzer, T.R. Gross, and P. Eugster

collaborations. For example, students keep references to the list of courses they
attend. With explicit relationships, on the other hand, classes no longer need to
maintain references to (instances of) the classes they collaborate with as the de-
scription of this collaboration is “out-sourced” to the corresponding relationship.

Relationships, however, need a kind of reference to access the objects that
participate in a relationship. It is questionable, though, whether traditional ref-
erences are the appropriate means to implement the “awareness” of a relationship
of its participants. To answer this question, we must consider what the charac-
teristics of references are and which traits of these characteristics are required
in the case of relationships. References can be used in two different ways: (1)
to access the artifact that the reference refers to and (i) to read or change the
value (object identifier in a class-based object-oriented context) of the reference.
With respect to relationships, the first use of references is clearly desired — it
must be possible to access the objects that participate in a relationship. How-
ever, an object tuple should not be allowed to change its identity by replacing
(or possibly erasing) any of its constituent objects. Relationships therefore need
restricted forms of references that allow access of the constituent objects but
prohibit direct manipulation of the values assigned to references. Role names,
for example, can serve that purpose.

Of course, it must be possible to change the participation of objects in rela-
tionships. Because we consider classes and relationships as sets — sets of objects
and sets of object tuples, respectively — changes in relationship participation
break down to adding and removing object tuples to and from relationships.
These operations encompass the relationship as a whole and must therefore be
executed outside of the scope of the targeted relationship (see Sect. [G.1]).

5.2 Class Invariants

A specification of programs composed of classes and relationships must include
the declaration of class invariants besides the declaration of relationship invari-
ants. Class invariants allow the specification of the consistency constraints that
are imposed on the instances of individual classes. Since classes do not describe
their collaborations with other classes, class invariants have an intra-class scope
and are purely value-based. To restrict the possible values objects can assume
for their members, we abstract object members as relations from classes (sets)
to the sets of possible values their members may assume. The mathematical
properties of these relations then express the class invariant.

Equations (&), (52), and (53]) show the relations abstracting the members
of class student. Equation (52)) uses a total injection from the set Student to
the set of natural numbers to express that every student must have a number
which is unique.

Student name € Student — String (5.1)
Student number € Student — N
Student year € Student— [1 .. 10]

A Relational Model of Object Collaborations 337

class Student {
String name;
int number;
int vyear;

invariant
totalFunction (name) &&
totalInjection(number) in N &&
totalFunction(year) in [1..10];

Fig. 10. Specification of the class invariant of Student restricting the possible values
class members can assume

Figure [[Q shows the corresponding declaration of the class invariants of class
student. The invariant that specifies that student numbers must be unique
highlights the benefits of treating classes and class members as sets and relations,
respectively. As opposed to its counterpart in a class-based implementation, it is
simple and clear-cut. In a class-based setting, on the other hand, the specification
of the same constraint would demand a more extensive invariant. To express the
injectivity of the relation Student number, a static class invariant would need to
be declared which uses explicit quantification to range over all instances of the
class and to make sure that the attribute number is different for every instance.

5.3 Invariant Preservation

The use of invariants as part of the declaration of classes and relationships raises
the question of their verification. Irrespective of the approach taken — run-
time verification (dynamic) or compile-time verification (static) — the invariants
imposed on a system composed of classes and relationships must be preserved
from one state to the other along state transitions of the system.

The relational model can help to substantially decrease the number of transi-
tions that must be inspected to verify the invariant. Thanks to the categorization
of invariants we can identify for each kind of invariant the operations that cause
state transitions that potentially endanger the invariant. For structural invari-
ants, for example, the operations causing such transitions are the addition to
and removal of objects from classes, and the addition to and removal of object
tuples from relationships. If we consider, in addition to its category, also the
mathematical properties of an invariant, we can delimit the cases in which state
transitions occur that potentially endanger the invariant.

In the most general case of a relation as a structural intra-relationship invari-
ant the following interdependence between the relationship and its participants
exists:

RceA—B&Vab(a—beR=acANbE B) (5.4)

338 S. Balzer, T.R. Gross, and P. Eugster

From (4] we can delimit the following invariant-endangering operations:

— the removal of an object from a class if the object participates in a relation-
ship with the class being a participant of that relationship

— the addition of an object tuple if the constituent objects are not part of the
participants of the relation.

