
Objects as Session-Typed Processes

Stephanie Balzer and Frank Pfenning
Computer Science Department

Carnegie Mellon University, USA

Abstract
A key idea in object-oriented programming is that objects
encapsulate state and interact with each other by message
exchange. This perspective suggests a model of computation
that is inherently concurrent (to facilitate simultaneous mes-
sage exchange) and that accounts for the effect of message
exchange on an object’s state (to express valid sequences of
state transitions). In this paper we show that such a model
of computation arises naturally from session-based commu-
nication. We introduce an object-oriented programming lan-
guage that has processes as its only objects and employs lin-
ear session types to express the protocols of message ex-
change and to reason about concurrency and state. Based on
various examples we show that our language supports the
typical patterns of object-oriented programming (e.g., en-
capsulation, dynamic dispatch, and subtyping) while guar-
anteeing session fidelity in a concurrent setting. In addition,
we show that our language facilitates new forms of expres-
sion (e.g., type-directed reuse, internal choice), which are
not available in current object-oriented languages. We have
implemented our language in a prototype compiler.

Categories and Subject Descriptors D.1 [Programming
Techniques]: Concurrent Programming—Parallel program-
ming; D.1 [Programming Techniques]: Object-oriented
Programming

Keywords object, session types, linear types, process, pro-
tocol

1. Introduction
Since its inception in the 1960s [19, 20] and 1970s [30],
object-oriented programming has become a ubiquitous pro-
gramming model. A multitude of object-oriented languages
have emerged since, each with their own characteristics. In

an extensive survey of the object-oriented literature, Arm-
strong [8] identifies 39 concepts generally associated with
object-oriented programming, such as object, encapsulation,
inheritance, message passing, information hiding, dynamic
dispatch, reuse, modularization, etc., out of which she dis-
tills the “quarks” of object-orientation, which are: object and
class, encapsulation and abstraction, method and message
passing, dynamic dispatch and inheritance.

These findings are consistent with the concepts sup-
ported by the protagonists of object-oriented languages:
Simula [19, 20] introduced the notions of an object and
a class and substantiated the idea to encapsulate the op-
erations and the data on which they operate in an object.
Smalltalk [30] put forward the message-passing aspect of
object-orientation by viewing computation as message ex-
change, whereby messages are dispatched dynamically ac-
cording to the actual receiver object. The Actor model im-
plemented this idea in a distributed and concurrent context
where message-passing is the sole means of exchange be-
tween actors [6, 34].

Viewing computation as the exchange of messages be-
tween stateful objects seems to be a key idea in object-
oriented programming. Alan Kay phrased this view in a
publicly available email exchange on the meaning of object-
oriented programming as follows: “OOP to me means only
messaging, local retention and protection and hiding of
state-process, and extreme late-binding of all things. It can
be done in Smalltalk and in LISP. There are possibly other
systems in which this is possible, but I’m not aware of them.”
([42]). This view suggests computation to be inherently con-
current, as an object may simultaneously exchange mes-
sages with several objects, and the expression of the proto-
cols that govern message exchange.

Concurrency support in mainstream object-oriented lan-
guages is the subject of an active area of research. Main-
stream object-oriented languages typically support concur-
rency by purely operational synchronization idioms (e.g., syn-
chronized statements/methods), but leave it to the program-
mer to ensure thread-safety of a class and absence of data
races. To alleviate the burden put on programmers, type sys-
tem extensions have been suggested that, for example, use
ownership types [18] to guarantee absence of data races and
deadlocks [13] or the notion of an interval to make the or-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

AGERE!’15, October 26, 2015, Pittsburgh, PA, USA
ACM. 978-1-4503-3901-8/15/10...$15.00
http://dx.doi.org/10.1145/2824815.2824817

13

dering between threads explicit for the prevention of data
races [44]. Of particular concern are also high-level data
races, whose prevention is possible by means of a static
analysis [59]. Moreover, a wide range of tools have been de-
veloped for static [49] and dynamic [25] data race detection.

Considerable effort has been devoted to protocol expres-
sion in object-oriented languages. Work on typestate [11, 22]
allows programmers to annotate methods with the receiver
object’s typestate in pre- and post-conditions. To check ad-
herence to the protocols expressed in this way, static pro-
gram analysis techniques are employed [12, 22] that use
some means to control aliasing, such as fractional permis-
sions [14]. Another line of research adopts session types [36,
37] for protocol expression in a concurrent context and in-
corporates session types into existing object-oriented lan-
guages [23, 39, 40] based on a linear treatment of channels.

In this paper, we take a different approach to supporting
concurrency and expressing protocols. Rather than extend-
ing existing object-oriented languages with concepts nec-
essary to address the challenges, we derive a new model
of object-oriented programming that internalizes the semi-
nal idea of object-orientation that computation is concurrent
message exchange between stateful objects. Our model takes
linear session types as its foundation. This choice is moti-
vated by the observation that object-oriented programming
arises naturally from session-typed communication and fa-
cilitates program reasoning, because linear session types
guarantee session fidelity and freedom of data races and
deadlocks.

We present our concurrent object-oriented language CLOO
(Concurrent Linear Object-Orientation). In CLOO, pro-
cesses are the only objects, and objects interact with each
other by sending messages along channels. Message ex-
change is asynchronous, and an object is identified with the
channel along which it exchanges messages with its clients.
Objects (and their channels) are typed with session types,
which define the protocol of message exchange. Protocol
compliance is enforced by CLOO’s type system, relying on
a linear treatment of channels.

An important concern in the development of CLOO was
to facilitate program reasoning while maintaining a gen-
uine object-oriented programming style. Based on various
programming examples, we show that CLOO supports the
typical object-oriented concepts, such as encapsulation, dy-
namic dispatch, and subtyping. In addition, we show that
CLOO enables new forms of program expression, such as
type-directed code reuse and internal choice, concepts not
existing in current object-oriented languages. Whilst type-
directed reuse supports program extensibility in a similar
way as inheritance, it does not suffer from the modular-
ity issues caused by the latter, because type-directed reuse
respects encapsulation. We have implemented a prototype
compiler for CLOO, which supports most of the features
presented in this paper.

Session Type Behavior

!τ ;σ Value output: send value v of type τ , continue as
process of type σ.

?τ ;σ Value input: receive value v of type τ , continue as
process of type σ.

!σ1;σ2 Channel output: send channel of type σ1, continue
as process of type σ2.

?σ1;σ2 Channel input: receive channel of type σ1, continue
as process of type σ2.

!{l1 : σ1, . . . , ln : σn} Internal choice: send label li , continue as process of
type σi .

?{l1 : σ1, . . . , ln : σn} External choice: receive label li , continue as process
of type σi .

ε Terminate process.

µt. σ Recursive session.

Table 1. Linear session types.

Structure: Section 2 provides a short introduction to lin-
ear session types. Section 3 introduces CLOO and the basic
correspondence between session-typed communication and
object-oriented programming. Section 4 discusses the prop-
erties of session fidelity, data race freedom, and deadlock
freedom. Section 5 elaborates on the new forms of expres-
sion available in CLOO. Section 6 provides a discussion of
encapsulation and aliasing and an outlook on future work.
Section 7 summarizes related work, and Section 8 concludes
the paper.