The number of invariant-endangering operations increases with the restrictive-
ness of the relation. In case of a total relation, for example, we can delimit the
following invariant-endangering operations:

— the addition of an object to a class that is the domain of the total relation

— the removal of an object from a class that is the domain of the total relation

— the addition of an object tuple if the constituent objects are not part of the
participants of the total relation

— the removal of an object tuple from the total relation if no other object tuple
exists in that relation that contains the first constituent object of the tuple
to be removed.

The handling of these invariant-endangering operations must be left to the
respective programming language or system that implements the specification
concepts introduced in this paper. An implementation could, for example, deal
with certain invariant-endangering operations by executing a corresponding cor-
rective action to maintain the invariant. A further implementation concern is
to determine the granularity of atomic sequences of operations. Most likely, an
implementation will provide the means to combine several invariant-endangering
operations in one atomic unit and thus allow a further decrease of the verification
load.

We expect the relational model of object collaborations to be helpful with
verifying invariants statically. Thanks to its foundation in discrete mathematics,
a relation model describing a concrete system composed of classes and relation-
ships could easily be transformed to the input required by a theorem prover or
model checker, which then would allow the verification of the system.

6 Language Design Issues

In this section we sketch the main features of a programming language that
incorporates the specification concepts introduced in this paper.

6.1 Three Dimensions of Problem Decomposition

In their seminal paper on programming with abstract data types, Liskov
et al. [24] introduce two forms of programming language abstractions: proce-
dures (functional abstraction) and operation clusters (abstract data types). We
regard the separation of functional decomposition from data decomposition to
be valuable as it allows us to separate the definition of artifacts from their use.
Due to our focus on the specification of object collaborations, we complement

A Relational Model of Object Collaborations 339

the abstractions introduced by Liskov et al. with the abstraction representing ob-
ject collaborations. A programming language that incorporates the specification
concepts introduced in this paper thus needs to support the following language
abstractions:

— Class (data decomposition): Programming language abstraction representing
classes as defined in Sect.

— Relationship (collaboration decomposition): Programming language abstrac-
tion representing relationships as defined in Sect.

— Application (functional decomposition): Programming language abstraction
comprising a number of procedures to manipulate the sets of objects and
object tuples contained in a program.

6.2 Language Definition

A programming language that incorporates the specification concepts introduced
in this paper must support the types ValueType, ClassName, RelationshipName,
Object(ClassName), and Query(Set). A ValueType is a type with a value type
semantics. Whereas both ClassName and RelationshipName are types that de-
note sets, Object(ClassName) is a parameterized type that stands for a particular
instance of the class provided as an argument. A Query(Set) is also a parameter-
ized type that represents sets of objects or object tuples. Possible arguments to a
query type are class names, relationship names, or any expressions composed of
relationship names and relational operators yielding a set as a result. Both pa-
rameterized types are instances of Handle Type, which represents a Java final-like
reference to either an object or a set of objects and object tuples, respectively.
Like Bierman and Wren [4] we use tables and maps (see Fig.[I]) to formalize
the declarations appearing in a program devised in the language under discus-
sion. We have tables for classes, relationships, inter-relationship invariants, and
for applications. Each table is a map from a name (class name, for example) to a
definition (class definition, for example). Definitions are tuples with the elements
being sets or further maps. For example, a class definition is a tuple (A,M,ci)
where A is a map from attribute names to attribute types, M is a map from
method names to method definitions, and ci is the class invariant body. The
signature definitions in Fig. [[T] reveal an important characteristic of the pro-
gramming language: both the attributes of classes and relationships are of value
type only (see Sect. Bl for a further discussion). As relationships must have
access to their participating objects, RelMethodMap lists the set RoleName in
its range. Unlike classes and relationships, applications are neither types nor do
they declare invariants. Applications are mere procedural modules that consist
of a number of variables and procedures. As these procedures need to instantiate
classes and need to add to and remove objects from classes and object tuples from
relationships, respectively, applications can declare variables of type Handle Type.