2. Background
Session types [36, 37] prescribe the interaction behavior
of processes that communicate along channels, connecting
an offering process with its client process. A session type
thus governs the protocol of message exchange. Table 1
provides an overview of the kinds of protocols that can be
expressed using session types. For example, the session type
!int; ?int; ε requires sending an integer, then receiving an
integer, and then terminating the session. Besides integers
and other basic data values, processes can also send channels
along channels (as in the π-calculus [46]) and can offer
external and internal choices. An external choice ?{l1 :
σ1, . . . , ln : σn} means to receive one of the labels li and
then behave as prescribed by σi . Conversely, an internal
choice !{l1 : σ1, . . . , ln : σn} will send one of the labels li
and continue as σi . Session types can be recursive, allowing
for protocol repetition.

To guarantee that the interaction between a client process
and an offering process indeed follows the protocol defined
by the session type, aliasing of channels must be controlled.
We treat channels linearly [29], making channels owned by
their client process, with ownership transfer being possible
by passing a channel to another process. For example, the
typing rule for a channel output

Σ; ∆, d : σ1 \∆ ` send(c, d) :: (c : !σ1;σ2) \ (c : σ2)

14

indicates that the channel d of type σ1 will no longer be
available to the offering process once it has been sent along
the channel c. The exact reading of the above typing rule
is irrelevant for this paper, we refer the interested reader to
the footnote1. Linearity requires a process to “consume” all
the owned channels before terminating, either by passing
them on to another process or by waiting for the offering
process to terminate. The pattern of channel use enforced by
linearity is thus colloquially referred to as an exactly once
usage pattern.

3. Object-Oriented Programming as
Session-Based Communication

In this section, we introduce our concurrent object-oriented
language CLOO (Concurrent Linear Object-Orientation)
and show, based on examples, that object-oriented program-
ming arises naturally from linear session-based communi-
cation. The correspondence between the concepts of our
language and the “quarks” of object-orientation are sum-
marized in Table 2, which we detail in the following sub-
sections. Section 4 focuses on CLOO’s support for protocol
expression and concurrency.

We have implemented a prototype compiler for CLOO,
which supports most of the features presented in this paper.
Our implementation builds on our compiler for the language
C0 [10], a subset of C augmented with contracts. As such
CLOO maintains a C-style syntax, a decision made out of
convenience, but irrelevant to the concepts presented in this
paper.

3.1 Objects as Processes
A CLOO program consist of a number of concurrently exe-
cuting processes that communicate by exchanging messages
with each other along channels. CLOO allows programmers
to explicitly specify the protocol of message exchange in
terms of a session type. Adherence to the protocol defined
by the session type is enforced by the linear type system.

We use the example of a read-once counter to illustrate
these concepts. A counter process can respond to the mes-
sages inc and val . If a counter process receives the message
inc, it increments its current value and proceeds recursively.
If a counter process receives the message val , it sends its
current value and terminates. In terms of the notation of Sec-
tion 2, this protocol can be expressed by the following ses-
sion type:

ctr = ?{inc : ctr , val : !int; ε}
Figure 1 shows the corresponding session type declara-

tion in CLOO. The struct-like notation choice name {. . .};

1 The typing rule uses the judgment Σ; ∆ \∆′ ` s :: (c : σ) \ (c : σ′)
to type a process statement s. The judgment indicates that the process
offers a session of type σ along channel c and transitions to a session of
type σ′ as a result of the interaction. The judgement employs the typing
context Σ to type a process’ local state and the linear context ∆ to type the
channels owned by the process. ∆ denotes the available channels before the
interaction, ∆′ the available channels after the interaction.

typedef <?choice ctr> ctr; / / e x t e r n a l c h o i c e
choice ctr {
<ctr> Inc; / / i n c r e m e n t va lue , c o n t i n u e
<!int; > Val; / / send va lue , t e r m i n a t e

};

Figure 1. Session type ctr in CLOO.

declares the choice and the type definition denotes the actual
communication direction (i.e., input or output). For example,
the session type ctr is an external choice between Inc and
Val. Upon receipt of the label Inc, a process implementing
ctr increments its value and continues as a ctr, awaiting to
receive any of the labels Inc and Val. Upon receipt of the
label Val, a process implementing ctr sends its value and
terminates. Unlike the original session type work [36, 37],
we use a intuitionistic sequent-calculus-based formulation
of session types [15], which discriminates between the offer-
ing and use site of a process service, eliminating the need to
express a session type’s dual. Message exchange in CLOO
happens asynchronously, allowing processes to proceed in
parallel without blocking for acknowledgement of message
exchange.

Figure 2 shows a process implementation of the session
type ctr in CLOO. The implementation consists of the two
process declarations bit and eps that implement a counter
in terms of a bit string. The bit string is represented as a
sequence of bit processes, starting with the least signifi-
cant bit and ending with the most significant bit, followed
by an eps process that represents the high end of the bit
string. We would spawn a bit string process with ctr $c
= eps(), which binds the channel along which the newly
spawned process offers its service to the channel variable
$c. To distinguish channels from local variables, channels
are preceded by a dollar sign $.

Process declarations indicate the type of the session they
implement and the name of the channel along which they of-
fer that session. For example, process bit offers along the
channel $lower a session of type ctr. Processes can de-
clare arguments, which are either local variables to capture
internal state or channels to communicate with other pro-
cesses. For example, process bit declares the local variable
b, representing the bit’s value, and the channel $higher
along which the bit process communicates with its next more
significant bit process.

In CLOO, we distinguish the internal state of a process
from its externally observable state. The former amounts to
a process’ local variables, the latter amounts to a process’
protocol state. Whereas local variables are altered by assign-
ment, a process’ protocol state is treated linearly and altered
by message exchange. As such, local variables amount to the
only state of a process that is shared and thus constitute the
imperative part of CLOO. To guarantee encapsulation of lo-
cal variables, they can only be read or written to in the body
of the process that declares the variables. An assignment to

15

OO Remarks CLOO

Object A process has state and identity. Its externally observable state amounts to the process’ protocol state, its internal state to
its local variables.

Process

Encapsulation A process’ local variables can only be read or written to by the declaring process, possibly in response to receipt of a message.
A process’ protocol state can only be altered by exchanging messages according to the protocol prescribed by the process’
session type. Only a process’ protocol state is externally observable, as it amounts to the process’ session type.

Encapsulation

Message An external choice’s labels correspond to a class’ methods. In addition, messages can encompass labels of internal choice,
basic data values, and channels. Message exchange constitutes the sole means of externally observable computation.

Label

Reference Communication happens always along a channel, a channel thus being the only means to “access” a process. Channels are
bidirectional and owned by the client process. Ownership of a channel can be transferred by passing the channel to another
process.

Channel

Dynamic dispatch The process that will receive a message is determined by the process at the channel endpoint, not generally known at compile
time, which then selects the appropriate branch of a switch statement.