6.3 Creation, Addition, Removal, and Retrieval

An appropriate programming language must provide built-in operators to in-
stantiate classes, to add to and remove objects from classes, and to add to and

340 S. Balzer, T.R. Gross, and P. Eugster

ClassTable € ClassName — AttrMap x ClMethodMap x ClassInvBody
Relationship Table € RelationshipName — RoleMap x AttrMap x RelMethodMap
X RellnvBody
InterRellnvTable € (InuName X (RelationshipName X - - - X RelationshipName))
— InterRellnvBody
ApplicationTable € ApplicationName — VarMap x ProcedureMap
RoleMap € RoleName — ClassName
AttrMap € AttrName — ValueType
ClMethodMap € MethodName — ArgMap x LocalMap x ValueType x MethodBody
RelMethodMap € MethodName — ArgMap X LocalMap x RoleName x Value Type
X MethodBody
ArgMap € ArgName — ValueType
LocalMap € VarName — Value Type
VarMap € VarName — (Value Type U Handle Type)
ProcedureMap € ProcName — ProcArgMap x ProcLocalMap
x (ValueType U Handle Type) X ProcBody
ProcArgMap € ArgName — (Value Type U Handle Type)
ProcLocalMap € VarName — (ValueType U Handle Type)

Fig. 11. Signatures of class, relationship, and application tables and associated maps

remove object tuples from relationships. As both classes and relationships are
sets, the addition and removal operators are conceptually equivalent with set
union and set subtraction.

Figure[I2 shows a program fragment implementing the running example. The
fragment consists of several class and relationship declarations and one appli-
cation declaration. Class student declares a constructor to allow creation of a
single object. The constructor is called in procedure initialize in application
UniversityInformationSystem and assigned to the object handle alice. The
object denoted by alice is then added to class Student in line 27. For every
course Alice is attending, a corresponding student-course pair is added to the
relationship Attends (28-30). In the examples, the add operator is used to add
single objects and single object tuples, respectively. The add operator, however,
can also be used to add a set of objects and a set of object tuples to a class and
relationship, respectively. The same explanations apply likewise to the remove
operator.

An appropriate programming language must further provide built-in operators
to retrieve sets of objects and sets of object tuples. These operators must enable
the retrieval of the set of objects playing a particular role in a relationship and
the retrieval of the set of objects or object tuples that satisfy a given condition.

Figure illustrates the use of the select operator to retrieve the set of
object tuples that match the condition provided as an argument. In line 21, all
faculty-course pairs are retrieved with the object denoted by the handle

A Relational Model of Object Collaborations 341

class Student {
2 Object<Student> Student (String name, int number, int year) {
this.name = name;
4 this.number = number;
this.year = year;
6 ...
Yoo
s relationship Attends
participants (Student learner, Course lecture) {...}
10 ...
application UniversityInformationSystem {
12 // handles to objects
Object<Student> alice, john, susan, paul;
14 Object<Faculty> jenniferWallace, rameshNarayan, franklinWong;
Object<Course> programming, math, compiler, art;
16 PR
void main() {

18 initialize();

// assign all students of Franklin Wong the grade 6
20 Query<Teaches.lecture> coursesFw;

coursesFw = Teaches.select (lecturer==franklinWong) .lecture;
22 Attends.select (lecture==coursesFw) .setMark (6) ;

}

24 void initialize() {
26 alice = new Student ("Alice", 778, 1);

Student.add(alice) ;

28 Attends.add(alice, programming) ;
Attends.add(alice, math);

30 Attends.add(alice, art);

32 }

Fig. 12. Program fragment consisting of several class and relationship declarations and
one application declaration. The fragment shows the creation of an object (26), the
addition of an object to a class (27), and the addition of object pairs to a relationship
(28-30). Line 20 illustrates the use of queries as handles to a set that contains the result
of a retrieval operation. Line 22, furthermore highlights the set-oriented character of
the language: method setMark is called on the set of student-course pairs such that
the students contained in the set attend a class taught by Franklin Wong.

franklinWong playing the role of the lecturer. On this result set, the role
operator lecture is applied to return only the set of courses that are taught
by Franklin Wong. Of interest in the example is also the declaration of a query
type in line 20. According to the argument of the type, the query coursesFw
is a handle to a set of objects that are instances of type Course. Queries are
a powerful construct as they allow us to type intermediate retrieval results. In
the example, the query encompasses only one relationship, however, as a query
accepts any argument that is a set, any expression composed of relationship

342 S. Balzer, T.R. Gross, and P. Eugster

names and relational operators yielding a set as a result can be declared as an
argument of a query.

As demonstrated by the instructions on line 20-22; relationships ease the
handling of object collections. Willis et al. [25] introduced a prototype extension
to Java that supports the concept of first-class queries to dispose of iterators
otherwise needed to traverse object collections. However, such first-class queries
still need to explicitly indicate the matching attributes that establish the “join”
condition. With relationships, on the other hand, queries do not have to indicate
the join conditions as they are implicitly established through the relationship
declaration.

6.4 Atomic Procedures

Separating application declarations from class and relationship declarations al-
lows us furthermore to separate the declaration of invariants from their verifica-
tion. As the procedures of applications are the only ones to manipulate classes
and relationships, they are also the only ones to endanger the invariants estab-
lished on the classes and relationships. Therefore, in a programming language
that incorporates the specification concepts introduced in this paper, the body
of an application procedure defines the granularity of atomic sequences of oper-
ations. Invariants, consequently, must hold only on entry and exit of procedures,
but not during procedure execution. In Fig.[I2] for example, the structural intra-
relationship invariant of relationship Attends is temporarily violated after the
addition of the object denoted by alice to class Student in line 27 (relation-
ship Attends is defined by a total relation). Only after the addition of the first
student-course pair to the relationship Attends for a course Alice is attending,
the invariant is re-established and preserved until the end of the procedure.

7 Related Work

In this section we discuss the related work. To be consistent with previous sec-
tions, we use our terminology for the discussion and indicate the actual terms
used in the respective publication(s), if different, in parentheses.

Rumbaugh [5] first discovered the important role relationships (relations) play
in object-oriented programming and thus introduces an object-oriented program-
ming language, the Data Structure Manager (DSM), that complements classes
with relationships. Classes in DSM can declare role names for their identification
in a relationship, a concept we adopted for the specification of object collabora-~
tions. Rumbaugh also perceives relationships as sets of object tuples, however,
he does not further exploit his observation. Our work, in contrast, goes further
and links relationships to discrete mathematics, allowing the use of mathemati-
cal relations to define invariants, a concept more powerful than the multiplicities
(cardinalities) supported in DSM. Furthermore, we support relationship mem-
bers and member interposition, both concepts not present in Rumbaugh’s work.
The missing support for member interposition is also the reason why Rum-
baugh introduces qualified relations. A qualified relation is a special instance of

A Relational Model of Object Collaborations 343

a ternary relationship that allows the addition of a distinguishing attribute to
one of the two participants of the relationship. With member interposition, on
the other hand, the need for a ternary relationship in such cases fades as the
distinguishing attribute can be interposed into the respective participant.

Albano et al. [6] develop a strongly typed object-oriented database program-
ming language with explicit support for relationships (associations) that is specif-
ically tailored to fit the requirements of database applications. Like our work, the
language Albano et al. devised allows the declaration of relationship attributes;
however, it does not support relationship methods, nor member interposition. In
contrast to Rumbaugh, the authors allow programmers not only to declare mul-
tiplicities (cardinality and surjectivity) but also to indicate how these constraints
must be maintained, i.e., whether to cascade an operation that endangers the
constraint or whether to prevent it from being executed. Like DSM, however,
the language of Albano et al. lacks support for expressing constraints other than
multiplicities.

The main contribution of the work by Bierman and Wren [4] is to provide the
type system and the operational semantics of a Java-like language that supports
relationships. In this way, the authors describe how a strongly typed class-based
object-oriented language, like Java, can be extended to support relationships.
Bierman and Wren further introduce relationship inheritance, a concept not con-
sidered in this paper. Again, our work mainly differs from the work by Bierman
and Wren in its support for member interposition and relationship invariants.

Pearce and Noble [7I8] show how to use aspects [26027] to implement re-
lationships and multiplicities in a class-based object-oriented language. In an
aspect-based implementation, relationship members can then be interposed into
participants through inter-type declarations.