Switch

Subtyping Structural subtyping arises between different forms of external and internal choices. For an external choice, subtyping allows
a process accepting more choices to be used wherever a subset of those choices is required. For an internal choice, subtyping
allows a process offering less choices to be used wherever a superset of those choices is expected.

Subtyping

Table 2. Basic correspondence between object-oriented concepts and CLOO concepts.

/ / c u r r e n t p r o c e s s o f f e r i n g on c h a n n e l ’ lower ’ ,
/ / l o c a l v a r i a b l e ’ b ’ , u s e s c h a n n e l ’ h i g h e r ’
ctr $lower bit(bool b, ctr $higher) {
loop { / / c o n t i n u e u n t i l t e r m i n a t e d
switch ($lower) { / / w a i t t o r e c e i v e l a b e l

case Inc:
if (b == false) {

b = true;
} else {

$higher.Inc; / / send c a r r y b i t as l a b e l ’ I n c ’
b = false;

}
break;

case Val:
$higher.Val;
int n = recv($higher); / / r e c e i v e v a l u e
send($lower, 2*n+(b?1:0)); / / send v a l u e
wait($higher); / / w a i t f o r ’ h i g h e r ’ t o t e r m i n a t e
close($lower); / / t e r m i n a t e

}}}

ctr $lower eps() {
loop {
switch ($lower) {

case Inc:
/ / c r e a t e new ’ eps ’ p r o c e s s o f f e r i n g on ’ z e r o ’
ctr $zero = eps();
/ / f o rward r e q u e s t s t o newly c r e a t e d ’ b i t ’ p r o c e s s
$lower = bit(true, $zero);

case Val:
send($lower, 0);
close($lower);

}}}

Figure 2. CLOO processes implementing session type ctr
(see Figure 1) as a bit string.

a local variable can be triggered by the receipt of a message,
either along the offering channel or any other channels of
which the process is a client. For example, process bit up-
dates its bit upon receiving the label Inc along its offering
channel.

A loop statement loop {...} repeats the enclosed
code block until the process terminates. Loop statements
are typically used to implement recursive session types. Al-
ternatively, a recursive session type can be implemented by
a recursive process declaration. A switch ($c) {...}
is used to branch on the cases of an external choice for some
channel $c. It blocks the process until it receives a label

along $c. For example, upon receiving the label Inc, a
non-empty bit string sets its own bit to true, if it is false,
or asks its next more significant bit process to increment
itself. Each branch must be ended with an explicit terminat-
ing statement, such as break, close, or forwarding, to
prevent execution from “falling through”. Channel forward-
ing, such as $lower = bit(true, $zero) in the Inc
branch of process eps, consumes the current process and
advises the client process to communicate henceforth along
the channel to the right of the equal sign.

In addition to process declarations, CLOO supports func-
tion declarations (not shown in Figure 2). Function decla-
rations differ from process declarations in that they return
a value of a basic type rather than a session type. There-
fore, the invocation of a function in the body of a process
does not have an effect on the process’ externally observable
state. Function declarations are helpful to modularize auxil-
iary code.

The example of a counter illustrates that there is a nat-
ural correspondence between processes and objects. Pro-
cesses fully encapsulate their state because a process’ lo-
cal variables are internal to the process and because a pro-
cess’ protocol state can only be altered by message exchange
along the process’ channel. Channels thus correspond to ref-
erences, being the only way to “access” an object. Chan-
nels, however, provide stronger guarantees than their object-
oriented counterparts because they implement the protocol
prescribed by their linear session type (see discussion in Sec-
tion 4.1). Moreover, channels are bidirectional, which gives
rise to the concept of an internal choice, for which there ex-
ists no analog in object-oriented languages (see discussion
in Section 5.2). The first four entries in Table 2 summarize
these correspondences.

3.2 Dynamic Dispatch
To illustrate the fifth correspondence in Table 2, we extend
our example with a different implementation of session type
ctr. Figure 3 shows this alternative implementation. It com-

16

ctr $c nat(int n) {
loop {
switch ($c) {
case Inc: n = n + 1; break;
case Val: send($c, n); close($c);

}}}

Figure 3. CLOO process implementing session type ctr
(see Figure 1) as an accumulator.

prises the process declaration nat and keeps the counter in
a local variable n. We would spawn such a process with ctr
$c = nat(0).

Given that there can be multiple implementations of the
same session type, CLOO naturally supports a form of dy-
namic dispatch, where the actual code to be executed in re-
sponse to a message is determined by the actual process con-
nected to the channel at run-time. For example, we could
have a mixed implementation of a counter where the lower
32 bits are bit processes, each holding one bit, while the
upper bits are stored as a single number in a nat process.

This form of dynamic dispatch is analogous to the one
resulting from interfaces and classes in Java-like languages.
An interface can be implemented by various classes, and the
methods defined by the interface are dispatched according
to the dynamic type of the receiver object. Similarly, the
messages a client process sends along a channel in CLOO
will result in the execution of the code of the process that is
bound to the channel at run-time.

Process declarations relate to classes in Java-like lan-
guages also from a different point of view. Similarly to a
class, they serve as a “template” from which processes are
instantiated. In the next section we substantiate the corre-
spondence between processes and session types and classes
and interfaces, respectively, even further by showing that
processes can implement different session types by subtyp-
ing.

3.3 Subtyping
Structural subtyping arises in a linear session-typed lan-
guage between different forms of external and internal
choices, respectively. For an external choice, we can sub-
stitute a process that accepts additional choices (which will
never be selected); for an internal choice we can substitute
a process that offers fewer choices (the others will never be
sent) [27]. For example, the session type

typedef <?choice ctr_inc2> ctr_inc2;
choice ctr_inc2 {
<ctr_inc2> Inc;
<ctr_inc2> Inc2;
<!int; > Val;

};

specifies the protocol of a counter that can be incremented
in steps of one or two. Because the session type ctr inc2
accepts at least the same choices as the session type ctr
in Figure 1, it is a subtype of ctr. As a result, any process

implementing ctr inc2 can be substituted wherever a pro-
cess of type ctr is expected.

Our current prototype compiler does not support subtyp-
ing at this moment, but we expect its implementation to be
analogous to [3]. We have already worked out the algorith-
mic type checking rules to accommodate subtyping between
non-recursive session types. Next, we will extend our sub-
typing relation to a co-inductive subtyping relation between
recursive session types, as described in [27]. Our implemen-
tation will then have to enforce that recursive session types
are contractive [27], guaranteeing type checking of recursive
types to be decidable.

4. Language Properties
In this section, we discuss the safety properties provided
by an object-oriented programming model that is based on
linear session types.

4.1 Session Fidelity
To make sure that the interaction between processes follows
the intended protocol, CLOO’s type system must guarantee
that the session type of a channel along which a client inter-
acts with a process always coincides with the process’ pro-
tocol state. For example, once a client has sent the label Val
along a ctr channel, the process bound to the channel can
only send back an integer value to the client. Any other ex-
change would be type-incorrect and violate session fidelity.
The type checker of our prototype compiler implements cor-
responding checks to ensure session fidelity, a formal proof
of session fidelity is in preparation.