Noble and Grundy [28] describe ways of persisting relationships from the mod-
eling to the implementation stage in object-oriented development by transform-
ing analysis relationships into corresponding classes. Their approach is purely
class-based and does not mention language support for relationships.

Helm et al. [29] use contracts to specify the behavioral compositions in class-
based object-oriented systems. Similar to relationships, these contracts allow the
programmer to explicitly state which classes collaborate with each other. The
focus of the work by Helm et al., however, is the specification of collaborative
behavior. A contract, for example, can declare actions that need to be executed
by the participants and can impose an ordering on the execution.

Aksit et al. [30] propose Abstract Communication Types (ACTs), classes de-
scribing object interactions, as a means to encapsulate these interactions at the
programming language level. ACTs rely on composition filters for their inte-
gration with the remaining system and act in response to calls issued from the
underlying classes that are forwarded and possibly adapted by these filters. Re-
lationships, on the contrary, are self-contained and independent of the events
happening in the participating classes.

Herrmann [31] describes a Java-like language supporting Object Teams, the
modules encapsulating multi-object collaborations. The focus of Herrmann’s

344 S. Balzer, T.R. Gross, and P. Eugster

work is the a posteriori integration of collaborations into existing systems. The
language thus allows the programmer to forward method calls from teams to
base classes and offers advice-like constructs, known from aspect-oriented pro-
gramming [26], to override methods of base classes.

Reenskaug [10] introduces role models to describe the structure of cooperating
objects along with their static and dynamic properties. Role models are purely
conceptual and focus on message-based interactions; however, they could assist
in the identification of relationships during system design as relationships can
be regarded as representations of particular role models.

8 Concluding Remarks

Relationships capture the collaborations between objects and provide a key to
understanding large-scale object-oriented systems. This paper introduces math-
ematical relations as an abstraction of relationships and develops the concept
of member interposition (which points out those members of classes that par-
ticipate in a relationship). Once relationships are explicit in a program, it is
possible to express invariants that extend beyond the inside of a class (or class
instance). Invariants can be classified along two orthogonal dimensions: there
are intra-relationship and inter-relationship invariants as well as value-based
and structural invariants.

Understanding and reasoning about object-oriented programs remains a dif-
ficult issue, and many approaches have been suggested to help the programmer
in this task. Mathematical relations as a formal model of relationships provide
a solid foundation to deal with the object collaborations in such a program. Re-
lationships that are explicit widen the view of the programmer (and ultimately
the view of tools) so that it is possible to reason (and optimize) beyond class
boundaries.

Acknowledgments

We thank Jean-Raymond Abrial, Peter Miiller, and Laurent Voisin for their
feedback.

References

1. Goldberg, A., Robson, D.: Smalltalk-80: The Language and Its Implementation.
Addison-Wesley, Reading (1983)

2. Jacobson, I., Booch, G., Rumbaugh, J.E.: The Unified Software Development Pro-
cess. Addison-Wesley, Reading (1999)

3. Chen, P.P.S.: The entity-relationship model - toward a unified view of data. ACM
Transactions on Database Systems (TODS) 1(1), 9-36 (1976)

4. Bierman, G.M., Wren, A.: First-class relationships in an object-oriented language.
In: Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 262-286. Springer, Hei-
delberg (2005)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

A Relational Model of Object Collaborations 345

. Rumbaugh, J.: Relations as semantic constructs in an object-oriented language.

In: 2nd ACM Conference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA '87), pp. 466-481. ACM Press, New York (1987)

. Albano, A., Ghelli, G., Orsini, R.: A relationship mechanism for a strongly typed

object-oriented database programming language. In: 17th International Conference
on Very Large Data Bases (VLDB’91), pp. 565-575. Morgan Kaufmann Publishers
Inc. San Francisco (1991)

. Pearce, D.J., Noble, J.: Relationship aspects. In: 5th International Conference on

Aspect-Oriented Software Development (AOSD ’06), pp. 75-86. ACM Press, New
York (2006)

. Pearce, D.J., Noble, J.: Relationship aspect patterns. In: 11th European Conference

on Pattern Languages of Programs (EuroPLoP’06) (2006)

. Booch, G.: The Unified Modeling Language User Guide. Addison-Wesley, Reading

(1999)

Reenskaug, T., Wold, P., Lehne, O.A.: Working with Objects: The OOram Software
Engineering Method. Manning/Prentice Hall, Englewood Cliffs (1996)

Baumer, D., Riehle, D., Siberski, W., Wulf, M.: The role object pattern. In: 4th
Conference on Pattern Languages of Programs (PLoP’97) (1997)

Gamma, E.: The extension objects pattern. In: 3rd Conference on Pattern Lan-
guages of Programs (PLoP’96) (1996)

Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Communications of the ACM 15(12), 1053-1058 (1972)

Snyder, A.: Encapsulation and inheritance in object-oriented programming lan-
guages. In: 1st ACM Conference on Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA ’86), vol. 21, pp. 38-45. ACM Press, New York
(1986)

Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall, Engle-
wood Cliffs (1997)

Meyer, B.: Eiffel: The Language. Prentice-Hall, Englewood Cliffs (1991)

Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49-69. Springer, Heidelberg (2004)

Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral
interface specification language for java. Technical Report 98-06-rev29, Iowa State
University (2006)

Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T., Leino,
K.R.M., Poll, E.: An overview of jml tools and applications. International Journal
on Software Tools for Technology Transfer (STTT’05) 7(3), 212-232 (2005)
Leino, K.R.M., Miiller, P.: Modular verification of static class invariants. In:
Fitzgerald, J.A., Hayes, 1.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp.
26-42. Springer, Heidelberg (2005)

Jacobs, B., Kiniry, J., Warnier, M.: Java program verification challenges. In: de
Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2002. LNCS,
vol. 2852, pp. 202-219. Springer, Heidelberg (2003)

Leavens, G.T., Leino, K.R.M., Miiller, P.: Specification and verification challenges
for sequential object-oriented programs. Formal Aspects of Computing (to appear,
2006)

346

24.

25.

26.

27.

28.

29.

30.

31.

S. Balzer, T.R. Gross, and P. Eugster

Liskov, B., Zilles, S.: Programming with abstract data types. In: ACM SIGPLAN
Symposium on Very High Level Languages, pp. 50-59. ACM Press, New York
(1974)

Willis, D., Pearce, D.J., Noble, J.: Efficient object querying for java. In: Thomas,
D. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 28-49. Springer, Heidelberg (2006)
Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M.,
Irwin, J.: Aspect-oriented programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP
1997. LNCS, vol. 1241, pp. 220-242. Springer, Heidelberg (1997)

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327-353. Springer, Heidelberg (2001)

Noble, J., Grundy, J.: Explicit relationships in object-oriented development.
In: Conference on the Technology of Object-Oriented Languages and Systems
(TOOLS95), pp. 211-226. Prentice-Hall, Englewood Cliffs (1995)

Helm, R., Holland, I.M., Gangopadhyay, D.: Contracts: specifying behavioral com-
positions in object-oriented systems. In: European Conference on Object-Oriented
Programming on Object-Oriented Programming Systems, Languages, and Appli-
cations (OOPSLA/ECOOQOP ’90), pp. 169-180. ACM Press, New York (1990)
Aksit, M., Wakita, K., Bosch, J., Bergmans, L., Yonezawa, A.: Abstracting object
interactions using composition filters. In: Guerraoui, R., Riveill, M., Nierstrasz,
O. (eds.) Object-Based Distributed Programming. LNCS, vol. 791, pp. 152-184.
Springer, Heidelberg (1994)

Herrmann, S.: Object teams: Improving modularity for crosscutting collaborations.
In: Aksit, M., Mezini, M., Unland, R. (eds.) NODe 2002. LNCS, vol. 2591, pp. 248—
264. Springer, Heidelberg (2003)

	A Relational Model of Object Collaborations and Its Use in Reasoning About Relationships
	Introduction
	Relations
	Abstracting Object Collaborations
	Terminology and Restrictions

	Member Interposition
	Problem Description and Solution
	Formalization

	Relationship Invariants
	Structural Invariants
	Value-Based Invariants

	Discussion
	References
	Class Invariants
	Invariant Preservation

	Language Design Issues
	Three Dimensions of Problem Decomposition
	Language Definition
	Creation, Addition, Removal, and Retrieval
	Atomic Procedures

	Related Work
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