The key to guaranteeing session fidelity is linearity. Com-
munication always takes place along a channel, and a chan-
nel connects exactly two processes, a client process and an
offering process. While a process can use any number of
processes as clients, linearity of channels guarantees that a
process offers a service to exactly one other process at any
given point in time. A graph of communicating processes
thus amounts to a tree, with ownership transfer being possi-
ble by passing a channel to another process.

Linearity also facilitates reasoning about program cor-
rectness. For example, due to the absence of aliasing, it is
guaranteed that the counter implementation shown in Fig-
ure 2 truthfully reflects the counter’s value. If a bit process
were not to own its $higher process (and transitively all
more significant bit processes) any assumptions it makes
on those processes’ state could be compromised by changes
done to them through aliases.

The benefits of linear session types for program reasoning
are indisputable. Linearity, however, also restricts the num-
ber of possible ways to implement a problem, a feature that
is common to all approaches (e.g., typestate [11, 22], object-
oriented sessions [23, 39, 40]) that use alias control or lin-
earity. In CLOO, programmers can use ownership transfer
to pass on a channel to another process. In our experience

17

typedef <?choice queue> queue; / / e x t e r n a l c h o i c e
typedef <!choice queue_elem> queue_elem; / / i n t e r n a l c h o i c e
choice queue {

<?int; queue> Enq; / / enqueue r e c e i v e d va lue , c o n t i n u e
<queue_elem> Deq; / / c o n t i n u e as ’ queue e l em ’
<!bool; queue> IsEmpty; / / check f o r e m p t i n e s s
< > Dealloc; / / t e r m i n a t e

};

choice queue_elem {
<queue> None; / / send ’ None ’ , c o n t i n u e
<!int; queue> Some; / / send ’ Some ’ , send va lue , c o n t i n u e

};

queue $q elem (int x, queue $r) {
loop {
switch ($q) {

case Enq:
int y = recv($q);
$r.Enq; send($r, y);
break;

case Deq:
$q.Some; send($q, x);
$q = $r; / / f o rward r e q u e s t s a long ’ q ’ t o ’ r ’

case IsEmpty:
send($q, false);
break;

case Dealloc:
$r.Dealloc; wait($r);
close($q);

}}}

queue $q empty () {
loop {
switch ($q) {
case Enq:
int y = recv($q);
queue $e = empty();
$q = elem(y, $e);

case Deq:
$q.None;
break;

case IsEmpty:
send($q, true);
break;

case Dealloc:
close($q);

}}}

Figure 4. Queue with constant-time enqueue and dequeue
operations from the perspective of the client.

so far, this restriction has never become an obstacle, but we
keep it as an issue to think about as part of future work. We
expand on linearity further in Section 6.2.

4.2 Data Race and Deadlock Freedom
Next, we introduce a more advanced example that demon-
strates how easy it is to program concurrently in CLOO and
reason about the resulting code. Figure 4 shows the session
type and process declarations of a queue. The implementa-
tion exploits parallelism for constant-time enqueue and de-
queue operations from the perspective of the client.

The queue’s protocol sends label messages in both direc-
tions, from the client process to the offering queue process
and vice versa. Each direction is expressed separately, by an
external (queue) and internal choice (queue element),
respectively. A queue starts out as a queue, awaiting to re-
ceive any of the labels Enq, Deq, IsEmpty, or Dealloc.
It transitions to a queue elem upon receiving the label

Deq, in which case it sends the label None, if it is empty, or
the label Some followed by the queue element, otherwise,
and then continues as a queue.

The session types queue and queue element are im-
plemented by the process declarations elem and empty.
A queue is represented by a sequence of elem processes,
ended by an empty process. While dequeue operations re-
move the element at the head of the queue, enqueue opera-
tions append an element to its end. The latter operation ex-
ploits parallelism, guaranteeing that enqueue operations are
constant-time too, from the perspective of the client. In its
Enq branch, process elem passes the value to be enqueued
on to its neighboring elem process and continues to respond
to messages received from its client, while the value to be en-
queued is passed down in this way until it reaches the empty
process and is inserted.

Linearity of channels and encapsulation of process-local
state guarantee that the queue behaves according to its pro-
tocol and rule out the possibility of races on channels or
process-local state. Linearity is also key to asserting a global
progress property akin to deadlock freedom that guarantees
that at least one of all the available processes takes a step,
unless the computation is finished. Intuitively, the property
holds because processes will always be arranged in the form
of a (dynamically changing) tree without sharing or cycles.
Since each process adheres to its session type, the only pos-
sibility of a communication not occurring is if a process
repeats an infinite sequence of internal actions. The lan-
guage thus satisfies a (weak) form of deadlock freedom, akin
to progress in functional languages, where a function may
never return due to nontermination. In future work we intend
to prove deadlock freedom rigorously. We expect the proof
to be analogous to the corresponding proof in [17], modulo
the treatment of process-local state and subtyping. To guar-
antee a stronger form of deadlock freedom, we would need
to employ the technique of Toninho et al. [56], which im-
poses a simple syntactic criterion on processes, analogous to
a termination condition in functional languages.

5. New Forms of Expression
In this section, we elaborate on the new forms of expression
that arise from a linear session-typed approach to object-
oriented programming.

5.1 Type-Directed Reuse
In the development of large software systems, the ability to
reuse existing code is a convenient property of a program-
ming language. In languages like Java, code reuse can be
achieved through inheritance2. Despite its benefits, the ap-
proach is also criticized as compromising modularity be-
cause inheritance can bypass encapsulation, making a sub-

2 Java-like languages use inheritance to achieve subtyping and code reuse.
Conceptually, the two notions are different, why the term subclassing is also
used for the latter.

18

ctr_test $c counter_inc2(ctr $d) {
loop {
switch ($c) {
case Inc2:
$d.Inc;
$d.Inc;
break;

default:
$c <=> $d; / / t ype−d i r e c t e d d e l e g a t i o n t o ’ d ’

}
}

}

Figure 5. Type-directed code reuse: in all branches but
Inc2, requests are satisfied by the process bound to $d,
and thus process counter inc2 “inherits” code from
the process implementing its supertype ctr.

class dependent on its superclass. This breach gives rise to
the fragile base class problem [45] and is also a source of
concern for object-oriented program verification [24, 43].

To facilitate program reasoning, CLOO only supports
techniques for code reuse that respect encapsulation. A
powerful such technique is type-directed delegation. Type-
directed delegation combines message passing with subtyp-
ing such that a process of type σ′ delegates any messages
to a process of a supertype σ that already implements the
requested behavior.

Figure 5 illustrates type-directed delegation on the ex-
ample of process counter inc2, which implements the
session type ctr inc2 defined in Section 3.3. The type-
directed delegation statement $c <=> $d in the default
case indicates that in all remaining branches requests to $c
are delegated correspondingly to $d. Because the type of
$c is a subtype of the type of $d, both the remaining cases
and the exact delegating code are well-defined and can be
inferred.

Interestingly, the amount of code to be written by the
programmer in Figure 5 roughly corresponds to the one of
declaring an appropriate subclass that implements the double
increment in a class-based object-oriented implementation.
Unlike inheritance, however, type-directed reuse is mediated
through the session type of the implementing process and
thus encapsulation of that process is respected.

The idea to delegate requests to another process that al-
ready implements the behavior can also be employed to
achieve code reuse in the absence of a subtyping relation-
ship. In this case, inference of the default cases and cor-
responding delegation code is no longer possible, and pro-
grammers are required to provide this information explicitly.
On the other hand, this “undirected” form of delegation still
saves the actual code of the behavior to be reused and has the
advantage exactly that it does not require the two processes
to be related, alleviating a process from anticipating possible
future reuse scenarios.

Delegation, type-directed and undirected, differs from
channel forwarding (see Section 3.1) as it keeps the current
process alive and mainly delegates requests to another pro-

cess of which the current process is a client. Type-directed
delegation bears resemblance to SML functors [33, 47]
and corresponds to identity expansion in linear logic that
eliminates the use of the identity rule at a compound type
(ctr inc2) to uses of the identity rule at smaller types
(ctr). Type-directed delegation is different from the form
of delegation found in Self [58] because it does not pass
along the original receiver of a message when delegating the
message3. Moreover, Self is a dynamically-typed language,
whereas type-directed delegation uses typing information to
infer the delegating code. Our prototype compiler supports
undirected delegation, but does not yet support type-directed
delegation. We expect its support to be straightforward.

5.2 Internal Choice
Another construct available in CLOO, but missing in exist-
ing object-oriented languages, is internal choice. In this sec-
tion we contrast internal choice with external choice and dis-
cuss the different characteristics of the two constructs with
regard to program extensibility.

Figure 6 shows an alternative implementation of the bit
string implementation of a counter shown in Figure 2. The
processes inc and zero implement the session type bits
that defines the protocol of a bit string in terms of an internal
choice. According to this protocol, a process implementing
the session type bits can either send the label Eps, after
which it terminates, or the label Bit, after which it sends
the bit value and then continues as a bits process.

Unlike the external choice-based implementation, this
implementation does not represent the bit string in terms of
bit and eps processes, but in terms of Bit and Eps mes-
sages sent to a client. The messages are sent starting with
the least significant bit and ending with an Eps label. For
example, the following code spawns a zero process and
then a sequence of 6 inc processes with the zero process
at its end. Once the loop terminates, channel $ctr denotes
the most recently spawned inc process, which will send the
messages Bit, false, Bit, true, Bit, true, Eps, and
thus the number 6:

bits $ctr = zero();
for (int i = 0; i < 6; i++) {
$ctr = inc($ctr);
}

Whereas processes zero and inc are the processes pro-
ducing the stream of bit string messages, process val con-
sumes such a stream and converts the bit string received in
this way to its corresponding decimal number and sends that
number along its offering channel. Process zero produces
the empty bit string. Process inc, on the other hand, uses a
process that produces a stream of bit string messages repre-
senting the number n to offer a stream of bit string messages
representing the number n+ 1.

3 We have chosen the term “delegation” for type-directed code reuse to
avoid confusion with channel forwarding, which CLOO supports as well.

19

typedef <!choice bits> bits; / / i n t e r n a l c h o i c e
choice bits {
<> Eps; / / send ’ Eps ’ , t e r m i n a t e
<!bool; bits> Bit; / / send ’ B i t ’ , send b i t , c o n t i n u e

};

bits $zero zero() {
$zero.Eps;
close($zero);

}

bits $succ inc(bits $ctr) {
loop {
switch($ctr) {
case Eps:
wait($ctr);
$succ.Bit; send($succ, true);
$succ = zero();

case Bit:
bool b = recv($ctr);
if (b == false) {

$succ.Bit; send($succ, true);
$succ = $ctr;

} else {
$succ.Bit; send($succ, false);

}
break;

}}}

<!int;> $val val(bits $ctr) {
int n = 0;
int p = 1; / / = 2ˆ0
loop {
switch ($ctr) {
case Eps:
wait($ctr);
send($val, n);
close($val);

case Bit:
bool b = recv($ctr);
n = n + (b?1:0) * p;
p = 2 * p;
break;

}}}

Figure 6. Alternative implementation of a bit string (see
Figure 2) based on internal choice.

It is instructive to compare the two implementations of
a bit string with each other. In a certain sense they are
“inverse” to each other. Whereas the external-choice-based
implementation represents the bit string in terms of bit
and eps processes, the internal-choice-based implementa-
tion represents the bit string in terms of Bit and Eps mes-
sages. As a result, the labels of a choice in one implementa-
tion become processes in the other implementation, and vice
versa.

The constructs of external and internal choice lead to dif-
ferent modularizations of a program. In choosing one con-
struct over the other, ease of modular extensibility plays an
important factor. If the program to be implemented is sta-
ble with regard to the operations that it should support, but
requires new variants in the future, external choice is prefer-
able. Conversely, if the program is stable with regard to the
variants that it should support, but requires new operations
in the future, internal choice is preferable.

For example, adding a new operation, such as one to de-
crease the value of a bit string, can be done modularly in the

internal-choice-based implementation because only a new
corresponding process has to be defined, but the session type
bits can be kept unchanged. On the other hand, adding a
new variant, such as one representing a minus bit, amounts
to a non-modular change because it requires updating the
session type bits along with all its clients.

Mainstream object-oriented languages lack a correspond-
ing counterpart for CLOO’s internal choice. As a result,
those programming languages must encode an internal
choice indirectly in terms of an external choice. This en-
coding is achieved by the Visitor pattern [26], for example,
where the variants (data structure) to be extended with new
operations (visitor) must cater for future extensions by set-
ting up an accept method.

6. Discussion
In this section, we discuss the role and realization of encap-
sulation in object-oriented languages, elaborate on linearity,
and give an outlook on future work.

6.1 Encapsulation
A key idea of the object-oriented paradigm is to encapsu-
late the operations and the data on which they operate in
an object. Languages like Simula [19, 20] pushed this idea
and the Actor model [6, 34] distilled it to its purest form by
making message exchange the sole mechanism of computa-
tion. In CLOO, we follow this tradition and make sure that
a process’ externally observable state can only be changed
by means of message exchange. Since the protocol of mes-
sage exchange is specified by a linear session type in CLOO,
modular reasoning about the resulting program is possible.

The examples used throughout this paper even demon-
strate that the notion of state loses its prominent role it takes
in mainstream object-oriented programming languages and
becomes a mere implementation detail in CLOO. This treat-
ment makes it possible, for example, to have a mixed im-
plementation of a counter where the lower 32 bits are bit
processes, each storing one bit, whereas the upper bits are
stored as a single number in a nat process.

In mainstream object-oriented languages, on the other
hand, state is an integral part of a program and special
provisions must be taken by the programmer to ensure that
it is appropriately encapsulated. In Java, for example, fields
are exposed to the entire package by default.

A similar breach of encapsulation can also be caused by
inheritance. Inheritance allows a subclass to intercept code
inherited from its superclass. This coding pattern is typi-
cally found in programs that use open recursion for code
reuse. Open recursion combines inheritance with dynami-
cally dispatched self-calls, allowing superclasses to invoke
customized code in, possibly yet to be written, subclasses
(down-call) and subclasses to intercept inherited code (up-
call). Whilst open recursion makes code extensible, it aggra-

20

vates the fragile base class problem and seriously endangers
encapsulation and reasoning [7].

As discussed in Section 5.1, CLOO only supports tech-
niques of code reuse that respect encapsulation. Our expe-
rience has shown, however, that the technique of delegation
is sufficiently powerful to also accommodate the code reuse
scenarios targeted by open recursion. By combining undi-
rected delegation with function invocations a similar reuse
effect can be achieved in CLOO. Whereas delegation allows
“inheriting” unchanged code, the functions encapsulate the
code that would otherwise be executed in response to a self-
call. Encapsulating that code in separate function declara-
tions is necessary because linearity prevents a process from
sending a message to itself.

6.2 Linearity
A question that naturally comes up is whether linearity is
a too limiting restriction to implement real-world programs.
Using our prototype compiler, we have already implemented
numerous programs (including object-oriented design pat-
terns) without linearity becoming an obstacle. We have made
similar observations when experimenting with the functional
language SILL [3]. Also, we find it very encouraging that
the Rust programming language [2] employs an affine 4 type
system, which is used as the basis of a recently developed
session type library for Rust [41], which has been put to
test to define and statically enforce Servo [5] communica-
tion protocols. The notion of borrowing [48] implemented
in Rust is analogous to ownership transfer in CLOO, where
the channel is sent and thus “lent out” to another process to
perform an operation and then sent back once the operation
is completed.

Given our experience and the use of linear/affine type sys-
tems both in research and practice suggests that linearity is
not an actual obstacle, but the question rather becomes how
many programs can be elegantly expressed with this restric-
tion in place. In a sense, the situation seems analogous to the
developments in pure functional programming languages,
where effects were not dismissed a priori, but were accom-
modated once the right abstractions were found (i.e., mon-
ads) to integrate mutable state and I/O without compromis-
ing purity.

Shared channels [15, 17, 60], for example, are readily ap-
plicable to our work and can be easily integrated into CLOO
in terms of the shifting operators defined in [52]. Whilst
shared channels result in process replication, they could be
combined with traditional locking primitives to share, for
example, a database. Achieving this form of sharing op-
erationally seems to be straightforward—more challenging
is the question what its logical interpretation might be. We
would like to investigate this question as part of future work.

4 An affine type system only rejects the structural property of contraction,
but permits weakening. As a result it allows “dropping” resources, enforc-
ing an at most once usage pattern.

6.3 Future Work
As part of future work, we want to complement our cur-
rent prototype compiler with subtyping and type-directed
reuse. We are currently formalizing the CLOO language.
This formalization draws from existing work [55] that com-
bines functional and message-passing concurrent computa-
tion based on linear logic. After those extensions and for-
malization, we would like to tackle the introduction of poly-
morphism in the sense of behavioral polymorphism [16] to
facilitate generic data structures and affine types [52] to al-
low garbage collection of processes.

Existing work on linear session types as a prime notion of
computation in functional programming languages is based
on the recent discovery that linear logic [29] can be given an
operational interpretation as session-typed message-passing
concurrent computation [15, 17, 60]. This discovery gives
rise to a Curry-Howard correspondence between session-
typed processes and the intuitionistic linear sequent calcu-
lus, such that session type constructors correspond to linear
propositions, processes to proofs, and process interactions to
proof reductions. In future work we want to explore this cor-
respondence in our setting. We believe that the distinction
between process-local state and externally observable state
is beneficial as it separates our language into an imperative
sequential and linear concurrent part.

Lastly, we plan to find ways of accommodating full shar-
ing whilst upholding the guarantees of session fidelity and
absence of data races and deadlocks. It seems feasible that
a combination of existing solutions (see discussion in Sec-
tion 6.2) can be applied to achieve this goal. A more chal-
lenging research goal is to find a solution that sustains the
Curry-Howard correspondence established between session-
typed processes and the intuitionistic linear sequent calculus.

7. Related Work
In this section, we review related work.

Linear Session Types As discussed in Section 6.3, there
exists recent work that exploits the Curry-Howard corre-
spondence [15, 17, 60] discovered between session types
and intuitionistic linear logic. Toninho et al. [55] introduce
the functional programming language SILL [3] that com-
bines functional and message-passing concurrent computa-
tion based on linear logic. Those efforts have given rise
to theories of behavioral polymorphism [16] and observa-
tional equivalence [51]. Most recently, an elegant integration
of synchronous and asynchronous communication has been
discovered [52]. Whereas all this research targets a purely
functional setting, our work applies linear session types to
an imperative, object-oriented setting. However, we expect
this existing research to offer guidance in refining our work
further because it provides evidence for the robustness of
logically justified session types and their application to pro-
gramming and reasoning.

21

Session Types for Objects There exists an active line of
research that introduces session types to object-oriented pro-
gramming languages [23] to accommodate safe, concurrent,
object-oriented computation, even in a distributed [39] or
event-driven [40] setting. Dezani-Ciancaglini et al. [23] in-
troduce the multi-threaded language MOOSE, which ex-
tends a Java-like object-oriented language with session
types. The authors discuss MOOSE’s type system and op-
erational semantics and prove progress and preservation. A
prime motivation of the work was to preserve the program-
ming concepts of the host language and only extend it with
further functionality: “We wanted MOOSE programming
to be as natural as possible to people used to mainstream
object-oriented languages.” ([23]). As a consequence, ses-
sions are confined to an object’s methods. Our work, in con-
trast, equates processes with objects, which gives processes
first-class citizenship and makes session types become the
types of objects.

Gay et al. [28] address the limited scope of MOOSE’s
sessions and allow sessions to extend over several methods.
In the distributed, object-oriented programming language
the authors describe, a channel can even be stored in an
object’s field. The main focus of the work, however, is the
specification and verification of communication protocols,
which is carried out in a sequential setting.

Actors and Message-Passing Concurrency Our work
shares with the Actor model [6, 34] the idea that message
exchange should be the sole means of externally observable
computation. The Actor model has lead to various imple-
mentations and has also been integrated into mainstream
object-oriented languages [31] in terms of libraries [32, 57].
Actors, however, are traditionally untyped, making it im-
possible to specify and verify the protocols emerging from
message exchange. Actors do not even restrict message ar-
rival order.

Neykova and Yoshida [50] target the expression of the
protocols for actor coordination. The authors introduce a
Python library that allows the expression of actor protocols
based on multiparty session type protocols [38]. Protocols
are expressed in the specification language Scribble [4] as
annotations of the Python code. Protocol compliance can
then be checked at run-time, using the Scribble toolchain.

From its message-passing approach to concurrency CLOO
also relates to the Erlang [9] programming language. Erlang
is a dynamically-typed functional language that uses asyn-
chronous message passing to achieve concurrency in a pos-
sibly distributed setting. CLOO, on the other hand, explores
asynchronous message passing in an object-oriented impera-
tive setting and uses linear session types to statically guaran-
tee session fidelity and absence of data races and deadlocks.

Similarly, CLOO is related to occam-pi [1], which com-
bines the concepts of CSP [35] with the π-calculus [46].
Processes in Occam-pi encapsulate their state and commu-
nicate via message exchange. Occam-pi further has a “zero-

tolerance” of aliasing, which it implements by disallowing
(channel) references in the first place. The CLOO type sys-
tem, on the other hand, uses linearity to control aliasing and
also supports session types to define and verify communica-
tion protocols.

Typestate for Objects Research on typestate [11, 21, 22,
54] approaches the idea of constraining valid sequences of
message exchange between objects from a different angle.
By introducing the explicit notion of a typestate and a means
to control aliasing (e.g., by fractional permissions [14]), pro-
grammers annotate methods with pre- and post-conditions
to specify an object’s typestate on entry and on return of
the method. Adherence to such protocol specifications can
then be checked by employing static program analysis tech-
niques [12, 22]. Traditionally, typestate has been used to ex-
press protocols in a sequential setting, but extensions to a
concurrent setting have been elaborated [53].

8. Conclusions
In this paper, we take a fresh look at object-oriented pro-
gramming. Starting with the seminal ideas that objects en-
capsulate the operations along with the data on which they
operate, that message exchange is the sole means by which
objects alter state, and that objects can simultaneously ex-
change messages, we derive a new model of concurrent
object-oriented programming that internalizes those ideas.
We have implemented this model in our prototypical lan-
guage CLOO (Concurrent Linear Object-Orientation).

Our model of object-oriented computation takes linear
session types as its foundation. In the paper we show, based
on various programming examples, that object-oriented pro-
gramming arises naturally from linear session-based com-
munication. According to this correspondence, objects can
be viewed as processes, references as channels, and method
invocations as label selection of external choices. We show
that labels are dynamically dispatched and that subtyp-
ing arises between different forms of external and internal
choices. Our model also enables new forms of expression
such as type-directed reuse and internal choice that are not
available in current object-oriented languages.

Thanks to its foundation on linear session types, our lan-
guage guarantees session fidelity and absence of data races
and deadlocks. A formal proof of those guarantees is in
progress. An important concern in the development of our
language was to accommodate a genuine object-oriented
style while at the same time facilitate program reasoning.
For this reason our language only supports code reuse tech-
niques that respect encapsulation, a characteristics that does
not hold for current mainstream object-oriented languages.
In future work, we intend to investigate the logical founda-
tion of our language and evaluate its support in the construc-
tion of correct, concurrent programs.

22

Acknowledgments
This material is based upon work supported by the Na-
tional Science Foundation under Grant No. CNS-1423168.
We would like to thank Henry DeYoung for discussions on
type-directed delegation and the anonymous reviewers for
their helpful comments.

References
[1] occam-pi: blending the best of CSP and the pi-calculus.

University of Kent. www.cs.kent.ac.uk/projects/
ofa/kroc/.

[2] Rust language. www.rust-lang.org.

[3] Sill. https://github.com/ISANobody/sill.

[4] Scribble. http://www.scribble.org.

[5] Servo project. https://github.com/servo/servo.

[6] G. A. Agha. Actors: A Model of Concurrent Computation in
Distributed Systems. MIT Press Series in Artificial Intelli-
gence. MIT Press, 1990. ISBN 978-0-262-01092-4.

[7] J. Aldrich and K. Donnelly. Selective open recursion: Mod-
ular reasoning about components and inheritance. In 3th
International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS), 2004.

[8] D. J. Armstrong. The quarks of object-oriented development.
Communications of the ACM, 49(2):123–128, February 2006.

[9] J. Armstrong, R. Virding, C. Wikström, and M. Williams.
Concurrent programming in ERLANG. Prentice Hall, 2nd
edition, 1996.

[10] R. Arnold, F. Pfenning, and R. Simmons. C0: Specification
and verification in introductory computer science. http:
//c0.typesafety.net, 2010.

[11] K. Bierhoff and J. Aldrich. Modular typestate checking of
aliased objects. In 22nd Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA’07), pages 301–320. ACM, 2007.

[12] K. Bierhoff, N. E. Beckman, and J. Aldrich. Practi-
cal API protocol checking with access permissions. In
23rd European Conference on Object-Oriented Programming
(ECOOP), pages 195–219, 2009.

[13] C. Boyapati, R. Lee, and M. C. Rinard. Ownership types for
safe programming: Preventing data races and deadlocks. In
17th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOP-
SLA’02), pages 211–230, New York, NY, USA, 2002. ACM.

[14] J. Boyland. Checking interference with fractional permis-
sions. In 10th International Symposium on Static Analysis
(SAS), pages 55–72, 2003.

[15] L. Caires and F. Pfenning. Session types as intuitionistic lin-
ear propositions. In 21st International Conference on Con-
currency Theory (CONCUR), volume 6269 of Lecture Notes
in Computer Science, pages 222–236. Springer, 2010.

[16] L. Caires, J. A. Pérez, F. Pfenning, and B. Toninho. Behav-
ioral polymorphism and parametricity in session-based com-
munication. In 22nd European Symposium on Programming

(ESOP), volume 7792 of Lecture Notes in Computer Science,
pages 330–349. Springer, 2013.

[17] L. Caires, F. Pfenning, and B. Toninho. Linear logic proposi-
tions as session types. Mathematical Structures in Computer
Science, 2013. To appear. Special Issue on Behavioural Types.

[18] D. Clarke, J. Potter, and J. Noble. Ownership types for flexible
alias protection. In 13th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA’98), pages 48–64. ACM, 1998.

[19] O.-J. Dahl and K. Nygaard. SIMULA - an ALGOL-based
simulation language. Communications of the ACM, 9(9):671–
678, 1966.

[20] O.-J. Dahl, B. Myhrhaug, and K. Nygaard. SIMULA 67
Common Base Language. Norwegian Computing Center,
1968.

[21] R. DeLine and M. Fähndrich. Enforcing high-level protocols
in low-level software. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
pages 59–69, 2001.

[22] R. DeLine and M. Fähndrich. Typestates for objects. In
18th European Conference on Object-Oriented Programming
(ECOOP’04), volume 3086 of Lecture Notes in Computer
Science, pages 465–490. Springer, 2004.

[23] M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and
S. Drossopoulou. Session types for object-oriented languages.
In 20th European Conference on Object-Oriented Program-
ming (ECOOP), volume 4067 of Lecture Notes in Computer
Science, pages 328–352. Springer, 2006.

[24] S. Drossopoulou, A. Francalanza, P. Müller, and A. Summers.
A unified framework for verification techniques for object
invariants. In 22nd European Conference on Object-Oriented
Programming (ECOOP’08), volume 5142 of Lecture Notes in
Computer Science, pages 412–437. Springer, 2008.

[25] C. Flanagan, S. N. Freund, and J. Yi. Velodrome: a sound
and complete dynamic atomicity checker for multithreaded
programs. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 293–
303. ACM, 2008.

[26] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley, 1995.

[27] S. J. Gay and M. Hole. Subtyping for session types in the
π-calculus. Acta Informatica, 42(2–3):191–225, 2005.

[28] S. J. Gay, V. T. Vasconcelos, A. Ravara, N. Gesbert, and
A. Z. Caldeira. Modular session types for distributed object-
orientedriented programming. In 37th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages (POPL’05), pages 299–312, 2010.

[29] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:
1–102, 1987.

[30] A. Goldberg and D. Robson. Smalltalk-80: The Language and
Its Implementation. Addison-Wesley, 1983.

[31] P. Haller. On the integration of the actor model into main-
stream technologies: A scala perspective. In 2nd International

23

www.cs.kent.ac.uk/projects/ofa/kroc/
www.cs.kent.ac.uk/projects/ofa/kroc/
www.rust-lang.org
https://github.com/ISANobody/sill
http://www.scribble.org
https://github.com/servo/servo
http://c0.typesafety.net
http://c0.typesafety.net

Workshop on Programming based on Actors, Agents, and De-
centralized Control (AGERE!), pages 1–6. ACM, 2012.

[32] P. Haller and M. Odersky. Scala actors: Unifying thread-
based and event-based programming. Theoretical Computer
Science, 410(2-3):202–220, 2009.

[33] R. Harper and M. Lillibridge. A type-theoretic approach to
higher-order modules with sharing. In 21th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages (POPL), pages 123–137. ACM, 1994.

[34] C. Hewitt. Viewing control structures as patterns of passing
messages. Artificial Intelligence, 8(3):323–364, 1977.

[35] C. Hoare. Communicating sequential processes. Communica-
tions of the ACM, 21(8):666–677, 1978.

[36] K. Honda. Types for dyadic interaction. In 4th Interna-
tional Conference on Concurrency Theory (CONCUR), vol-
ume 715 of Lecture Notes in Computer Science, pages 509–
523. Springer, 1993.

[37] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primi-
tives and type discipline for structured communication-based
programming. In 7th European Symposium on Programming
(ESOP), volume 1381 of Lecture Notes in Computer Science,
pages 122–138. Springer, 1998.

[38] K. Honda, N. Yoshida, and M. Carbone. Multiparty
asynchronous session types. In 35th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages (POPL), pages 273–284. ACM, 2008.

[39] R. Hu, N. Yoshida, and K. Honda. Session-based distributed
programming in Java. In 22nd European Conference on
Object-Oriented Programming (ECOOP), volume 5142 of
Lecture Notes in Computer Science, pages 516–541. Springer,
2008.

[40] R. Hu, D. Kouzapas, O. Pernet, N. Yoshida, and K. Honda.
Type-safe eventful sessions in java. In 24th European Con-
ference on Object-Oriented Programming (ECOOP), volume
6183 of Lecture Notes in Computer Science, pages 329–353.
Springer, 2010.

[41] T. B. L. Jespersen, P. Munksgaard, and K. F. Larsen. Session
types for rust. In 11th ACM SIGPLAN Workshop on Generic
Programming (WGP), 2015.

[42] A. Kay. On the meaning of object-oriented program-
ming. http://www.purl.org/stefan_ram/pub/
doc_kay_oop_en, July 2003. Email exchange.

[43] G. T. Leavens, K. R. M. Leino, and P. Müller. Specification
and verification challenges for sequential object-oriented pro-
grams. Formal Aspects of Computing, 19(2):159–189, 2007.

[44] N. D. Matsakis and T. R. Gross. A time-aware type system
for data-race protection and guaranteed initialization. In 25th
Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA),
pages 634–651. ACM, 2010.

[45] L. Mikhajlov and E. Sekerinski. A study of the fragile base
class problem. In 12th European Conference on Object-
Oriented Programming (ECOOP), Lecture Notes in Com-
puter Science, pages 355–382. Springer, 1998.

[46] R. Milner. Communicating and Mobile Systems: the π-
Calculus. Cambridge University Press, 1999.

[47] R. Milner, M. Tofte, R. Harper, and D. MacQueen. Definition
of Standard ML (Revised). MIT Press, 1997.

[48] K. Naden, R. Bocchino, J. Aldrich, and K. Bierhoff. A type
system for borrowing permissions. In 39th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages (POPL), pages 557–570. ACM, 2012.

[49] M. Naik, A. Aiken, and J. Whaley. Effective static race detec-
tion for Java. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 308–
319. ACM, 2006.

[50] R. Neykova and N. Yoshida. Multiparty session actors. In 16th
International Conference on Coordination Models and Lan-
guages (COORDINATION), volume 8459 of Lecture Notes in
Computer Science, pages 131–146. Springer, 2014.

[51] J. A. Pérez, L. Caires, F. Pfenning, and B. Toninho. Linear
logical relations and observational equivalences for session-
based concurrency. Information and Computation, 239:254–
302, 2014.

[52] F. Pfenning and D. Griffith. Polarized substructural ses-
sion types. In 18th International Conference on Foundations
of Software Science and Computation Structures (FoSSaCS),
volume 9034 of Lecture Notes in Computer Science, pages 3–
22. Springer, 2015.

[53] S. Stork, K. Naden, J. Sunshine, M. Mohr, A. Fonseca,
P. Marques, and J. Aldrich. Aeminium: A permission-based
concurrent-by-default programming language approach. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 36(1):2:1–2:42, 2014. ISSN 0164-0925.

[54] R. E. Strom and S. Yemini. Typestate: A programming lan-
guage concept for enhancing software reliability. IEEE Trans-
actions on Software Engineering (TSE), 12(1):157–171, 1986.

[55] B. Toninho, L. Caires, and F. Pfenning. Higher-order pro-
cesses, functions, and sessions: a monadic integration. In
22nd European Symposium on Programming (ESOP), volume
7792 of Lecture Notes in Computer Science, pages 350–369.
Springer, 2013.

[56] B. Toninho, L. Caires, and F. Pfenning. Corecursion and non-
divergence in session types. In 9th International Symposium
on Trustworthy Global Computing (TGC), volume 8902 of
Lecture Notes in Computer Science, pages 159–175. Springer,
2014.

[57] Typesafe. Akka framework. http://akka.io.

[58] D. Ungar and R. B. Smith. Self: The power of simplicity. In
2nd Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOP-
SLA’87), pages 227–242. ACM, 1987.

[59] M. Vaziri, F. Tip, and J. Dolby. Associating synchronization
constraints with data in an object-oriented languages. In
33rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’06), pages 334–345. ACM,
2006.

[60] P. Wadler. Propositions as sessions. In 17th ACM SIG-
PLAN International Conference on Functional Programming
(ICFP), pages 273–286. ACM, 2012.

24

http://www.purl.org/stefan_ram/pub/doc_kay_oop_en
http://www.purl.org/stefan_ram/pub/doc_kay_oop_en
http://akka.io

	Introduction
	Background
	Object-Oriented Programming as Session-Based Communication
	Objects as Processes
	Dynamic Dispatch
	Subtyping

	Language Properties
	Session Fidelity
	Data Race and Deadlock Freedom

	New Forms of Expression
	Type-Directed Reuse
	Internal Choice

	Discussion
	Encapsulation
	Linearity
	Future Work

	Related Work
	Conclusions

